
 1

COMPUTER GAMES AND ECONOMICS EXPERIMENTS

Kay-Yut Chen and Ren Wu
Hewlett-PackardLaboratories,

Hewlett-Packard Company,
1501 Page Mill Road, Palo Alto, CA 94304-1126

Email:kay-yut.chen@hp.com, ren.wu@hp.com

Keywords: experimental economics, game theory, agent, software platform

Abstract: HP Labs has developed a software platform, called MUMS, for moderating economics games between
human and/or robot participants. The primary feature of this platform is a flexible scripting language
that allows a researcher to implement any economics games in a relative short time. This scripting
language eliminates the need to program low-level functions such as networking, databases and
interface components. The scripts are description of games including definitions of roles, timing rules,
the game tree (in a stage format), input and output (with respect to a role, not client software).
Definitions of variables and the use of common mathematical and logical operations are also allowed to
provide maximum flexibility in handling the logic of games.

This platform has been used to implement a wide variety of business related games including variations
of a retailer game with simulated consumers and complex business rules, a double sided call market and
negotiation in a procurement scenario. These games are constructed to accurately simulate HP business
environments. Carefully calibrated experiments, with human subjects whose incentives were controlled
by monetary compensations, were conducted to test how different business strategies result in different
market behavior. For example, the retailer game was used to test how the market reacts to changes of
HP's contract terms such as return policies. Experiment results were used in major HP consumer
businesses to make policy decisions.

1 INTRODUCTION

Laboratory experiments have become an
increasing important tool in economics to study
behavior, test policies and provide information to
design better mechanisms. On one hand, seminal
work such as those of Vernon Smith and Charles
Plott has provided the link between economics
theory and actual economics behavior in areas
such as markets and auction processes. On the
other hand, researchers have successfully test
alternative policies in areas such as emission
trading, natural-gas pipelines, transportation and
allocation of precious NASA deep space
resources. Hewlett-Packard Company (HP) has
long recognized the potential of this
methodology as a business decision-making tool.
HP Labs, the research arm of HP, has started an
experimental economics program since 1994. Its
strategy is to develop experimental models that
closely mirror specific businesses. Human
subjects then participate in experiments based on

these models and the results are used to isolate
and evaluate the effects of policies.

The key component of this methodology is a

software platform, named MUMS (multi-user
multi stage) that allows researcher to implement
and modify experimental models in a timely
fashion with relatively ease. Each of these
experimental models should be able to
accommodate both human and robot participants.

There are two requirements guiding the

design of this platform. First, it needs to support
many types of games. This need stems from the
fact that there are many different economics
models and business processes that are of
interests to HP Labs. It is more cost effective to
invest upfront in a more sophisticated system
which can be used to support a wider range of
models. As shown in later parts of this paper,
this strategy has paid off handsomely.

 Secondly, the programming interface needs

be simple. Researchers with little programming
experience should be able to use it effectively.

 2

The ease of programming is the determining
factor governing how efficient researchers can
implement their models and execute their
experiments. Ease of programming is sometimes
in conflict with flexibility. A very flexible
system such as the C++ programming language
would be a terrible choice for someone without
the right computing experience. The challenge is
to maintain the balance between ease of use and
the flexibility of the system. We have decided on
the approach of a script-language based system.
This language will allow a user to define a game
as a collection of high-level concepts: players,
their inputs and outputs and sequential logic that
govern the rules of the game. Basic computing
functions such as elements of interface design,
networking and database functions are taken out
of the hands of the users.

The system is also designed to gather data

efficiently. Multiple games with multiple groups
of subjects can be executed simultaneously. This
allows experimenters to conduct multiple
sessions of same or different games at the same
time.

Although the system was initially designed

for human subjects, we have recognized the
importance of robot players (software agents)
both as a research area and as a decision support
tool. Support for software agents was built into
the system from a very early stage of
development. This support is integrated into the
script language. Behavior of robot players can be
easily defined in this language as a plug-in to
any game.

 The MUMS system was used in several

business applications and research projects. The
primary area of business application area is
channel management. HP conducts multi- billion
dollars worth of consumer business through
retail channels. There are many different types of
retailers such as national retailers, regional
retailers, mass merchants, discount clubs, mail
order companies and so on. Each type of retailers
has its own business objectives, rules and
constraints. Policies are used to govern HP’s
relationship with its retailers. Examples are
return policies that govern whether HP will take
back products that are not sold, price protection
policies that shield retailers from price
fluctuations, and minimum advertised price
policies (MAP) that limit what prices retailers
can put on their advertisements. To design
effective policies, HP must understand the
implications of these policies on retailer
behavior. We have created an experimental

model based on this environment. A market with
simulated consumers, modelled on the printer
market, was created. Human subjects1 were
brought in to play the roles of retailers. At the
end of each experiment, each subject was paid in
US dollars according to how well they did in the
experiment measured by a pre-determined
business metrics (such as profit or return on
investment). These laboratory experiments allow
us to measure the differences in behavior as a
function of HP policy changes. These results
provided HP business with invaluable
information to select between alternative policies
as well as potential areas for modification.

Other experimental research areas, which

uses the MUMS system, includes but not limited
to information aggregation, reputation formation
and dynamics, procurement risks analysis.

The paper is organized as follows. Section 2

contains a discussion of previous work. Section 3
is a description of the MUMS scripting language.
We describe the software architecture and
implementation in section 4. Section 5 describes
one of the many applications and research
projects, which uses the MUMS system. Section
6 concludes with some discussions about future
research.

2 PREVIOUS WORK

The idea that to make a computer play games
has always been fascinating to scientists. The
effort of creating a computer game-playing
program can be dated back to beginning of the
computer age (Shannon, C. 1950). There are
many research efforts to create strong computer
playing programs on many classical games, with
primary focus on chess. These research efforts
have become a major area of artificial
intelligence research. At present, the best
computer program can play better than human
world champions in some classical games, such
as checkers (Schaeffer, J. 1997), chess
(Campbell, M. et al, 2002), and Othello (Buro,
M. 2002). For other games such as Go, computer
program is still far behind compared to human
experts (Muller, M. 2002).

In recent years, the research on computer

games has been extended from classical games to
some newer forms of games, in particular,
commercial games. With increasing computer

1 All of our subjects were recruited from the student

body of Stanford University.

 3

power, players of these games are no longer
satisfied with only fancy graphics, but also
demand strong, human-like behavior from the
computer opponent. (Laird, J. et al. 2000)

In economics, laboratory experiments have

become an increasing important research tool. In
the early days before the arrival of mass
computing, simple games such as the prisoners’
dilemma and simple auctions were implemented
with pen and paper. With the advent of personal
computers and networking technologies, more
sophisticated games such as smart markets,
combinatorial auctions, and information markets
are possible. Gradually, experimental
economists’ focus on computer technologies has
gone beyond the issue of implementation of
economics games. Scientists in both fields have
started to exploit the synergies in economics and
computer AI to ask the question of whether
computers can be good economics agents either
in place of or as support tools of human beings.

At the focal point of these fields, which are

different in nature but similar in goal, is an
obvious need of a generalized platform to
support games and agents. The MUMS system
is an attempt to create such a platform in which
economists can experiment with human behavior
and computer scientists can design artificial
behavior.

While the key innovation of the MUMS
system is its script language, the idea of script
languages for particular games is not new. In
chess for example, there are a few languages
have been developed to simplify the knowledge
acquiring process and to help creating better AI.
(George, M. et al. 1990, Donninger, C. 1996).
Script languages can also be found in
commercial computer games, such as Age of
Empire (to allow customization of computer
behavior), and Neverwinter Night (to allow both
customization of computer behavior and easy
content addition).

These special script languages work very

well in the game they were designed to run
within. However, in experimental economics
environments where many different types of
games are needed, these specialized designs are
no longer adequate. A much more general script
language is needed. While the MUMS system is
unique in its ability to support complicated
games, there are several related experiment
economics software platforms that may be of
interests to the reader.

MUDA (Multiple Unit Double Auction) is a
double auction based market system developed
at Caltech. It allows subjects to trade in a
network environment. This system is highly
customizable in terms of the organizations of the
markets. Nevertheless, it is designed solely for
market-based games. Gencam (General Call
Auction Mechanism) is another system
developed at Caltech to implement “smarter”
markets that allows for contingency bidding.

z-Tree (Zurich Toolbox for Readymade

Economic Experiments) is a more generic
package that supports implementation of many
types of experiments. Developed in University
of Zurich and runs on Windows 95/98/NT
platform. The main advantage offered by z-Tree
is that it provides build-in support for some
common experimental economics models. This
enables the experimenter to program and
customize experiments through the definitions of
a sequence of tables. Its main limitations are its
table-based framework and the lack of support
for complicated game playing interfaces.

 The very early stage of MUMS

development was a collaboration research effort
between HP Labs and Caltech. Some of the early
core concepts were implemented into a DOS-
based prototype. Later, the development has
moved inside HP Labs. The script language was
completely redesigned and a new software
implementation was developed.

3 HP MUMS SCRIPT
LANGUAGE

3.1 MUMS Language Overview

There are two main objectives when we
designed the MUMS language. First, it needs to
be flexible and general enough to express many
different types of games. Furthermore, the
language should not be limited to expressing
small games (toy problem) commonly found in
the research community. The ability to handle
sufficient complexity is of paramount importance
since we want to model sophisticated business
scenarios found in HP’s businesses. Secondly,
the language needs to be easy enough for
someone to become proficient without years of
training. Thus, HP Labs economists should be
able to implement experimental models without
the need to be aware of any computing details

 4

such as the underlying distributed hardware
topologies, low-level communications, and
database management.

Although the MUMS language was

designed to model realistic business and
economics games, its power is not limited to
economics. It is relatively easy to implement
other multi-player games. As an example, one
can design and implement an Internet enabled
chess tournament using the MUMS language
within a day. This kind of flexibility and
efficiency should be of interest to the computer
science community.

3.1.1 Building Blocks

MUMS is a general purpose language, and
have the common features found in other
languages, such as data types, multi dimension
arrays, variables, functions, control statements,
and so on. It has its root in the C programming
language. The syntax is similar although the
lower level functions such as pointers are
completely eliminated.

The primary value of this language comes

from support for expressing games. The
language hides all the details of the environment,
such as a distributed network where the game is
played or the database where the data is logged.
For example, a key element in the script is the
“player” definitions. All input and output
functions are called with reference to a player
instead of a client machine. The language treats
“players” universally in any definition of a game.
However, during actual execution, a player can
have several representations including a remote
client, a local client or even a software agent.

“Stage” is another high-level concept. It is a

block of executable script statements. This offers
a way to divide the game into natural, smaller;
self contain blocks that can be reused.
Furthermore, it can also be used as a unit for
timing. For example, one stage can be defined as
synchronous and thus used to synchronize inputs
from all players. Another can be defined as
asynchronous and players can submit inputs any
time. Very sophisticated timing can be created in
a single game by mixing and matching different
timing criteria for different stages.

The language provides build-in mechanism

to capture inputs, send data and perform screen
updates for any player in the game. Database
support is also build-in. An experimenter can
easily save and retrieve data from the database.

A typical game definition in the MUMS

language will usually have following structures:
• definition of all players
• global variables
• stages with executable code
• within a stage, there may be definitions

of data sent to players, screen updates,
and inputs from players.

• any of these can be repeat many times.
• database statements that can be used to

log user activities

Some of the features will be discussed in

following sections.

3.1.2 Grid Object

The most common business interface is the
Excel spreadsheet. Thus, the MUMS user
interface is modelled after Excel.

Grid object is the high level abstract for the

user’s screen. There is one grid object for every
user who participates in the game. The grid
object supports multiple sheets of 2d arrays of
cells. Each cell can be indexed by row, and
column, and can contain a number, text,
reference to another cell, or a formula. The full
range of excel functions is supported.
Essentially, the grid control is a book of multiple
Excel spreadsheets.

There are many high level operations

available to manipulate the grid object. One can
assign a 2d string array to a grid in one
statement. One can also retrieve data from a
block of cells. We can also control whether a
subject is allowed to modify any individual cells.

The grid object also enables limited client

side programming such as client side input
processing and validation (such as transforming
an input or checking whether an input is valid or
not) and client controlled data processing (for
example: decision support tools for an
experimental subject).

The full range of Excel formatting abilities

is also supported.

3.1.3 Microsoft Excel Programming
Interface

Grid object has enabled us to have a very
rich user interface that is familiar to most human
subjects such as business managers or students at
local universities. However, creating a good

 5

interface design still requires a substantial
programming effort. Even though the MUMS
language offers excellent support, creating a
complex grid object by the sole use of the script
language is still a daunting task.

 The MUMS system has a build-in

interface to the Microsoft Excel spreadsheet
application, which is the most widely used
spreadsheet application in the world. The system
can load an Excel file and create a duplicate grid
object. All the cell content and format
information are preserved. Once the spreadsheet
is loaded, it can interact with rest of the system.
Thus, the difficult task of interface design has
become a much simpler job of designing Excel
spreadsheets.

3.1.4 Robots

It is desirable to have automatic players2 to
be in the game. The MUMS language has
automatic build-in support for robots. When a
game is defined, no reference to robots is
necessary. Robots are implemented via script
plug-ins to the game. During execution, the
experimenter can assign any robots, if available,
as well as human controlled clients, to the role of
any player. Without doing any additional work, a
researcher can easily switch between an all-
human experiment, a partially human
experiment, and an all robot experiment.

Robots are excellent tools for debugging

models during the design stage. They can also
provide reference points of performances to
benchmark human subjects.

3.1.5 External Program Interface

The MUMS language has been implemented
as an interpretive language. Therefore,
sometimes it is too slow when expensive
computation, such as sophisticated statistical
model, is needed. An external program interface
was implemented which enables us to use other
available high performance applications for this
purpose. This also provides a way to plug-in
robot players.

2 In the rest of the paper, the use of the terms

“automatic players”, “software agents” and
“robots” are interchangeable.

3.2 An Example

An example is the best illustration of the
MUMS language. The following script
implements a Cournot duopoly game with two
firms and one homogenous product. Each firm
simultaneously chooses a quantity to produce.
The price is then determined as a function of the
sum of the quantities both firms have chosen.
This game obviously is very simple but will
serve to illustrate several key features of the
MUMS language.

3.3 Sample of Screens

The MUMS system has been used for more
than ten experimental projects. All the
experiment is substantially more complex than
the example described in the sample script. To
give the reader some flavor of what is possible,
some actual screens of a typical HP Lab
experimental economics project are depicted
below.

 6

Each individual in this experiment will have
access to four spreadsheets shown above.

3.4 System Overview

The MUMS system is fully distributed
system that one used to conduct the experiment
that was defined as scripts in MUMS language.
There are five major components here. The
engines are the cores of the system, it interpret
the MUMS scripts and control the flow of the
experiment. The servers are the
command/communication center that coordinates
all activities. The Clients are the programs that
human subjects used to interface with the
system. The monitors are for the experimenter to
start, stop and monitor the progress of the
experiment. The top-level architecture can be
seen in figure below.

3.5 Implementation

The current implementation is a distributed
system based on Microsoft technologies.
Although not a requirement, the system is most
efficient when located inside a controlled
environment such as a dedicated computer lab.
Many users can login as subjects and many
games can be played simultaneously. A
development version is also available in which
all components can be running at same machine.

4 APPLICATIONS

4.1 Overview of Modelling
Approach under MUMS

Several business applications and
experimental economics research projects were
implemented with the MUMS system. Standard
experimental economics methodologies were
employed in both cases. Human subjects were
brought into the HP experimental economics lab
and assigned roles appropriate to the model. We
gave them accurate information about the game,
and told them how their actual monetary
compensation was determined by their
performance over the course of the experiments.
Experimental anonymity was preserved with
respect to roles and payment. No deception was
used.

However, the model design philosophy was
quite different between some business
applications and research projects. The
versatility of MUMS is most evident when the
system was successful in accommodating these
very different modelling choices.

For example, in a research project that

studies information aggregation mechanisms
(Chen, Fine and Huberman 2001, 2002), the
MUMS system was used to create a standard
one-sided call market with multiple assets. This
alone is nothing out of the ordinary since there is
plenty of capable call market software created
for experimental purposes. The same project also
called for the implementation of a specially
designed matching game that queries subjects
about probability beliefs and calculate their
payoffs based on a matching criteria.3 In this
game, each subject was given some probabilistic
information about a random event that has ten
possible outcomes. Each of them was then asked
to report discrete probability distributions over
the ten possible outcomes. Their payoffs were
calculated based on the true outcome, what they
have reported, and how well their reports were
matching reports of other participants. The
purpose of this experiment is to test whether
special designed matching game could aggregate
probabilistic information better than an

3 Please see Chen, Fine and Huberman 2002 for a full

description of the project. The purpose of this
game is to solicit probability beliefs that contain
private and public information.

 7

information market. The MUMS system was
also used to implement this very unique game.

The real power of MUMS, however, is best

illustrated in complicated business applications.
Since 1997, experimental methods have been
used to create test-beds to test policy design in
several HP businesses. Because it is expensive to
test in the real market, and more importantly, it
is infeasible to isolate and control a real market,
the laboratory is an attractive alternative to study
the impact of policy changes.

The design philosophy of these business

test-beds sometimes runs counter to that of
academic experiments. Instead of a preference of
the simplest design that can encompass the
modelling issues at hand, we decided to include
as many features as possible to preserve the
complexity of the field environment. This led to
the obvious disadvantage of limited ability to
isolate cause and effect. However, we would be
able to identify problems in the policies in the
most realistic circumstances. In fact, some of the
exploits of the policies would not have been
discovered if we did not take this approach.
Furthermore, just the identification of these
problems even without a firm theoretical
understanding of why they happened was
extremely useful to the business.

This approach utilized the full advantage of

the flexibility of the MUMS platform.
Furthermore, the ease-of-programming allowed
us to implement the models and modify them in
a very short time frame. Some of the
modifications are done within hours. This
capability is invaluable to maintain a project
timeline that is consistent with the short decision
cycle of businesses.

4.2 Minimum Advertised Price
(MAP) Policy Evaluation

In a series of experiments (Charness and
Chen 2002), behavior of retailers were studied
with respect to the common industry practice of
setting a minimum advertised price (MAP),
which is a lower bound on the price a retailer can
advertise for a particular product. Since
thousands of products are involved, MAPs are
usually not enforced by legal contracts. Instead,
retailers face penalties such as discontinuance of
shipments of certain products or withdrawal of

market-development funds4. The focus of this
application is to find the best punishment
strategy amongst several alternatives.

MAPs are necessary because they reduce

price competition between retailers. And if
retailers perceive that price competition for HP
products is too high, they may stock and promote
other manufacturers’ products resulting in a loss
of market share for HP. Yet it is not clear which
form of MAP is best and which enforcement
policies are effective.

A market of seven heterogeneous retailers

was modelled. Each participant played the role
of a retailer. Consumer demand was computer
simulated. These seven retailers interacted
repeatedly in competing for consumer demand
for products differentiated by price and
manufacturers. Retailers made decisions about
stocking, advertising and pricing. In each period,
each retailer chose a price and competed for
some percentage of the potential market. Most
retailers could increase this percentage for
individual product by advertising beyond a
minimum exposure percentage. However, each
retailer could have a different maximum
exposure percentage. Advertising yielded
diminishing marginal returns. To simplify the
model, advertised prices were assumed to be the
same as the selling prices. Thus retailers were
required to enter one price per product in each
period. If a retailer advertised and set a price
below the MAP, a penalty would be invoked.
Experiments with different punishment schemes
were conducted.

Consumer demand was simulated using a

random utility-based multi-level logit model
(Dubin 1998; McFadden 1976). This model
treats each product as a collection of attributes
(such as price, brand, product features and so
on). Each consumer assigns a numerical weight
to each of the attributes and calculates a score
based on a linear weighing function. The
probability that the consumer purchases a
product increases with this score. The number of
consumers in the market was a known stochastic
process to the retailers. They also received a
signal each period and provide further
information about the distribution of the number
of consumers. The model also incorporated

4 Market development funds are money retailers

receive from manufacturers that are supposed to
use for advertising. However, since the use of these
funds are not strictly monitored nor enforced, it has
little difference than cash rebates.

 8

product obsolescence. Some products were
phased out with retailers receiving notices five
periods in advance.

Most retailers also had to make inventory

decisions. The timing of deliveries to the
retailers was a stochastic process known to the
retailers. There is also a return policy (limit to
6% of a retailer’s total shipment) to buffer
against overstocking.

Another aspect of the heterogeneity of the

retailers was their objective functions that reflect
realistic business goals of the different categories
of retailers. These measures include various
combinations of gross profit, net income,
revenue and a return on investment measure.

As one can see, this model is an attempt to

emulate a very complex and even chaotic
environment where no game theoretic analysis
can fully address. Furthermore, during the course
of the project, based on customer inputs as well
as experimental results, many model
assumptions were modified and additional
features added. For example, we further
restricted the number of products a retailer could
advertise. A reputation effect based on history of
prices was introduced. Many of these changes
involved changes of the interfaces as well as the
business logic. All changes were implemented
through the script language in a very rapid
fashion.

The first set of experiments was conducted

in September 1999. Stanford students were used
as subjects. Two possible ways of exploiting the
structure of the policies were identified. The key
insight is that retailers could exploit the timing of
the penalties particular near the end of the life
cycle of a product and avoid the penalties in full
or in parts. Experimental evidence supports this
by showing a clear increase in MAP violations
towards the end of lives of products (Charness
and Chen 2002).

A new design was created based on the

insights we have discovered. A second set of
experiments was conducted in February 2000.
The new design was confirmed to have
addressed the problem. We no longer observed
an increase in MAP violations towards the end of
product life cycles.

The new design was adopted by HP business

in Oct 1999 even before the validating
experiments (Feb 2002) can be completed. It is
still the standard MAP penalty strategy today.

5 CONCLUSION

HP Labs has developed a multiplayer
gaming platform primary for economics
experiments. This platform supports a flexible
scripting language that allows the researchers to
program in the concepts of games. The core
scripting language was implemented on
decentralized, module-based software
architecture. This system is scalable in three
primary dimensions: complexity of the games,
ease-of-programming and the size and number of
games running at the same time.

Business applications were created taking

advantage of the system’s ability to handle
complex games. Many of these applications also
called for rapid modification of the games. The
easy to program script language made it possible.
Several of these experiment-based business
applications have resulted in major policy
decisions for HP’s multi-billion dollar consumer
business.

Currently, this system is used for several

experimental economics project in areas
including information aggregation, reputation
mechanism designs, and procurement strategies.

Looking towards the future, there are two

main research areas that HP Labs is pursuing in
connection with the MUMS system. The first
one is the natural extension of MUMS into a
more expressive, easier to use and more
powerful system. Enhancements includes:

• Automation of the whole experimental

process including recruitment and
management of subjects, access control
into the system, scheduling and
payment of subjects.

• Upgrades to the language
• Re-engineer the software with a JAVA

implementation to facilitate cross-
platform functionalities

So far, most of the experimental work was

done with real human subjects. Robot players
were mainly used as a debugging tool. The
obvious research question is that can we design a
computer player capable of participating in these
games, just like other human? If so, how?
Recently, we have completed one project in the
procurement area in this direction. HP Labs
Bristol has developed a software agent that will
negotiate in the place of a human buyer in a
procurement environment. We have developed a
“procurement” game, in collaboration with HP

 9

procurement organization, to test the
performance of this software agent against
human opponents. Experimental results were
helpful in identifying areas that this software
agent needs to improve. There are internal HP
Labs interests to use this game to test other
software agents designed with different AI
methodologies.

As the methodology of human economics

experimentation has become more mature, new
opportunities open up in the intersection between
experimental economics and computer AI
research. First, economics offer a wide range of
interesting games that may not previously catch
the attention of computer scientists. Secondly,
analysis of experimental data of these games
offer insights of how humans behave. This may
turn into ideas for AI designs. Thirdly, as the
software platform matures, the overhead of
conducting joint research will diminish. For
example, with the MUMS system, once a game
is implemented, it will be costless to switch
between human experimentation and AI
experimentation.

6 REFERENCES

Buro, M. (2002). Improving heuristic mini-
max search by supervised learning. Artificial
Intelligence 134 (2002) 85-99.

Campbell, M. Hoane, A. J. and Hsu F.-h.

(2002). Deep Blue. Artificial Intelligence 134
(2002) 57-83.

Gary Charness and Kay-Yut Chen,

"Minimum Advertised Price Policy Rules and
Retailer Behavior: An Experiment", to appear in
Interfaces, special issue on Experimental
Economics.

Kay-Yut Chen, Lesie Fine and Bernardo

Huberman, "Eliminating Public Knowledge
Biases in Small Group Predictions", working
paper 2002

Kay-Yut Chen, Leslie Fine and Bernardo

Huberman, "Forecasting Uncertain Events with
Small Groups", In Proc. of the ACM Conference
on E-commerce, Oct 2001.

Donninger, C. (1996). CHE: A graphical

language for expressing chess knowledge. ICCA
Journal, Vol.19, pp. 234-241.

Dubin, J. (1998), Studies in Consumer
Demand – Econometric Methods Applied to
Market Data, Kluwer Academic, Boston, MA,
USA.

Fischbacher, U. (2000). Zurich Toolbox for

Readymade Economic Experiments. URL
http://www.iew.unizh.ch/ztree/index.php last
time checked, 2002/06/05.

George, M. and Schaeffer, J. (1990).

Chunking for Experience. ICCA Journal, Vol 13,
pp 123-132.

Laird, J. Lent, M.v. (2000). Human-level

AI’s killer application: Interactive computer
games. Proc. AAAI-2000, Austin, TX, 2000, pp.
1171-1178.

McFadden, D. (1976), “Quantal Choice

Analysis: A Survey,” Annals of Economic and
Social Measurement, Vol. 5, pp.363-390.

Muller, M. (2002). Computer Go. Artificial

Intelligence 134 (2002) 145-179.

Schaeffer, J. (1997). One Jump Ahead:

Challenging Human Supremacy in Checkers,
Springer, Berlin, 1997.

Shannon, C. (1950). Programming a

computer for playing chess, Philosophical
Magazine 41 (1950) 256-275).

http://www.iew.unizh.ch/ztree/index.php

	I
	INTRODUCTION
	PREVIOUS WORK
	HP MUMS SCRIPT LANGUAGE
	MUMS Language Overview
	Building Blocks
	Grid Object
	Microsoft Excel Programming Interface
	Robots
	External Program Interface

	An Example
	Sample of Screens
	System Overview
	Implementation

	APPLICATIONS
	Overview of Modelling Approach under MUMS
	Minimum Advertised Price (MAP) Policy Evaluation

	CONCLUSION
	REFERENCES

