
Access Control for the Services Oriented Architecture

Jun Li and Alan H. Karp
Hewlett-Packard Laboratories

Palo Alto, CA, USA

{jun.li, alan.karp}@hp.com

ABSTRACT
Federated Identity Management (FIdM) is being applied to
Services Oriented Architecture (SOA) deployments that cross
enterprise boundaries. Though federation is essential in order to
address the distributed nature of SOA, these FIdM solutions have
been found to be inflexible, unscalable, and difficult to use,
manage, and upgrade. We contend that a major reason for these
difficulties is that FIdM addresses the wrong aspect of the
problem. Specifically, FIdM does not address the federation of
access policies. What is needed is a system for Federated Access
Management (FAccM). This paper demonstrates the benefits of
FAccM over FIdM for SOA deployments and shows how FAccM
can be implemented using the existing web services standards.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services– Web-based Services.

General Terms
Security, Management, Standardization

Keywords
Services Oriented Architecture; SOA; web services; access
control; Federated Identity Management; FIdM

1. INTRODUCTION
The Services Oriented Architecture (SOA) [28, 35] may yet
deliver on the promise of loosely coupled application
development that didn’t materialize from earlier attempts, such as
CORBA [39, 15]. SOA can be based on the Web Services
standards - UDDI for service discovery [38], WSDL for interface
definition [40], and SOAP for invocation [33], all of which use
XML [10] as the communications format. These standards
remove many dependencies on application servers, operating
systems, and machine architecture, making composition of
independently developed components far easier.

One of the things holding back the widespread use of cross-
domain SOA is the delay in reaching consensus on how to secure
the service between different organizations. There are a number
of aspects of securing web services, such as encryption, message

integrity, authentication, authorization, etc., and there appears to
be at least one standard for each of them, XML DSIG [41],
XACML [9], etc. The relevant standard for a discussion of access
control is the Security Assertion Markup Language (SAML) [27].
The goal of SAML is to provide a means for exchanging security
information across organizational boundaries, a requirement if the
SOA is to reach its full potential.

The SAML specification is quite general in the kind of assertions
that can be made, but most of the examples include a specification
of the user’s identity. For example, the SAML Technical
Overview [27] includes the statement, “At the heart of most
SAML assertions is a subject (a principal – an entity that can be
authenticated – within the context of a particular security domain)
about which something is being asserted.” The Liberty Alliance
[22], which is developing a framework for distributed identity
management, has adopted SAML 2.0, another indication of the
importance of identity assertions in SAML.

It is no surprise, then, that most implementations based on the
SOA tie access control decisions to the identity of the requester.
This approach is spelled out in the introduction to the SAML
specification [27], which states,

Judging by the preponderance of talks at security conferences,
such as RSA 2007 [31], most implementers assume that a
Federated Identity Management (FIdM) framework is needed to
associate an access policy with a given identity when crossing
organizational boundaries. Based on the problems reported [18],
organizations implementing these solutions are learning that
federating access policies is much harder than federating
identities.

The SAML specification does not indicate how the service
provider is to use the identity of the requester to make access
control decisions. Typically, the service uses the identity to look
up the appropriate policy in some local database and bases the
access decision on that information. So, it appears that the
identity of the requester isn’t the critical information; it is the
authorization information in the database that matters. If that is
indeed the case, why not have the request convey the
authorization information instead of or in addition to the
requester’s identity? This paper shows that managing access
policies using explicit authorizations with Federated Access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SWS’07, November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 1-59593-546-0/06/0011...$5.00.

“For example, a typical assertion from an identity
provider might convey that ‘This user is John Doe, he
has an email address of john.doe@company.com, and
he was authenticated into this system using a password
mechanism.’ A service provider could choose to use
this information, depending on its access policies, to
grant access to local resources.”

Management (FAccM) is simpler than managing access policies
using FIdM.

In the remainder of this paper, we’ll explain why Identification-
Based Access Control (IBAC) with FIdM is not a good solution,
show the advantages of FAccM using Authorization-Based
Access Control (ABAC), introduce the FAccM architecture, and
show how to express FAccM with SAML assertions.

2. Current Approach
Today, most web services in a SOA implementation use
Identification-Based Access Control (IBAC), often with
Federated Identity Management (FIdM). It’s quite familiar, but
there are a number of problems.

Manageability: There is substantial management overhead.
When employees change jobs, their companies must make sure
their policies are updated. The result should be the employee
losing some rights and gaining others. When using services
provided by other organizations, they must request that the
corresponding ACLs be updated. Enterprises can have10,000 or
more business partners. Even small companies often have
hundreds of customers. The cost of updating the access lists can
be substantial.
The approach is unmanageable for users, too. Employees may
work with dozens of business partners. They may well end up
with a different credential for each of them. Worse, each might
be based on a different technology, perhaps as similar as SAML
1.1 and SAML 2.0 or as different as X.509 and Kerberos. The
employee will have to learn how to use each of them. The
number of tools being developed to simplify things for users is
proof that the problem is real. These tools include a variety of
Single Sign-On (SSO) products [1, 30], and identity management
tools, such as Card Space [24]. The problem is getting all the
business partners each employee deals with to agree on a single
approach.

Ambient authorities: Every request is accompanied by proof of
the user’s identity. The service searches its policy database
entries for him looking for a match with the request. If a match is
found, the request is honored. It is very hard for users to give
processes running on their behalf a subset of their rights. That
means a virus running in a user’s browser can do anything that
user is allowed to do. Single Sign-On exacerbates the problem by
giving each process the user runs even more authority.

Delegation: Employees often need to delegate some tasks. Since
the access control lists are tightly controlled, they must ask some
party in authority to do the delegations on their behalf. If the
delegation includes services controlled by other organizations, a
responsible party in each organization needs to be involved.
Since access is controlled by authentication, the employee
receiving the rights being delegated needs credentials for each
organization. This process is so onerous that people often share
credentials, such as passwords and private keys [29].

Revocation: Delegated rights often need to be revoked. We
can’t simply revoke an employee’s identity. It’s used for too
many things. Instead, we need to remove entries from the
relevant access control lists. As with delegation, this process
involves administrators from several organizations. One risk
with this approach is that the employee whose right is being
revoked might have had that right for a reason independent of

the delegation. Simply removing the ACL entry will
inappropriately revoke that user’s right.

Responsibility tracking: We need to know who to hold
accountable for service invocations for billing and to deal with
misuse. The employee’s company can audit the fact that the
service was invoked. Depending on the configuration, they can
track who made the request. However, tracking why the
employee was granted the right is harder.

Confused deputy: This problem arises when rights from two
parties need to be exercised in the same request [14]. The classic
example is a service that compiles programs and updates a billing
file (a log file). The service invocation takes two parameters, the
name of the input file and the name of the output file. The attack
involves specifying the log file where the service is expecting the
name of the output file. The consequence is that the billing file
gets corrupted. Variants of this attack are not rare [34].

Transitivity: It is common to invoke a service that needs to
invoke a second service in order to satisfy the original service
request. The question is whose rights get used for that second
service request. In some cases, there is no right answer. Consider
a service that copies files using the implementation
outFile.write(inFile.read()). The original invocation provides the
name of the input file. The subsequent (second) invocation
provides in addition the name of the output file. The service
request will fail unless there is one party with the permission to
both read the input file and write the output file.

Policy compliance: Access policies are complicated and
frequently change. Hence, security can not rely on all employees
being aware of all the policies all the time. With IBAC, granting
a right involves a system administrator who can deny requests
that violate policy. Unfortunately most such requests are simple
delegations that would not violate policy. People end up avoiding
the delays of involving an administrator by sharing credentials
[29], and the policy is violated.

3. Federated Access Management
In a conventional system based on Identification-Based Access
Control, users present their identities along with their requests.
The invoked service presents these identities to a policy engine
and honors the request if the policy engine returns an
authorization. Because authentications cross organization
boundaries, Single Sign-On (SSO) [1, 30] and Federated Identity
Management (FIdM) [22] solutions are often proposed to reduce
the management burden.
Federated Access Management (FAccM) is based on
Authorization-Based Access Control (ABAC) [18]. In ABAC
users authenticate to their respective identity servers. Each
identity server presents the identity to a policy engine that returns
the authorizations appropriate for that user. Users present these
authorizations along with their requests, and the service honors
the request if the authorization is valid, e.g., has not expired or
been forged. Since authentications need not cross organizations,
there is no need for SSO or FIdM.
FAccM with ABAC has a number of advantages.

Manageability: Management overhead is reduced. There is no
need to set up accounts at a variety of business partner sites.
There is no need to manage the identities of employees of those

business partners. Each organization is free to grant and revoke
privileges on its own.

Ambient authorities: There are none. Users may give the
processes acting on their behalf exactly the subset of their rights
that they want them to have.

Delegation: Delegation is the key to simplifying distributed
policy management. Users manage their rights without needing
to bother people who know nothing about their organizations.
Easy delegation encourages users to delegate subsets of their
rights to processes acting on their behalf, reducing their
vulnerability to errors and malware.

Revocation: Revocation only involves the two end-points of the
request. That reduces the delay in revoking access and simplifies
the mechanism. Further, there is no danger that revoking the
rights delegated to one party will affect the authorization that
party received from someone else.

Confused deputy: Deputies cannot become confused because the
authorization and the designation are combined. Each resource
named is tied to exactly the intended set of rights.

Transitive access: Invoking a service involves using one’s rights
and delegating rights to the arguments. The example of
outFile.write(inFile.read()) works because the original invocation
delegates the right to read the input file, and the subsequent
invocation delegates the authority to write the output file.

Policy Compliance: Delegation is easy, even if it violates policy.
In the minority of cases where it is important, the request can be
directed to a forwarder that can ensure policy is followed at an
early stage, instead of being enforced later at the service. Since
users delegate all rights in the same way, policy is enforced.

4. FAccM Architecture
Authorization-Based Access Control (ABAC) applies an
organizing principle that has long been used in human
interactions, delegation of rights and responsibilities. The
characteristic of this principle that ABAC most closely embodies
is making the chain of trust explicit. Federated Access
Management (FAccM) extends ABAC across organizations. In
this case, each link in the chain of trust can be viewed as a
contract between two organizations.
The overall architecture is shown in Figure 1. We will first
discuss ABAC within an organization, which refers only to the
top half of the figure, and then show how extending it across
organizations leads naturally to Federated Access Management.

4.1 Intra-organization
Within an organization O, there is a Domain Access Right
Controller (DARC) and a policy engine. Authorizations are
represented by certificates of the form Cert(A,B,R), where the
issuer B is authorizing the recipient A to use the rights R. When a
service S is deployed in O, the owner of S creates a self-issued
certificate, Cert(S,S,*), which grants all rights to the service
owner. The service owner then registers the service with the
DARC, along with a certificate Cert(O,S,*) that delegates all
operations on S to O. Later, when a subject U, which can be
either an end-user or a service, asks the DARC for access to S, the
DARC will check its policy engine. If access is approved, the
DARC will delegate the appropriate subset of the rights in a

certificate to U, Cert (U, O, RU). Hence, the DARC represents the
organization for issuing authorizations.

Cert (O, S,*) = Delegate (O, Cert(S, S,*), S,*)
Cert (U,O,RU) = Delegate (U, Cert (O, S,*), O, RU)

In the Delegate function above, the four parameters represent the
delegatee, the source certificate, which serves as proof of the right
to delegate, the delegator, and the subset of the rights in the
source certificate that are being delegated. Restricting the rights
being delegated allows the delegation of certificates authorizing
different rights to different subjects (users). This approach
decouples the service’s granting of the right to use all of its
operations from the enforcement of the organization’s policy.
The user presents Cert (U,O,RU) when invoking S. Note that the
innermost certificate in the delegation chain, Cert(S,S,*), is what
identifies S as the service being authorized. S, or a Policy
Enforcement Point (PEP) acting on behalf of S, is responsible for
verifying the validity of the authorization. This validation
includes checking that the certificate is properly signed and that
the signing key is still valid, that the request has been made
during the validity period of the authorization, and that the
delegations are proper. This last step includes verifying the above
facts in addition to the fact that the rights being delegated are a
(proper) subset of the rights of the delegator.
Many service invocations take arguments. Some of these
arguments are pure data, but others include references to other
services, say S1, which S can invoke later. As a result, the full
invocation path is U→S→S1. Since the user does not know how S
is implemented, the argument is expressed as a delegation to S of
a (proper) subset of the user’s rights to S1, Cert(S,U,RS). U gets
the necessary information to delegate to S from the certificate
authorizing U to use S. S now has the rights needed to invoke S1.
If S invokes S1 with the delegation from U, the invocation cannot
exceed U’s authority to S1. The rights that U delegates to S1 are
called the transitive rights to respond to the invocation of S.
Users can be less vulnerable to the software they use by taking
advantage of this transitive rights pattern. They need not just start
a process that has access to the user’s private key, and thereby all
the user’s rights. Instead, the user creates a new public/private
key pair, delegates the subset of the user’s rights that the process
needs to do the job the user wants done, and starts the process,
passing in the new key pair and the delegated certificates. As a
result, the process becomes a subject that works on behalf of the
user with the limited rights specified in the delegated certificates.
Revocation is straightforward. When a user U leaves the
organization, U’s public key can be revoked using conventional
means, such as an organization-wide Certificate Revocation List.
That doesn’t work well when U is changing jobs because only
some of U’s rights change. Instead, we need to revoke those
rights U is not longer entitled to. With ABAC, any subject on the
delegation chain can send a message to S revoking access to some
Cert(U,*,RU) granted to U.
Each service exposes a revoke() operation. The right to revoke the
certificate is embedded in the certificate granted to the subject. A
subject makes a request directly to the service specifying a
certificate that the subject has delegated. The revocation request
is honored if the requesting subject’s authorization is in the
delegation chain. Once the revocation request is validated, the
revocation involves recording the certificate in the service’s

revocation list, indexed either by its Globally Unique Identifier
(GUID) or the cryptographic hash of the certificate. There is no
need to propagate revocations to other services.
Delegation and revocation with ABAC follows the organizational
structure. The DARC delegates to the department head; the
department head delegates to the manager; the manager delegates
to the user who will do the work; the user delegates to the process
invoking the service. A manager reassigning work can simply
revoke and delegate certificates as needed. The rest of the
organization need not be involved.

4.2 Inter-organization
When crossing organizations, the pattern described above for
granting access within a single-organization still holds. When a
contract is signed granting organization OA the right to use
aspects of service S provided by organization OB, the DARC in
OB delegates to the DARC in OA the right to use those aspects of
S covered by the contract.

Cert (OA,OB,R) = Delegate (OA,Cert (OB,S,*),OB,R)
The DARC in A will then store this cross-organizational
delegated certificate as if the certificate was issued by a service
hosted in OA, albeit with one extra layer of delegation in the

certificate. The DARC in OA issues subsets of the rights received
from the DARC in OB to subjects in OA as if these were
authorizations to local services.
OB may have a policy on the classes of subjects it wishes to have
access to S, e.g., users who have taken a training course. For
subjects in OB, this policy is controlled by the policy engine of
OB. That won’t work for subjects in OA because only the policy
engine in OA is consulted when deciding what rights to delegate.
The contract between OA and OB must specify the policies OA is
expected to enforce.
No technology can force OA to respect OB’s policy because OB
does not control how OA identifies its subjects. Even using the
policy engine in OB doesn’t help because subjects in OA are free
to share credentials. Users in OB may also share credentials, but
OB can take the appropriate action when they are caught. OB has
no such control over users in OA.
There is no difference between service invocation and revocation
of local and remote services. U’s authorization certificate to S,
Cert(U,U',RU), where U' is either an end user or the service S or
the DARC, is used to invoke the service. Service parameters,
such as to S1, are delegated to S by U, Cert(S,U,RS). Figure 1
shows how authorization certificates are passed along service

Alice (U)

Service SA
(with CertSA=
Cert (SA, SA, *))

CertB = Delegate (OB,
 CertSB, SB, *)

Service Invoke (CertSB, U,
 Delegate (SB, CertSA, U, U, R))

Organization B (OB)

Organization A (OA)

Request Authorization on SB
Based on Contract

CertSB,OA =Delegate
(OA, CertB, OB, ROA)

Domain Access Right

Controller

Policy Engine

policy checking Service SB
(with CertSB =
Cert (SB, SB, *))

Policy Engine

Domain Access Right
Controller

(2) Request SA’s
Authorization

(4) CertSA, U= Delegate (U,
CertA, OA, RU) (3) (6) policy

checking

(7) CertSB, U =Delegate
(U, CertSB,OA, OA, RU)

(5) Request SB’s
Authorization

Service Invoke (Delegate (SB,
CertSA, U, U, R))

(1) CertA =
Delegate (OA, CertSA,
SA, *)

Figure 1. Certificate granting and service invocation in FAccM architecture.

invocations, for a user U in organization OA to invoke a service
SB in organization B, with SB further invoking service SA in
organization OA. By default, the delegation of parameters
involves only U and S. In particular, the DARC of neither
organization is involved. If there is a concern that such
delegations might violate some policy of the user’s organization,
when U invokes S, the DARC in U’s organization can establish a
proxy service that will only forward requests that follow policy.
Only the proxy service, but not the actual service, is visible to U
in U’s organization. Authorizations are revoked by sending a
revocation request directly to S. Organizations that do not wish to
rely on another organization for revocation have the option of
proxying requests to those services. Having the proxy in the
invocation path adds one more level of indirection, but it doesn’t
impact the manageability of rights.

5. Using Standards to Implement ABAC
We have shown how to implement Federated Access
Management using Authorization-Based Access Control in the
abstract. In this section, we show how to use SAML assertions
[19] as authorization tokens. We show how to construct a SAML
certificate delegation chain, how to specify constrained
delegation, and how to dynamically construct authorization
certificates to represent transitive rights that encode full
responsibility tracking. More detail is available with the
description of our reference implementation [19].

5.1 SAML Certificates as Authorizations
A SAML assertion, defined by the OASIS consortium [27],
consists of three types of assertion statements. The authentication
statement shows how and by whom a subject has been
authenticated. The attribute statement states properties of a
subject. The authorization decision statement for a particular
resource states whether access is granted or denied.
The SAML standard includes the following fields in an
authorization decision statement, which we use to grant rights:

(1) Decision: Whether access is denied or permitted. We always
set this field to denote that access is permitted.

(2) Resource: What resource the authorization decision applies
to. In our use of the certificate, the resource is a web service,
and this field is used to encode the URL of the web service
endpoint reference.

(3) Subject: Which subject the authorization applies to. The
subject can be either a user or a web service. Each subject is
represented by a X.509 public key certificate. The SOAP
request to the web service must be signed by the private key
corresponding to the public key in this field.

(4) Action: Which actions on the resource are being authorized.
In our certificate, an action is a method provided by the web
service specified as the Resource. The namespace attribute
of the Action includes the web service’s URL.

(5) Evidence: Information to support the claim that the
authorization is valid. In our certificate, this field contains a
copy of the certificate that represents the rights being granted
to the delegator.

Using the evidence field this way lets us reconstruct the
delegation chain, even across subjects from different
organizations. The delegation chain starts with the innermost

certificate, which was signed by the owner of the web service.
Each subsequent delegation is embodied by the next outer
SAML Assertion. Each Assertion is signed by the private key
corresponding to the X.509 public key certificate listed in the
subject field in the next inner certificate. We show this
structure in Figure 2. Entities specified in boxes are XML
elements and entities specified in angle brackets are XML
attributes. Detailed SAML-based authorization certificates can
be found in [19].

Although an auditor in OA can show that some user U in OB took
some action or delegated to some other user, that auditor may not
have the means to associate the public key of U with a particular
responsible party. However, the auditor does know the
responsible party in OA. Hence, by following the delegation
chain the responsible party can be identified.

5.2 Constrained Delegation
Often in the delegation chain, the delegator is only willing to
delegate a subset of its right to the delegatee. In the web
service environment, a simple constrained delegation is at the
level of the web service method. The delegator allows only a
subset of the web service methods to be delegated by simply
listing Action fields containing only the methods being
authorized.
A more sophisticated form of constrained delegation is to put
limits on the range of parameter values being authorized. We
use SAML attribute statements to express such constraints. The
constraint is specified by name, encoded in the AttributeName
field, and the associated value, encoded in the AttributeValue.
Since the Attribute statement is distinct from and in parallel to
the authorization statement, we need to establish the association
between the constraint and the corresponding web service
method. Making the namespace of the Attribute the
concatenation of the web service namespace and method name
serves this purpose.

 Assertion
<Assertion ID> < Issuer>

Authorization Statement

<Resource> <Decision>

Subject
NameIdentifier Subject Confirmation

Action <NameSpace>

Attribute
 <AttributeName> <AttributeNameSpace>

XML Signature

Evidence
Assertion

AttributeValue

Figure 2. SAML certificate layout for authorization-based

access control.

5.3 SAML Authorization Certificate
Validation
The authorization certificate encoded in the SAML assertion is
validated by the web service for each invocation from the client.
The validation is separated into a service-independent part and a
service-dependent part. The service-independent checking
includes:
(1) every certificate in the delegation chain has a valid XML

signature;
(2) no certificate in the delegation chain has expired;
(3) no certificate in the delegation chain is in the service’s

revocation list;
(4) the issuer of every certificate in the delegation chain

(embedded in the XML signature) must match the subject
(explicitly expressed in the authorization statement) in the
certificate encapsulated in the Evidence field;

(5) the web service method being invoked needs to be explicitly
stated as “permit” in the all certificates in the delegation
chain;

(6) each invocation needs to have a verifiable message digest,
and the X.509 public key certificate associated with the
message digest needs to match what is stated in the subject
field at the outmost certificate.

Checking of Step 6 prevents a subject from using an authorization
certificate issued to a different subject. Aside from Step 6, all the
steps can be done by using XPath to traverse the certificate
hierarchy in the XML document containing the SAML Assertion.
Step 6 requires that the web service connect the signature on the
SOAP request to the Subject specified in the SAML Assertion.
This procedure is explained in Section 6.
Service-dependent checking makes sure that no delegation grants
more rights than appear in the Evidence. Such constraint
checking depends on the semantics of the individual services.

6. Message Interception on Service Invocation
SAML certificates are assumed to be public documents. When
used as an authorization, the Assertion specifies the delegatee
Subject and is signed by the issuer, which is the delegator Subject.
Hence, merely verifying the integrity of the certificate does not
tell if the certificate was presented by someone else. In this
section we show how to use message interception to address this
issue. Our solution uses the .NET web services framework. A
reference implementation is available for download [20, 21].

6.1 .NET Messaging Layer Basics
In the .NET web service environment, service requests and
responses are carried in a SOAP message, which consists of the
header and the body. For a web service call, a SOAP body
encodes the call parameters, while the header encodes out-of-band
parameters such as security tokens [32]. .NET web services
provide support for application-defined SOAP headers as
extensions from a generic SoapHeader class [12]. A web service
can define such a SOAP header instance via a custom attribute
annotated to the web service method, and allow the header to be
accessed in the method’s implementation.

.NET web services also provide an application-defined message
level interceptor. Each interceptor is defined as SOAP extension
class, extended from the generic SoapExtension class [12]. The
extension provides message level interception points along the
call/return path – before/after serialization and before/after
deserialization, on both the client and the service side. Figure 3
shows the two interception points we use, after serialization on
the client side and before deserialization on the service side.

6.2 Subject Verification
We solve our validation problem by verifying that the SOAP
message was signed by the private key corresponding to the
X.509 public key certificate in the Subject field of the
authorization assertion. The requester signs the SOAP message
on the request side, and the server checks that signature on the
receiving side. There is a slight complication. The SOAP
signature is at the messaging layer; the SAML assertion is at the
application layer. We need to pass the necessary information
between these layers.
To this end, we define a MessageSigningHeader as a SOAP
Header. On the client side, before service invocation, the service
proxy is provided with a SOAP header that includes credentials
needed to access the user’s certificate store. The header also has
three other fields defined: a public key (with type of byte array),
an XML signature (with type of XmlElement), and a Boolean
used to hold the message integrity signature checking result,
which are initialized with the default values of null or false.
We also defined a WebServcSoapExt as a Soap Extension. On the
client side, we intercept the service call after serialization. At this
time, the whole call invocation request has been serialized as an
XML SOAP message. First, we use the user credentials to
retrieve the public/private key pair from the local certificate store.
Next, we construct an XML signature over the Soap body. The
MessageSigningHeader is also represented as an XML tree within
the Soap Header section. We directly manipulate the XML tree of
this MessageSigningHeader to set the public key and the
computed XML signature. At the end, we remove the credentials
from the XML tree.
On the server side, we intercept before deserialization. At this
time, the whole call invocation request is still in the form of a
SOAP message. We take the XML signature and public key out
of the MessageSigningHeader, and verify them against the SOAP
body. The verification result is then assigned to the boolean
message integrity field in the MessageSigningHeader.
Finally the flow of control reaches the service method being
called. In the method implementation, the MessageSigningHeader
is retrieved, and the stored message integrity result is extracted.
If this value is True, the public key is retrieved from the SOAP
header. The service then pulls out the authorization token,
traverses the SAML certificate, and extracts the outermost
certificate’s Subject field. The Subject field contains the X.509
public key certificate belonging to the delegatee. If the public key
from the header and the public key extracted from the subject
field are the same, we know the requester is the delegatee.
(Actually, we only know that the requester knows the delegatee’s
private key, but that’s the best we can do.)

In summary, the application-defined Soap Header provides the
link between an application (both client invocation and service
implementation) and the generic message level interception. The
required information provided by message interception to the
application is transported via the Soap Header. By combining
these two mechanisms, we are able to enforce that the
authorization token comes from the right client and that the
authorization token has not been forged.

7. Prior Work
Access control became necessary when users started storing their
data on computers they shared. Two forms were developed,
capabilities [6] and access control lists, ACLs [5]. ACLs use the
subject’s identity to make access decisions and are the most
common form of Identification-Based Access Control (IBAC).
Capabilities, which combine designation with authorization,
implement Authorization-Based Access Control (ABAC). ACL
systems became dominant after claims were made that
capabilities were unable to support some security properties of
interest to the intelligence community [3, 23]. These criticisms
have recently been addressed [25, 26], but our install base is
almost entirely ACL based.
It is widely known that managing an ACL system can overwhelm
a system administrator [36, Chapter 8], since a large number of
changes may be needed when a user changes responsibilities.
Role-Based Access Control (RBAC) [11], which assigns access
rights to roles and subjects to roles, reduces this burden. In
practice, the rights of a role often depend on which subject is in

that role, which leads to role explosion. Policy-Based Access
Control (PBAC) [2] was developed to address this problem. Each
subject is assigned a set of attributes. A policy engine checks
these attributes and the request against some policy, authorizing
the request if it does not violate the policy. SAML certificates
were designed to support these access control models with their
Authentication, Attribute, and Authorization fields.
While RBAC and PBAC are effective at solving the rights
management problem of IBAC that they were designed to solve,
they do not address the other problems discussed in Section 2. In
practice, by requiring administrator involvement in every
delegation, they lead to environments where rights are granted in
bulk, making it harder to enforce least privilege. Akenti [37] is an
alternative that uses X.509 certificates to express rights.
Although the authors briefly discuss an approach similar to what
we present here, which they call the push model, they focus on a
pull model. In that model, the user authentication accompanies
the request, and the service (gatekeeper in their terminology) asks
Akenti to retrieve the user’s authorization certificates. This
approach suffers from several of the problems discussed in
Section 2. Delegation, which is key to FAccM, is only mentioned
in passing, but it appears that the Akenti server must be involved,
at least in the pull model.
Although the term is new [18], ABAC has a long history. The
original capability paper [6] described specialized hardware for
managing hardware resources. KeyKOS [13] later implemented
capabilities for general resources types on commodity hardware.
Capabilities were later extended over the network [7].

Client
(Construct a MessageSigningHeader)

Soap Message

Soap Header

Soap Body

Service
(Retrieve the MessageSigning

Header)

Input Parameters and
Headers

Input Parameters
and Headers

MessageSigningHeader

public class MessageSigningHeader {
 public string CertStoreName;
 public string CertStorePassword;
 public byte[] PublicKey;
 public XmlElement XmlSignature;
 public bool CheckingResult;
}

Retrieve
& Update

Retrieve
& Update

Before DeSerialization After Serialization

Message Passing

Figure 3. Using Soap extension and Soap header to facilitate subject verification.

ABAC is more general than capabilities. Client Utility [17]
used “split capabilities”, which partially separated designation
from authorization. The work presented here most closely
follows the way e-speak [16] used SPKI [8] certificates. In that
case and in our work, the authorization certificates are
capabilities if they are used as the service parameters. They are
not if they are used in addition to some other form of
designation. We believe that it is better to use them as
capabilities, but legacy systems may not support having the
certificate as the argument. In these cases, a non-capability
form of ABAC is better than the other options.

8. Conclusions
ABAC encourages delegation, allowing subjects to delegate to
other subjects and processes they run only the rights needed to do
the job. Since delegations can be further delegated, they follow
the pairwise trust relations. When a delegation crosses an
organizational boundary, the responsible party in that
organization controls its use. This step is the key to Federated
Access Management, allowing organizations to manage their own
rights without needing to manage users in other organizations
We have shown how to use the web services standards, in
particular SOAP and SAML, to implement ABAC. While this
use fully conforms to the published standards, it is clear we are
using these components in a way not envisioned by the standards
committees. Further, none of the existing toolkits supporting web
services development implement what we propose. Nevertheless,
we feel the benefits are compelling enough to warrant a change.
To illustrate the FAccM mechanism detailed in this paper, we
completed a reference implementation in the .NET web service
environment. The implementation is available for public
download [20, 21].

9. REFERENCES
[1] ActiveIdentity, Single Sign-On,

http://www.actividentity.com/solutions/technology/esso__ov
erview.php

[2] Blaze, M.; Feigenbaum, J.; Lacy, J., “Decentralized trust
management,” Proceedings of IEEE Symposium on Security
and Privacy, pp. 164-173, 1996.

[3] Boebert, W. E., On the Inability of an Unmodified
Capability Machine to Enforce the *-property. In Proc. 7th
DoD/NBS Computer Security Conference, pages 291–293,
Gaithersburg, MD, USA, September 1984. National Bureau
of Standards.

[4] Computer Associates, Single Sign-On,
http://www.ca.com/us/products/product.aspx?id=166

[5] Daley, R. C. and Neumann, P. G., A general-purpose file
system for secondary storage, Proceedings of the Fall Joint
Computer Conference, 1965.

[6] Dennis, J. B. and Van Horn, E. C., Programming Semantics
for Multiprogrammed Computations, Comm. of the ACM, 9,
#3, 1966.

[7] Donnelley, J. E., A Distributed Capability Computing
System. In Proc. Third International Conference on
Computer Communication, pages 432–440, Toronto,
Canada, 1976.

[8] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B.,
and Ylonen, T., "SPKI Certificate Theory", IETF RFC 2693.
http://www.ietf.org/rfc/rfc2693.txt

[9] Extensible Access Control Markup Language (XACML)
V1.1, http://www.oasis-
open.org/committees/xacml/repository/cs-xacml-
specification-1.1.pdf

[10] Extensible Markup Language (XML),
http://www.w3.org/XML/

[11] Ferraiolo, D. F. and Kuhn, D. R, "Role Based Access
Control" 15th National Computer Security Conference,
1992.

[12] Ferrara, A. and MacDonald, M., Programming .NET Web
Services, O'Reilly Media, Inc., 2002.

[13] Hardy, N., KeyKOS Architecture. SIGOPS Operating
Systems Review, 19(4):8–25, 1985.

[14] Hardy, N., “The Confused Deputy: (or why capabilities
might have been invented)”, ACM SIGOPS Operating
Systems Review, Volume 22, Issue 4 (October 1988).

[15] Henning, M. and Vinoski, S., Advanced CORBA
Programming with C++, Addison-Wesley, 1999.

[16] Hewlett-Packard, e-speak Architectural Specification,
Release A.03.14.00, 2001.

[17] Karp, A. H., Gupta, R., Rozas, G., and Banerji, A., The
Client Utility Architecture: The Precursor to E-Speak.
Technical Report HPL-2001-136, Hewlett Packard
Laboratories, 2001.

[18] Karp, A. H., "Authorization Based Access Control for the
Services Oriented Architecture", Proc. 4th Int. Conf. on
Creating, Connecting and Collaborating through Computing
(C5 2006), Berkeley, CA, IEEE Press, January (2006),
http://www.hpl.hp.com/techreports/2006/HPL-2006-3.html.
Some of the introductory material comes from this paper.

[19] Li, J. and Karp, A., “Zebra Copy: A Reference
Implementation of Federated Access Management”, HP Labs
Technical Report HPL-2007-105,
http://www.hpl.hp.com/techreports/2007/HPL-2007-
105.html

[20] 20. Li, J. and Karp, A., “Zebra Copy sample code”,
http://www.hpl.hp.com/Alan_Karp/ZebraCopy.zip

[21] 21. Li, J. and Karp, A., “Zebra Copy sample code with
SOAP interception”,
http://www.hpl.hp.com/Alan_Karp/ZebraCopyExtension.zip

[22] Liberty Alliance, http://www.projectliberty.org/.
[23] Mayfield, W. Traditional capability-based systems: An

analysis of their ability to meet the trusted computer security
evaluation criteria. Technical report, National Computer
Security Center, Institute for Defense Analysis, 1987.

[24] Microsoft, “Introducing Windows CardSpace”,
http://msdn2.microsoft.com/en-us/library/aa480189.aspx

[25] Miller, M. S. and Shapiro, J. S. Paradigm Regained:
Abstraction Mechanisms for Access Control. In Proc. Eighth
Asian Computing Science Conference, pages 224–242, Tata
Institute of Fundamental Research, Mumbai, India, 2003.

[26] Miller, M. S, Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control, Ph.
D. Thesis, Johns Hopkins University, Baltimore, Maryland,
USA, 2006.

[27] 27. OASIS, “Security Assertion Markup Language (SAML)
2.0 Technical Overview, Working Draft 05”, 10 May 2005,
http://www.oasis-
open.org/committees/download.php/12549/sstc-saml-tech-
overview-2%5B1%5D.0-draft-05.pdf

[28] 28. Papazoglou, M.P and Georgakopoulos, D., “Service-
Oriented Computing,” Communications of the ACM, Vol. 46,
No. 10, pp. 25-8, Oct. 2003.

[29] Ping Identity, “Reducing Account Sharing with Federated
Single Sign-On”, Webinar,
http://www.pingidentity.com/p/03yVcBqM?elq=F993B4D59
6D54D5B91838E8F7ECD6DE6

[30] Ping Identity, Single Sign-On,
http://www.pingidentity.com/resources/88

[31] RSA Conference 2007,
http://www.rsaconference.com/2007/US/.

[32] 32. Security Token, see http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-
os-SOAPMessageSecurity.pdf, and http://www.oasis-
open.org/committees/download.php/16785/wss-v1.1-spec-
os-x509TokenProfile.pdf

[33] Simple Object Access Protocol (SOAP) 1.1, W3C Note,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[34] Stoll, C., The Cuckoo’s Egg, Pocket Books, New York,
1989.

[35] Stojanovic, Z. and Dahanayake, A. (eds), Service-Oriented
Software System Engineering: Challenges and Practices,
Idea Group Publishing, 2005.

[36] The Open Group, CDSA Explained,
http://www.opengroup.org/bookstore/catalog/g905.htm,
2001.

[37] Thompson, M. R., Essiari, A., and Mudumbai, S.,
Certificate-Based Authorization Policy in a PKI
Environment, ACM Trans. Information System Security, Vol.
6, No. 4, Nov. 2003, pp. 566-588.

[38] Universal Description, Discovery, and Integration (UDDI),
http://www.uddi.org/.

[39] Vinoski, S., “CORBA: Integrating Diverse Applications
within Distributed Heterogeneous Environments,” IEEE
Communications Magazine, vol.35, no.2, pp. 46-55, Feb.
1997.

[40] Web Services Description Language (WSDL) 1.1, W3C
Note, http://www.w3.org/TR/wsdl.html.

[41] XML-Signature Syntax and Processing, W3C
Recommendation, http://www.w3.org/TR/xmldsig-core/

