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Abstract

Models of economic decisions often assume people maxi-
mize a preference or utility function. While this assumption
provides insights into a wide range of economic behavior, in
some cases its predictions contradict observed behavior. We
illustrate this situation with human-subject experiments of de-
cisions involving risk. We show how the addition of bounded
rationality to the economic model can explain the behavior,
and we estimate the parameters for our experimental subjects
showing they divide into distinct groups with different risk
preferences. This combined model illustrates how standard
economic models can be extended to a wider range of human
decision-making behavior.

Introduction
Human decisions often involve tradeoffs among competing
goals and uncertainty in the outcomes. Economics provides
a framework to understand a wide variety of such decisions,
based on the concept of utility maximization. This model
postulates a person has utility values associated with possi-
ble states of the world, and situations with higher utilities are
preferred to those with lower ones. Any monotonic transfor-
mation of a given utility function gives the same ordering
of preferences, so the utility is neither unique nor compara-
ble between people. Nevertheless, for situations primarily
involving exchanges in market contexts, the utilities are of-
ten expressed in terms of the monetary value a person would
pay for various items.

The utility framework provides key insights into many
economic scenarios with reasonable predictions in some
contexts. However, this model makes strong assumptions
of rationality, each decision-maker is able to evaluate and
maximize a known (by the decision-maker) utility func-
tion. In many situations, these assumptions do not accu-
rately describe how people make decisions (Camerer 1995).
Instead, human behavior in economic contexts can show
many effects contrary to predictions of the standard eco-
nomic framework. Such effects include those arising from
social preferences (how people deal with each other), indi-
vidual bounded rationality (how people make mistakes in
decisions) and uncertainty (Kahneman & Tversky 1979).

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

For example, fairness is an important social preference in
some decision-making contexts (Guth, Schmittberger, &
Schwarze 1982). Another effect is loss aversion, where peo-
ple tend to weigh the possibility of a loss more heavily than
that of a gain in making decisions (Kahneman & Tversky
1979). When the utility is difficult to evaluate or maximize,
cognitive limitations or bounded rationality can lead people
to make suboptimal choices (Newell & Simon 1972). Such
choices can arise for a variety of reasons, including simply
not understanding or being aware of the options, mistakes in
evaluating the outcomes, and various biases based on how
the choices are described (Kahneman & Tversky 1979).

In this paper, as one economic context where the stan-
dard framework has difficulty, we examine modeling risk
behavior and bounded rationality (Camerer 1995). Risk be-
havior has been studied in various applications (Cox, Smith,
& Walker 1988; Chen & Plott 1998), with primarily focus
on how uncertainty modifies preferences, in the context of
preference maximization. From experiments with lottery
choices, we show that no consistent risk preferences in the
standard economic framework can explain the observed de-
cisions. We designed the experiment to minimize social
preference effects and loss aversion, thereby allowing us
to focus on bounded rationality as a key behavioral effect.
Thus, it is unlikely a modification of risk preferences can
explain the observations. Instead, we turn to a bounded ra-
tional explanation using one model of bounded rationality,
the quantal response framework. This framework also ap-
plies to strategic games, such as auctions (Goeree, Holt, &
Palfrey 2002; 2003).

The next section describes the quantal response model of
bounded rationality. We then describe how this model ap-
plies to the specific situation of decisions under risk, our ex-
periment design and its results. This discussion shows how
the quantal response model introduces bounded rationality
to account for our observations. We generalize this result to
show why the standard utility framework cannot account for
our observations.

Quantal Response Model
One approach to model bounded rationality in the utility
framework is the quantal response model (McKelvey &
Palfrey 1995). This model of behavior considers utility-
maximizing agents who occasionally make mistakes in iden-



tifying their best choice. In particular, this models people
behaving as if they evaluate the utilities of their choices with
the addition of random errors. The net result is a proba-
bilistic model in which people have higher probabilities to
select choices with higher utilities, but do not always do
so. While this model can employ various assumptions on
the distribution of mistakes, a common approach takes the
probability a person selects choice with utility U to be pro-
portional to exp(γU). Here γ characterizes the likelihood a
person selects choices with less than the best utility: γ = 0
corresponds to random choices and γ → ∞ when the per-
son almost always selects the highest utility choice. While
γ characterizes the mistakes, its quantitative value depends
on the arbitrary scaling of the utility function. Thus more
significant quantities from the model involve scale-invariant
combinations of γ and the utility, such as the probability a
person selects the choice with highest utility.

In the quantal response model, the likelihood of mistakes
among two choices increases as the difference in their utili-
ties decreases. That is, mistakes tend to arise among choices
of similar utility where extensive analysis may be required
to identify the better option. This is an example of a more
general challenge in mapping continuous values (e.g., util-
ity preferences among options) to discrete outcomes (e.g.,
choosing one of those options) when the difference in val-
ues is small (Lamport 1986).

Example Application: Decisions with Risk
One situation leading to challenging decisions is when out-
comes have a mix of properties leading to conflicting prefer-
ences. One such example is decisions involving risk, where
an outcome could have a large payoff with a low probabil-
ity. In this situation, a person must make a tradeoff between
a desirable feature (high payoff) and an undesirable one (low
chance for the payoff). Thus decisions with risk provide a
prototypical modeling example involving a variety of behav-
ioral effects (Kahneman & Tversky 1979) while also being
readily studied theoretically and experimentally.

Risk involves making decisions in the face of uncertainty
about outcomes and the choices others (e.g., competitors)
may make. In this context, we say someone is risk averse
when they prefer a certain payment to a risky choice with
the same expected value. Difficulties in modeling behav-
ior under uncertainty arise from how individuals act when
confronted with risk (Kahneman & Lovallo 1993), misper-
ceptions of randomness (Wagenaar 1972) and aversion to
ambiguity (Camerer & Weber 1992). Furthermore, risky al-
ternatives suffer from framing issues: people tend to be risk
averse with formulations emphasizing positive outcomes,
but risk seeking when emphasizing poor outcomes (Kahne-
man & Tversky 1979).

While there is substantial research into how people be-
have under uncertainty and mechanisms that adjust for risk
attitudes (e.g., in adjusting group predictions (Chen, Fine,
& Huberman 2003)), little work exists in how to design
mechanisms to influence that behavior. Developing mod-
els of actual decision-making under risk is a key component
for designing such mechanisms. For example, a quantita-
tive model of how people make decisions involving risk is

probability
lottery payoff 1 payoff 2 of payoff 1
A (risky) 1000 0 1/2
B (moderate) 650 250 1/2
C (safe) 400 N/A 1

Table 1: Lottery payoffs in “experimental dollars” and prob-
abilities. The lotteries decrease in both expected value and
variance from top to bottom. Lottery C has no risk.

useful as basis for improving organizations by adjusting risk
preferences (Hogg & Huberman 2008) or altering signalling
with deliberately risky decisions to hide lower skill levels
compared to peers (Siemsen 2008). Such models could also
have broader public policy implications to help people better
manage risk (Shiller 2003).

To illustrate bounded rationality and the quantal response
model, we consider a simple example of decisions with risk:
lotteries (Holt & Laury 2002). A lottery consists of two
possible payoffs and an associated probability for each out-
come. For example, a lottery could pay either $6, with prob-
ability 0.6, or $2, with probability 0.4. The remainder of this
section describes a set of lottery experiments, a utility-based
model of the observed behavior and estimated parameters
for the model. In this case, bounded rationality is a key in-
gredient to account for the observations.

Experiments
Experiments identify behavioral aspects of human economic
decision-making in controlled situations (Kagel & Roth
1995). In an experiment, people are recruited to play the
roles of decision makers. Subjects receive a full description
of the experiment with no deception, and are paid according
to their profits in the experiment.

Experiments with lotteries are particularly simple since
the lottery choices do not involve interactions among peo-
ple. Lotteries thus represent simple risk choices where pay-
offs and probabilities are precisely known, unlike, e.g., de-
ciding whether to trust someone to fulfill a contract (Chen,
Hogg, & Wozny 2004), reciprocate offers in the trustee
game (Keser 2003) or combine monetary with social re-
wards such as status (Loch, Huberman, & Stout 2000;
Wedekind & Milinski 2000).

We ran several email-based experiments using members
of the Stanford community. In our experiments, we sent a
selection of lottery pairs to participants, who then indicated
which of each pair they preferred in an return email. Al-
though each experiment asked about multiple pairs of lot-
teries, participants were informed that only one of the pairs,
randomly selected, would actually pay off. That is, after
collecting the responses, we randomly selected one of the
lotteries they selected and determined the payout from just
that lottery. We chose this design to reduce portfolio effects,
where, for example, if all lottery pairs were performed, a risk
averse person might pick a few high-payoff low-probability
lotteries, comfortable in the knowledge that other, lower
risk, choices would at least give some payoff.



choices number of participants
A,B 51
A,C 18
C,B 14
C,C 24

Table 2: Number of people making each choice among two
pairs of lotteries: picking A or C, and B or C. This experi-
ment involved at total of 107 people.

Table 1 shows some of the lotteries we used, with pay-
offs given in “experimental dollars”, converted at a prean-
nounced exchange rate of 20 to $1. In one set of experi-
ments we used these lotteries as two pairs, each consisting
of a choice between a risky lottery and the safe option, i.e.,
the first choice was between lotteries A and C, the second
between B and C. Table 2 shows the number of times peo-
ple made each of the four possible selections for these pairs.
The most popular choices were for the two risky lotteries, in-
dicating a degree of risk-seeking behavior in this situation.
Another large group select the safe choice (lottery C) in both
cases, indicating risk-averse preferences. For simplicity in
illustrating the use of the quantal response and utility frame-
work, we focus just on these observations though our exper-
iments involved a larger set of lotteries. In particular, the
payoffs in these lotteries provide opportunities for outcomes
which the standard utility framework cannot explain.

Decision Model
Two major approaches to modeling decisions under risk are
the expected utility framework in economics and the mean-
variance utility model popular in finance (Morone 2007).
The expected utility model considers the utility of a risky
choice as given by the expected value of the utilities of the
payoffs associated with the possible outcomes. These util-
ities need not be linear in the payoffs, thereby allowing the
model to account for risk averse or risk seeking preferences
through utilities that are concave or convex, respectively. In
contrast, the mean-variance utility model considers a linear
combination of expected payoff and its variance. In either
case, these models are only suitable for comparing choices
involving a limited range of payoffs (Rabin & Thaler 2001),
as is the case for our lottery experiments.

For the experiments reported in Table 2, the mean-
variance framework provides a better fit to the observations,
so we adopt this model here. In this model, the utility for a
decision with expected payoff E and variance V is

Ur = E − rV (1)

where the parameter r characterizes the person’s risk prefer-
ence, e.g., positive values correspond to risk averse behavior.
In this utility, the value of r depends on the scale of the pay-
offs since expected value is linear in the payoffs while the
variance is quadratic. More generally, Eq. (1) corresponds
to a linear expansion of a general functional form U(E, V ).
Provided the decisions involve options where E and V vary
over a relatively small range, the linear expansion captures

parameter value confidence interval
f 0.8 0.7 − 0.9
r1 2× 10−4 −1× 10−4 − 3× 10−4

r2 0.5 0.3 − 0.7
γ 0.02 0.01 − 0.04

Table 3: Maximum likelihood parameter estimates and 95%
confidence intervals.

this utility with a single parameter r, which characterizes
how the person trades expected value against variance.

Estimation
With experimental observations and a model with parame-
ters, we estimate values for the parameters via maximum
likelihood, and then test the adequacy of the resulting fit with
a randomization test based on the difference between the
observed and predicted times each choice was made based
on the best fit parameters for each random sample (Clauset,
Shalizi, & Newman 2007).

The simplest model is a homogeneous population. In
this case we require estimates for the risk parameter r
and the bounded rationality γ. The risk parameter can
be either positive or negative while γ is nonnegative. A
maximum-likelihood parameter estimation for this homoge-
neous model gives r close to zero and γ about 0.01 based on
the observations of Table 2. However, a randomization test
indicates the homogeneous model is unlikely to account for
the observations of Table 2, with p-value less than 10−3.

Instead, the relatively large number of people choosing
both risky (A,B) or both safe (C,C) choices suggests mem-
bers of our subject pool have diverse risk preferences. One
model for such variation considers the population as con-
sisting of two groups: a fraction f with risk parameter r1

and the remaining fraction with risk parameter r2 > r1. For
this model, Table 3 shows the maximum-likelihood parame-
ter estimates from the experimental observations of Table 2
and their confidence intervals estimated from 1000 bootstrap
samples (Cohen 1995). The parameters achieving the maxi-
mum likelihood are not unique, and we show values with the
largest γ which still achieves the maximum likelihood. This
corresponds to minimizing the number of choices arising
from “mistakes” rather than from the preferences expressed
by the utilities. The same randomization test as used for the
homogeneous model shows the two-group model is consis-
tent with the observations.

To better understand the risk parameters from this fit,
from Eq. (1), lottery A has higher utility than C for risk pa-
rameter r < RA,C ≡ 1/2500 = 4× 10−4, and lottery B has
higher utility than C for r < RB,C ≡ 1/800 = 12.5×10−4.
Conversely, when r is larger than these values, the utility of
C is larger than A or B, respectively. The values RA,C and
RB,C are above the confidence interval for r1 and below the
confidence interval for r2 in Table 3. Thus our estimates in-
dicate the fraction f of the population has risk preferences
leading to the choices A,B having highest utility, and the re-
maining fraction gives highest utility to C,C. Other choices
made by each group are “mistakes”, including when mem-



bers of the first group pick C,C or those in the second group
pick A,B. With the parameters of Table 3, these cases arise
in 35% of the choices, almost all involving people in the first
group, with risk parameter r1.

To illustrate the consequences of the bounded rationality,
consider a person in the first group. For the choice between
lotteries A and C, the corresponding utilities, from Eq. (1),
are 453 and 400, respectively. So the choice maximizing
utility is lottery A. With bounded rationality, the quantal re-
sponse model predicts the person actually selects lottery A
with probability 78%. This provides a sense of the level of
consistency of the choices we observed in the experiments:
in this case we interpret the remaining 22% of the choices as
mistakes due to bounded rationality.

The confidence intervals on the parameters are fairly
broad, indicating the number of observations is not sufficient
for tight estimates on model parameters. In particular, the r2

value, for risk-averse people, is only weakly constrained by
the limited set of observations in Table 2. Because these
people mainly selected both safe choices, we only have a
lower bound on their risk preference and would need further
lottery choices with less risky alternatives to the safe choice,
or both lotteries involving some risk, to better characterize
their risk preference. Such additional lotteries were included
in our full set of experiments.

We also examined the expected utility framework, with
risk preference corresponding to the utility associated with
a payoff x given by xr, with positive risk parameter r. Here
r < 1 corresponds to risk averse preference. This utility,
combined with the quantal response model, also gives a rea-
sonable maximum-likelihood fit to Table 2 based on two dis-
tinct risk preferences in the population. However, the max-
imum likelihood is smaller than achieved with the mean-
variance model, making the latter a more likely explanation,
as quantified, for example, with the Akaike information cri-
terion (James & Plank 2007).

Bounded Rationality Requirement

The behavior in our lottery experiment is not adequately
described through simple utility maximization with either
the mean-variance utility of Eq. (1) or the expected utility
framework. A question arises is whether any reasonable
choice of utility for lotteries could explain the observations
without resorting to bounded rationality, i.e., assuming peo-
ple pick the choice with highest utility. As an initial ap-
proach to this question, we demonstrate no choice of risk
preference for the mean-variance utility can account for the
observations under the assumption of utility maximizing be-
havior. A similar argument gives the same conclusion for
the expected utility framework.

In the experiment, we observe some people choose lottery
A over C and C over B. For a utility-maximizing decision
maker, these choices require Ur(A) > Ur(C) > Ur(B).
In the mean-variance utility framework of Eq. (1) we claim
there is no r, i.e., a consistent risk attitude, that satisfies these
inequalities, as demonstrated below more generally.

Inconsistency of Utility Maximization
Consider a person making two choices among pairs of lot-
teries. The first choice is between a lottery L1 with prob-
ability p to receive payment x and otherwise nothing, or a
riskless lottery Z with sure payment z. The second choice
is between a lottery L2 with probability q of receiving y1

and 1− q of receiving y2, or the same fixed payment lottery
Z as in the first decision. We take these parameters to sat-
isfy x > y1 > z > y2 > 0. Thus, both decisions involve
choosing between a risky lottery and a riskless one.

Theorem: If the decision-maker strictly prefers L1 over
the riskless lottery Z and strictly prefers Z over L2, i.e.,

Ur(L1) > Ur(Z) > Ur(L2) (2)

then there is no value of r such that the decision-maker the
choice maximizing Ur(L), given by Eq. (1), when the pay-
offs and outcome probabilities satisfy

qy1 + (1− q)y2 − z

q(1− q)(y1 − y2)2
≥ px− z

p(1− p)x2
(3)

Proof: The variance of a lottery with probably p to receive
w1 and probably 1− p to receive w2 is p(1− p)(w1−w2)2.
Thus Eq. (2) implies

px− rp(1− p)x2 > z (4)

and

z > qy1 + (1− q)y2 − rq(1− q)(y2 − y1)2 (5)

Eq. (4) implies r < px−z
p(1−p)x2 and Eq. (5) implies r >

qy1+(1−q)y2−z
q(1−q)(y1−y2)2

. Thus, px−z
p(1−p)x2 > qy1+(1−q)y2−z

q(1−q)(y1−y2)2
, which

contradicts Eq. (3). Thus conditions Eq. (2) and Eq. (3) are
inconsistent. QED.

Eq. (3) states the increase in expected value between L2

and Z, compared to the variance of L2, is larger than the
corresponding ratio for the choice between L1 and Z. Thus,
the mean-variance utility model suggests a person preferring
L1 to Z would find the trade-off between expected gain and
variance even more attractive for L2 compared to Z.

The theorem applies to each decision-maker individually.
So even if utilities (i.e., the value of the risk parameter r)
differ among people, we would not expect any choices of
rational utility maximizers to violate Eq. (3).

Application to Experimental Observations
For lotteries A, B and C in the experiments, the values in
Table 1 correspond to p = q = 1/2, x = 1000, z = 400,
y1 = 650 and y2 = 250, which satisfy Eq. (3) and so the
observed choices for A and C are inconsistent with mean-
variance utility maximization. A similar argument as given
above shows this set of choices is also inconsistent with the
expected-utility framework.

The theorem shows the joint choices of lottery A over C,
and C over B can be considered as “inconsistent choices”
because no consistent mean-variance utility formulation of-
fers an explanation based on utility maximization. For the
other three choices in Table 2, such consistent formulations
are possible. In particular, with the mean-variance utility, a



person with r < min(RA,C , RB,C) = 1/2500 has highest
utility for the choices A,C; a person with RA,C < r < RB,C

has highest utility for choices C,B; and a person with r >
max(RA,C , RB,C) = 1/800 has highest utility for choices
C,C. Thus, while observations of these choices could be mis-
takes, as they are not the maximum utility choices, the obser-
vations need not be attributed to mistakes. The choices A,C,
on the other hand, must arise from mistakes. Thus, from
Table 2 we have at least 18 of the 107 observations arising
from mistakes. We can use this to estimate a lower bound
on the probability P people do not choose their utility-
maximizing choices. In particular, the maximum likelihood
estimate for P is just 18/107 = 17% with 95% confidence
interval of 11% − 25%. From this discussion, the theorem
and our observations imply we are likely to have P of at
least 11%. This compares with the estimate of P = 35% of
choices attributed to mistakes by the maximum likelihood fit
to the two-group model given above, which considers some
of the other three choices to also be mistakes.

Discussion
In summary, we conducted human subject experiments and
showed, in the context of lottery choices, people are incon-
sistent with standard economic theory. By accounting for
bounded rationality, we showed the quantal response model
gives a reasonable alternate explanation. More generally,
extending standard economic models to include behavioral
effects (e.g., bounded rationality) broadens the scope of eco-
nomic approaches to modeling human behavior.

One challenge in applying economic models to human
behavior is relating the somewhat arbitrary choice of util-
ity functions to observable behavior. The utility reflects a
preference ordering so any monotonic transformation of the
utilities gives the same behavior predictions. More specific
models, such as the quantal response and expected utility
maximization frameworks, rely not only on the ordinal but
also the cardinal quantity of the utility, so they are not invari-
ant with respect to such transformations. For example, in the
quantal response model the likelihood of mistakes depends
on the difference in utilities whereas rational behavior just
uses the ordering. Specifically, the probability of a choice is
proportional to eγU , which gives the same results when all
utilities are multiplied by some factor as long as γ is cor-
respondingly divided by the same value. Thus while using
numerical utility values in a model can be useful, robust pre-
dictions must focus on scale-independent behaviors, such as
choice preferences or probabilities.

An important modeling question is the extent to which our
claim of the limitations of utility maximization generalizes
to arbitrary utility models, beyond the mean-variance and
expected utility formulations we discussed. Our claim is not
true for arbitrary nonlinear preference functions, e.g., allow-
ing arbitrary utility values for the choices. The more inter-
esting question is whether there are conditions on the utility
that are both behaviorally reasonable and consistent with the
experimental observations. Such reasonableness conditions
include increasing preference for higher payoffs and consis-
tent risk preferences (either risk seeking or risk averse) over
the limited range of payoffs involved in the experiments.

When the quantal response model reasonably describes
behavior, a practical issue is estimating its parameter γ.
Since utilities are not known a priori, the utility used for esti-
mation may not reflect people’s actual preferences, in which
case the estimation procedure will consider observed devi-
ations from the best choice according to the utility model
as “mistakes”, thereby decreasing the estimated value of γ.
Thus, estimating γ confounds actual errors with a misspec-
ified utility model. As one approach to this problem, es-
timates of γ with different utility models can suggest the
most descriptive utility model. If parameters indicate one
utility model gives a statistically significant higher value for
γ than another, the former ascribes less of the observed be-
havior to “random” mistakes. Controlled experiments (as
opposed to observational field data with no ability to change
the available choices), can partially address this confound-
ing of model accuracy and bounded rationality. For exam-
ple, asking a person to select among the same set of choices
multiple times, after a sufficient time interval or recasting
choices in different terms to avoid correlated mistakes, will
induce multiple independent errors for estimating γ. On the
other hand, systematic correlated “mistakes” likely indicate
an incorrect utility model.

There are several directions for future research. In the
context of managing risk behavior, it is important to mea-
sure the risk and bounded rational parameters for an individ-
ual, as opposed to the population-level estimate discussed in
this paper. However, it is difficult to obtain enough choices
from each person for a precise estimation of parameters. In
this case, an adaptive procedure may help (Castro, Willett,
& Nowak 2005; Zheng & Padmanabhan 2006), i.e., subse-
quent choices presented to an individual are based on their
prior choices. In this context, a model is useful not only to
explain observations but also to help design further experi-
ments by suggesting ranges of parameters to focus on, e.g.,
appropriate risk levels to better distinguish the parameters.

Utility-based models, such as quantal response, are not
the only approach to understanding bounded rationality.
Other approaches include psychologically-based models,
such as estimates based on a series of simulated out-
comes (Busemeyer & Townsend 1993), which also focus
on decision time rather than just the outcome. An interest-
ing question is what level of cognitive detail is necessary to
model various economic behaviors. From a modeling stand-
point, specific experiments can be designed to distinguish
the structure and types of mistakes people make. An exam-
ple is to distinguish among systematic mistakes, caused by a
person using an incorrect method, and random errors, caused
by imprecise calculations. Another example is to identify
correlations between mistakes, which are neglected in the
model we discussed. One possibility to help distinguish ran-
dom mistakes from an incorrect utility model is using what
people say others will choose (Prelec 2004), under the as-
sumption that members of the group have some common
information and preferences. Such distinctions could sug-
gest how to improve utility models. Beyond conventional
economic and psychological experiments, new technologies
allow a more fine-grained observation of the decision pro-
cess (Bernheim 2008; Logothetis 2008) and may lead to



improved predictive models, including for decisions involv-
ing risk (Kuhnen & Knutson 2005). Moreover, increasingly
common mobile devices people carry can provide infor-
mation on small group interactions (Pentland 2007) which
could be included as additional components of utility-based
models, e.g., to allow modeling social preference effects.

The utility and quantal response framework described
in this paper is useful for economic decisions with well-
defined choices over a limited set of alternatives. This
framework of individual choices with bounded rational-
ity can be the basis for larger-scale stochastic or agent-
based models of large groups of people. These include
both conventional economic situations and broader contexts
such as user behavior on the web (Huberman et al. 1998;
Lerman 2007).
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