
A Game Tree Strategy for Automated Negotiation

Alan H. Karp
alan.karp@hp.com

Ren Wu
ren.wu@hp.com

Kay-Yut Chen
kay-yut.chen@hp.com

Alex Zhang
alex.zhang@hp.com

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

ABSTRACT
Chess playing programs running on small computers, such
as PocketPCs, can beat most human players. This paper
reports a feasibility study to determine if the techniques
programs use to play chess can be applied to the more eco-
nomically interesting problem of negotiation. This study al-
lowed us to identify the essential differences between playing
chess and negotiating and to demonstrate possible solutions
to the problems we encountered.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on Discrete Structures ; H.4.2 [Information Systems
Applications]: Types of Systems—Decision support ; I.6.8
[Simulation and Modeling]: Types of Simulation—Gam-
ing

General Terms
Algorithms, Economics

Keywords
Automated Negotiation

1. INTRODUCTION
Negotiation can be treated as a game, and computers have

been used to play games, such as chess. However, none of
the proposed strategies for automatic negotiation combines
these two ideas. The strategy presented here involves treat-
ing bilateral negotiation as a two-player game and traversing
the game tree that results from enforcing the protocol.

Of course, there are issues that arise in a negotiation that
don’t enter into playing chess. First, chess is a game of per-
fect information, where the payoff and game structures are
common knowledge, which is obviously not true in general
for bilateral negotiation. In particular, in most real world
examples, the payoff is private information unknown to the
opponent. Not surprisingly, the quality of the deal reached

Copyright is held by the author/owner.
EC’04,May 17–20, 2004, New York, New York, USA.
ACM 1-58113-711-0/04/0005.

by a player depends on how good an estimate of the oppo-
nent is used. Second, in chess, if your opponent makes a bad
move, you do better. That’s not true in a negotiation, both
parties may suffer, so a strategy must be able to deal with
inept opponents. In addition, all moves in chess are discrete,
the queen moves two squares or three, but some attributes
in a negotiation are continuous, such as fluid measures, or
effectively so, such as price.

The protocol and strategy described in this paper are
not specific to the utility of the players. The only require-
ment for implementation is that each player can evaulate
his own utility function. We also do not require a player to
have knowledge of the utility function of his opponent. In-
stead, we have created a general model of how a player deals
with uncertainties. Several experiments using additive util-
ity functions were implemented to study the behavior of this
strategy. We have found this algorithm can result in reason-
able offers, in the sense that we would not be surprised to
see these offers from human negotiators. These issues and
others are discussed in more detail in the full report [1],
which also includes a more complete list of citations. Here
we’ll just summarize that paper.

2. SUMMARY OF THE APPROACH
The rules controlling the negotiation process have an im-

portant influence on the viability of any strategy. For ex-
ample, if negotiators exchange complete offers, they are im-
plicitly searching a very large set of points for an accept-
able deal. A good strategy is one based on some heuristic
for improving the value of the deal, such as hill climbing or
simulated annealing. If the protocol allows parties to change
their minds, avoiding cycles becomes an important part of
the strategy. One of the main design features of the proto-
col used for this study is the guarantee that the process will
terminate in a finite number of turns.

We assume that the goal of the negotiation is to fill in the
blanks in a contract template provided by the marketplace
in which we’re negotiating. A contract template consist of
a set of sections. Each section defines a specific aspect of
the contract, such as terms of payment or product descrip-
tion. The description in a section is specified in a vocabulary,
which consists of a collection of attributes. Each attribute
is a name-value pair and has a number of other properties,
such as multiplicity and matching rule.



The negotiating parties, two in the examples studied, take
turns exchanging offers. An offer consists of values, numeric
ranges or sets of values, for a subset of the attributes in-
cluded in the previous offer. A legal counteroffer must nar-
row the range of potential deals by eliminating at least one
attribute value or narrowing a numeric range. Once an at-
tribute has appeared with a single value in both an offer and
counteroffer, it is settled and may not be reintroduced into
the negotiation. A binding contract is formed when all the
attributes are settled. Either party can declare the negotia-
tion failed at any time before an agreement is reached. We
can think of such a negotiation as a game with a finite num-
ber of positions, very much like a game of chess. Playing
such a game on a computer involves building a game tree
and evaluating the outcomes of each possible move.

Conceptually, building a game tree is quite simple. The
root node represents the current position. Create a child
node for every legal move from the node’s position. If there
are no legal moves from a node’s position, the node is a
leaf, and the expansion stops. Continue until there are no
more moves to examine or you run out of time. We’ll call
leaf nodes and nodes that weren’t expanded terminal nodes.
Next, we evaluate the nodes and pick the move that has the
highest payoff.

Although the basic procedure is very much like playing
chess, there are a number of complications. First of all,
the protocol allows compound moves, moves that could be
made separately but are made in a single move. Second, we
need to deal with continuous moves or moves with so many
choices that we can’t hope to produce a node for each pos-
sibility. One approach would be to select a modest number
of values based on some heuristics as done for games with
large branching factors, such as Go. Instead, we defer the
problem by expanding the tree and evaluating the nodes in
different steps. This choice limits, but doesn’t eliminate, the
opportunities to prune the tree.

Once the tree expansion is complete or we’ve run out of
time, we compute the payoff of each terminal node. If the
node is a leaf, we use the appropriate payoff function. If
the terminal node is not a leaf, we use an evaluation based
on all the attribute values in the offer. The value of a non-
terminal node is that of the child with the largest value for
the player that can move to it. Propagate these values to
the root node, and the move corresponding to the child node
with the largest payoff is the one to make.

Deciding how much to concede on a continuous-valued
attribute at a given round is difficult. There is little in-
formation to be gleaned from game theory because of the
complexity of the game; with a continuous strategic space a
Nash equilibrium cannot be found even if one exists. Eco-
nomic concepts do not help either, since every point is often
Pareto optimal. Another field, that of making decisions un-
der uncertainty, provides more guidance. When encounter-
ing a node corresponding to a continuous value in a decision
tree, apply an algorithm, such as importance sampling, and
see which value is best.

We don’t have the information needed to do importance
sampling, so we use a very simple optimization algorithm.
Each negotiator specifies minimum and maximum conces-
sions for each range-valued attribute. Our optimization in-
volves computing the payoff of the node for each of these
and their mean value, then fitting a parabola through these
three points. The fourth try is the concession corresponding

to the maximum value the parabola takes on this interval.
This strategy is a simple one chosen only to illustrate the
principle. A better algorithm should be used in an opera-
tional system.

Thus far, we’ve been assuming that we know what the
other player wants. That’s clearly not the case in most ne-
gotiations. There are two kinds of uncertainty. We may not
know precisely the other player’s payoff for a particular at-
tribute value or how much weight the player assigns to the
attribute. This uncertainty is adequately represented by a
mean and standard deviation, which allows us to estimate
the expected value of any offer. The second uncertainty is
in the other player’s constraints. I may know with a great
deal of precision how much my opponent values a particular
deal, but I may not be at all certain that he is able to meet
its conditions.

The full paper presents several experiments that illustrate
how the tree strategy operates. These results don’t show any
great advantage for the tree strategy because the case stud-
ied is simple enough that many strategies reach a Pareto
optimal deal. More extensive testing is clearly needed, but
these tests must be done in the context of a specific, realis-
tic negotiation, which is beyond the scope of this feasibility
study.

3. CONCLUSIONS
We’ve shown that it is possible to use the same approach

to negotiation as used when programming a computer to
play chess. In spite of the additional complications, the tree
strategy produces results in line with expectations.

There is much more work to be done. The performance of
the prototype is simply terrible, evaluating fewer than 100
nodes per second. Improving the performance will enable
more systematic studies, particularly to find a better strat-
egy for range-valued attributes. We should also study more
complex contracts, and test the tree strategy against more
realistic strategies, including testing it against people. We
also need to quantify the cost of poor estimates of the other
player’s utility.

Even with dramatically better performance, we don’t ex-
pect to be able to completely expand the game tree as done
in our test cases; doing so will take too long and consume
too much memory. Instead, we’ll address the exponential
explosion by intelligent pruning. The utility representation
we developed allows us to calculate both the best and worst
possible deals reachable from any offer. Hence, we can prune
branches in which the best possible outcome is worse than
the worst possible outcome on some other path. We can also
use a heuristic that limits the number of changes made on
any offer, since restricting the possibilities too much is likely
to violate the other party’s constraints. Finally, we have the
advantage over chess playing programs that negotiations are
often spread over days or weeks instead of minutes.

Chess playing programs have demonstrated that brute
force wins over attempting to emulate human thought. We
expect that a fully developed tool will demonstrate this same
property for negotiation.

4. REFERENCES
[1] A. H. Karp, R. Wu, K.-Y. Chen, and A. Zhang. A

game tree strategy for automated negotiation.
http://www.hpl.hp.com/techreports/2003/HPL-2003-
154.html.


