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Abstract 

 
This paper presents a test framework to support 

unit component testing in distributed component-based 
systems that are built upon component technologies 
like CORBA, COM/.NET, J2EE/RMI.  The framework 
exploits automatic code instrumentation at the stubs 
and the skeletons of the calls in order to monitor a 
global call session. The calls can be cross-thread, 
cross-process and cross-processor. We further define 
certain testing-related interfaces for driver 
components in the component test harness and extend 
the IDL compiler, such that at runtime, test-related 
attributes can be automatically embedded in the call 
session identifier and propagated system-wide. As a 
result, various support for unit component testing can 
be enabled, including behavior coordination for stub 
components, collaborator component determination 
from historical execution, selective regression testing, 
and crash site pinpointing. 
 
1. Introduction 
 

Component-Based Systems (such as CORBA, 
COM/.NET and J2EE/RMI) have improved the 
construction of large-scale distributed systems. 
However, testing these systems remains challenging, 
as often they are deployed in multi-process and multi-
processor environments. Furthermore, they are usually 
long-lived and evolve over time in order to take 
advantage of new hardware platforms and to provide 
new system functionalities according to ever-changing 
business requirements. The combination of complex 
system features introduction with shortened 
development cycle time has made test automation 
critical. 

Unit component testing has proven to be critical to 
ensure the overall system to deliver the functionalities 
promised [2]. In a large-scale system, a component test 
harness is itself a distributed component-based 

application. The system involves the component under-
test, and a collection of collaborator components that 
the component is dependent on. These dependent 
components may have concrete implementations or be 
stubbed with controlled implementations. The stub 
components belong to the driver components in the 
component test harness. In such a testing-related 
distributed application, common questions asked are: 
• How to test a component as if it were in the full 

distributed system under development, without 
running the full system?  

• Which test cases in test suites should be rerun 
when a component is modified? 

• How can we effectively test a component under 
different configurations, such as with/without 
networking, or with different failure conditions, 
and how to coordinate different components 
across the distributed system? 

• When a test case failed, how can the test 
management system report the failure and its root 
causal information automatically?  

Our observation is that large component-based 
systems are dynamically bound, multi-threaded 
applications with complex component interactions. 
The dynamic nature of these systems defeats static 
analysis approaches that count on a one-to-one 
mapping between interface and implementations, and 
the concurrent component interactions and callbacks 
defeat simple message interception and logging. 

Software testing is an infrastructure technology 
[17]. In this paper, we present a test framework to 
component testing that leverages the previous work on 
distributed applications monitoring. The framework 
automatically instruments the applications by 
extending the interface definition language (IDL) [11] 
compiler to insert monitoring code (called probes) into 
the generated stub and skeleton modules. The probes 
establish a global session across all the components 
involved. The data collected from these probes enables 
the construction of the system-wide dynamic call graph 



that reveals the system-wide function caller/callee 
relationship at the component level, regardless of 
reentrancy, callbacks, thread and process boundaries, 
and unsynchronized clocks.  

Furthermore, we carefully define a set of 
component interfaces for driver components, such that 
the IDL compiler can inject test-related attributes and 
actions into the probes, with knowledge support from 
these driver components. These actions are used to log 
test-related attributes (such as test suite and test case 
identifiers), allow these attributes to be embedded into 
the global session identifier, and apply test-related 
controls during the test execution.   

With the test-augmented runtime monitoring 
capability, the observed test execution behavior can be 
automatically linked with the corresponding test cases, 
both at runtime and offline environment. As a result, 
we can understand and also control in a test harness, 
how the component under test interacts with other 
components, and therefore develop the test techniques 
traditionally applicable only to sequential or weakly 
distributed applications. To answer the questions 
identified previously, we present in this paper several 
testing techniques, including behavior coordination for 
stub components, collaborator component 
determination from historical execution, selective 
regression testing, and crash site pinpointing. 

The paper is organized as follows. Section 2 
introduces the distributed systems monitoring 
framework. Section 3 explains our testing-related 
extension to the monitoring framework. Section 4 
details stub components coordination and Section 5 
presents various offline testing analyses. 
Implementations results are shown in Section 6. 
Related work is described in Section 7 and Section 8 
provides summaries and future work. 
 

2. Distributed Systems Monitoring  
 

Distributed systems monitoring is important to 
collect runtime information to help determine system-
wide component interactions. In distributed and 
component-based systems, the caller and callee can be 
located in different threads, different processes, or 
even different processors. A simple approach of 
monitoring the execution of each individual thread is 
not sufficient as cross-thread causality cannot always 
be determined in re-entrant code (regardless of 
timestamps).   

Our solution to the above problem is to add hidden 
information between the caller and callee that 
propagates a global causality identifier [13, 7, 8].  This 
global causal relationship works cross-thread, cross-
process and cross-processor. Figure 1 shows an 
example of distributed application with four 
application components deployed in four different 
machines (from M1 to M4). In fact, what Figure 1 
illustrates is the Dynamic System Call Graph (DSCG), 
constructed off-line by analyzing the runtime 
information captured from the monitored application. 
This graph unveils all the component-level invocations 
with their call hierarchies (i.e., both sibling call 
relationship like GetMetaData and GetFile, and the 
parent/child relationship like Authenticate and 
RetrieveMultiMediaDocument). 

With the causal identifier propagated system-wide, 
we can monitor functional behavior (input parameters, 
output parameters, and possible exceptions) and run-
time resource allocation (timing latency, CPU, virtual 
memory, number of threads spawned, etc.), and have 
such captured runtime information to be annotated to 
the constructed DSCG. The user can inspect the 
captured runtime information when traversing the 
DSCG graph. For example, in Figure 1, the user can 

 

M1 

void main(){ 
 //assume objA is with type ClassA for content management 
 objA->RetrieveMultiMediaDocument(); 
} 
 
//obj1, obj2 and obj3 refers to Identity Management, 
//Document Repository, and Action Logger. 
void ClassA::RetrieveMultiMediaDocument (){ 
   … 
   boolean result =obj1->Authenticate(); 
   if (result) { 
     MetaData mdata=obj2->GetMetaData(); 
     for (int i=0; i<mdata.Files;i++) { 
       obj2->GetFile(); 
     } 
     for (int i=0; i<mdata.VAnnotations; i++) { 
       obj2->GetVoiceAnnotation(); 
     } 
     obj3->LogAction(); 
   } 
 … 
} 

 

RetrieveMultiMediaDocument 
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Figure 1: An example of code about remote invocations and global causality propagation 



find that the method RetrieveMultiMediaDocument 
constantly increased virtual memory usage at M1. 
Further inspection can reveal that memory leak only 
happened when the method GetFile (hosted by M3) 
was invoked. This finding can then lead to code 
inspection on method implementation of 
RetrieveMultiMediaDocument. The root cause of the 
failure could be that the returned file content to M1 was 
stored in M1’s memory for some post-processing, and 
no memory release was performed at M1. 

 
3. Test-Related Monitoring Extension 
 

The test-related extension of the distributed 
monitoring framework covers distributed call session, 
a defined set of test-relating component interfaces, and 
the IDL compiler extension. As a result, test-related 
attributes can be injected, propagated, and 
captured/retrieved system-wide at runtime. Later at the 
analysis phase, these test-related attributes can be 
superimposed to other analysis results, such as DSCG. 
 
3.1. Distributed Call Sessions  
 
We introduce a global distributed call session across 
all the call instances that are with the same causality 
identifier. A session container is attached to the global 
distributed call session, to augment the information 
carried in the global session. The core information 
contained in the session is the causality identifier, 
which is defined in CausalityInfo (shown in 
Figure 2) and consists of a UUID to denote the global 
identifier of this session and an event sequence number 
that is incremented by one whenever a call-related 
probing point (belonging to one of the following: stub 
start, skeleton start, skeleton end, and stub end) is 
encountered. A session container can further include 
application-specific session information, defined by a 
value type of ApplicationSession. Each 
application under monitoring can have its own specific 
session information, with its type extended from 
ApplicationSession. A value type is an object 
that is passed by value, rather than by reference, whose 
primary purpose is to encapsulate object state 
information and to allow application to construct a 
local copy of an object from the object state [11]. The 
corresponding language and runtime support in COM 
is Customer Marshalling [3]. 

In this paper, the testing-related application session 
information at least covers: 

(1) The scope of the test case currently under 
execution, represented as a test suite identifier and a 
test case identifier; 

(2) The selective instrumentation indicator. If an 
interface method in a component is chosen for 
monitoring, then in this distributed call session, 
starting from this selected interface method, all the 
downstream calls will bear this indicator to turn on the 
instrumentation, but not the upstream of calls in this 
distributed call session or the other distributed call 
sessions that are not involved with this particular 
interface method [7].  

 
3.2. Testing Related Components 
 

To construct a distributed component-based system, 
following the Component Definition Language (CDL) 
[5], to each component, in addition to the IDL 
definitions for the supported interfaces, we have the 
following information: 
• Component Specifications: the supported 

interfaces, threading (reentrancy), relationship to 
other components (containment, aggregation, 
factory, etc.), unique identifier, etc. 

• Packaging and Deployment Specifications: to use 
server thread or Dynamic-Linked-Library (DLL) 
to host this component.  

With automatic code generation from the declarative 
packaging and deployment specifications, component 
grouping and deployment in a multi-process 
environment becomes simple and flexible. In CDL, the 
IDL compiler that deals with stub and skeleton code 

module GenericSession { 
   
  struct CausalityInfo { 
        UUID global_function_id; 
        unsigned long event_seq_no; 
  }; 
 
  valuetype ApplicationSession{ 
 
  }; 
}; 
 
 
module TestingRelatedSession { 
   
  valuetype TestingRelatedAppSession:  
        GenericSession::ApplicationSession{ 
    public UUID suite_id; 
    public long case_id; 
  }; 
 
  struct SessionContainer { 
    GenericSession::CausalityInfo  
                          causalityInfo; 
    TestingRelatedAppSession appSession; 
  }; 
 
}; 
 
Figure 2: IDL definition for call session 
container 



automation becomes one particular running phase of 
the CDL compiler. 

A test harness typically involves one Component 
under Test, a driver component called Test 
Component, and a collection of Collaborator 
Components that the component under test are 
dependent on. More specifically, the test component is 
responsible for creating an instance of the component 
under test, and exposing a collection of test case 
execution handlers to the test client.  Examples of 
these handlers are perform_test1 and perform_test2 in 
TestInvocationInterface (shown in Figure 
3). We define a special method called register in 
TCInterface (with concrete implementation 
provided). It accepts the test suite identifier and test 
case identifier as the inputs.  This method is always 
invoked in the test case execution handlers. Through 
this method, the test suite and test case identifiers are 
all pushed into the distributed call session container, 
and then propagated in the test harness.  

A collaborator component that interacts with the 
component under test can be replaced with a Stub 
Component, to simulate various behaviors which may 
occur in a final implementation of this collaborator 
component. Its purpose is to verify the behavior of the 
component under test in a controlled execution 
environment. A stub component has its implementation 
to follow the exact same interface(s) provided by a 
concrete collaborator component. Such controlled 
response can be as simple as to return a pre-defined 
result or throw an exception. In addition to the 
interfaces defined by the user-defined application 

component, the corresponding stub component 
supports the interface ComponentStubbing. This 
interface is equipped with two methods, namely, 
suite_id() and case_id(), to retrieve the test suite and 
test case identifiers respectively, from the distributed 
call session’s container. These two methods are 
invoked during the execution of the stub method 
defined in the stub component, to query which specific 
test case is currently under execution.  

Therefore, the methods: register(.)  and 
suite_id()/case_id() collectively form a push/pull 
model to the testing-related attributes. The register(.) 
method takes the test suite and test case identifiers, and 
puts them into a Thread-Specific Storage (TSS) area in 
the client thread. Before a request message is sent by 
this calling thread, the call session container populates 
these two identifiers by pulling them from the TSS. At 
the server side, after the call request arrives, the test-
related identifiers are unpacked from the container, and 
pushed into the TSS of the server thread. Finally, the 
suite_id()/case_id() pulls the respective identifier out 
from the TSS. The actual action about how these 
identifiers are pushed to or pulled from the session 
containers is done by the instrumented stubs/skeletons.  

By interface querying of ComponentStubbing, 
we can further determine whether the component is a 
stub component or a real collaborator component. 

Both the test component and the stub components 
are referred to the driver components. With CDL 
specifications and its compiler support, a component 
test harness can be constructed flexibly, after the 
component under test and driver components are 
identified. For example, depending on high-level 
testing objectives, the test harness can be deployed as a 
single-process system to test functional behaviors, or a 
multi-process system to test resource consumption, or 
a multi-processor system to test communication 
bandwidth and workload related issues. 
 
3.3. Linking DSCGs with Test Cases  
  

In a component test harness, the user follows the set 
of testing related interfaces and methods defined in 
Figure 3 to construct test cases. The monitoring related 
stubs/skeletons are generated from the IDL compiler. 
Other code generation involved is from the CDL 
compiler about component packaging and deployment. 
During the test execution of the entire test suite, 
monitoring information is captured [8]. At the analysis 
phase, we are able to construct the dynamic system call 
graph (DSCG) for the monitored distributed 
component-based application. Regarding testing-
related attributes capturing, through the IDL 

interface TCInterface { 
 void register (in TestCaseID case, 
   in TestSuiteID suite); 
}; 

 

interface TestInvocationInterface { 
    void perform_test1(); 
    void perform_test2(); 
    …. 
}; 

 

component TestComponent { 
    supports TCInterface; 
    supports TestInvocationInterface; 
}; 

 

 

interface ComponentStubbing{ 
    UUID  suite_id(); 
    long  case_id(); 
}; 
 
 

Figure 3: Testing related specifications 



instrumentation occurred at the stubs/skeletons, we can 
allow test suite identifiers and test case identifiers to be 
captured after the register method is called. As the 
distributed call session propagates, at each component 
(test component, or component under test, or a 
collaborator component), these two testing-related 
identifiers are captured/propagated in order to keep 
track of the particular test case that the current 
component is exercised for. Further, at each 
component, the information on whether a component is 
stubbed or not is captured. As a result, once the DSCG 
is constructed, we can superimpose the call graph with 
the testing-related information that we captured and 
determine which sub graph in the DSCG corresponds 
to a particular test case. Each graph node is 
automatically annotated with its test suite identifier, 
test case identifier, and the distinction of the methods 
that are supported by either stub components or 
concrete components.  

Figure 4 shows an example of an annotated 
dynamic call graph for a particular test case, following 
the example in Figure 1. If capturing of functional 
behaviors is turned on, for example, to capture the 
thrown exceptions from different components in 
different test cases, the DSCG’s node inspection can 
reveal such captured runtime failure as well.   

 
4. Dynamic Coordination of Stub 
Components’ Controlled Behavior 
 

In a complex distributed application, a component 
under test likely involves multiple stub components, 
each of which provides a controlled response to the 
component under test or other collaborator components 
that are with concrete implementation. The controlled 
response can be varied from one test case to the other, 

depending on a particular behavior aspect that the test 
case is targeted to. Therefore, in the construction of the 
component test harness, the stub components need to 
conform to their user-defined component interfaces, 
but their behavior-controlled implementation is 
modifiable. For example, for a content-management 
component under testing, to the method 
RetrieveMultiMediaDocument, the stub component 
IdentityManagement requires its stubbed method 
authenticate to return true or false, or throw invalid 
user exceptions, depending on which test case is 
currently under execution. 
RetrieveMultiMediaDocument is also involved with the 
component DocumentRepository, a stub component. 
Its method GetFile will return a large file, or no file 
found, or respond after a significant time delay, 
depending on the test case under current execution.  

Overall, to respond to a test case, the stub 
components in the component test harness need to 
coordinate their behavior (their controlled response) in 
order to satisfy the needs of the current active test case. 
However, the component test harness is a distributed 
application, which can have the involved components 
deployed in different processes. To coordinate the 
controlled behavior of different stub components 
located in different processes becomes an issue. 

One solution is a centralized test case coordinator 
that allows the test component to push the test suite 
and test case identifiers to the central store, and have 
the stub components to pull the corresponding 
identifiers from the store. The primary disadvantage is 
that it disallows concurrent execution of test cases, as a 
stub component might be serving two test cases 
simultaneously, each of which is originated from a 
different process.  

A better solution is to take advantage of the 
distributed call session container to perform such 
coordination. More specifically, the test suite and test 
case identifiers are stored in the session container, 
propagated in the entire component test harness, and 
retrieved by the related stub components right at the 
point where it needs to provide its test-case-specific 
response. The further advantage of this distributed 
controlled behavior coordination scheme is that it can 
be well integrated with the test-case-aware DSCGs 
described in Section 3.3. 

An example of incorporating test suite and test case 
identifiers into stub components to achieve distributed 
behavior coordination is shown in Figure 5. Each 
if/else if structure accounts for different stub behaviors 
required by different test cases. The stub behavior is 
switched, to handle failure related situations such as IO 
exception or authentication exception, depending on 
the test suite id and test case id retrieved in the stub 

 

test case 2  

GetVoiceAnnotation 

LogAction 

GetMetaData 

Authenticate 

test suite 1 

GetFile  

RetrieveMultiMediaDocument 

…… 

stubbed 

stubbed 

stubbed 

 
 
 
Figure 4: Automatic annotation of DSCG from 
test suite execution 



method.  Other common failure-related situations can 
include long time delay, invalid message that leads to 
marshalling related exceptions, etc.  
 

5. Testing Related Analyses  
 

 This section presents three offline testing-related 
analyses to explore the runtime support about testing-
related distributed call session. The analyses rely on 
the component-interaction models discovered from 
runtime monitoring, in particular, the DSCG and its 
automatic annotation of testing-related attributes. 
 
5.1 Collaborators and Stubbing Boundary 
Determination 
 

In an evolvable large-scale distributed application, 
two different consecutive releases typically only have 
slight modifications to a small set of components, 
especially when a release cycle is short. We can take 
advantage of the old code from release Ri-1, to test the 
new code in release Ri. One practice is to incorporate 
the collaborator components with their implementation 
from Ri-1, into the component test harness for 
component C in Ri. A version control system supports 
such mixing of components from two different 
releases. If a collaborator component is unchanged, 

reusing the previous component release greatly reduces 
development effort for component testing. For a 
complex application, test developers, often not 
component developers, likely encounter the following 
problems: (1) What are the collaborator components to 
construct the component test harness? (2) If a real 
collaborator component in Ri-1 is incorporated, what 
other dependent components in Ri-1 need to be 
included? (3) Component collaborator inclusion tends 
to grow due to inter-component dependencies. Manual 
stubbing should be employed to stop further inclusion. 
Given multiple stubbing choices, which choice leads to 
minimum stubbing effort and therefore the components 
from Ri-1 can be reused at the largest degree? 

The solution relies on thorough searching of the 
stored DSCGs collected from all the component test 
harnesses and the system integration test harness in Ri-

1. Here we assume that the system integration related 
test suites S cover all the interactions happened in all 
unit component test harness (this assumption will be 
relaxed later). For a component P in a unit-component 
test suite U in release Ri, we initialize n=0, Pn=P and 
Qi-1=∅, and carry out the following:  
(S1) For every test suite 11 −− ∈ ii

j Ss  indexed with j, 

scan its associated 1−i
jDSCG , and identify the 

components 1−i
jQ that component Pn has ever 

directly interacted in 1−i
js ’s execution; 

(S2) The aggregation of all these identified components 
over all test suites to achieve Qi-1, 
i.e., UU

j

1-i
j

1-i1-i )Q(QQ = . Qi-1 represents all the 

components that can directly interact with 
component P in Release Ri-1. 

(S3) For each component q ∈  Qi-1, if the user intends 
to include the real implementation of q in Release 
Ri-1 to the target test suite U, we have n=n+1 and 
Pn=q, and revisit S1 for the next searching round. 

The final Qi-1 is the set of collaborator components 
from Ri-1 to construct the test harness for component P 
in Ri. 

At S3, if the user decides not to propagate further, 
but complete manual stubbing for the entire component 
q is too expensive, partial manual stubbing to a subset 
of the interface methods for component q is 
appropriate. The implementation of the non-stubbed 
interface methods can still leverage the real component 
implementation of q via certain degree of source code 
reuse. Because the DSCG actually shows component 
interactions at the interface method level, at S1, we can 
determine the number of the components in Ri-1 that a 

byte[] DocumentRepository::GetFile (…)  {       
if(suite_id()==Suite1.SUITE_ID) { 
   if (case_id()==1) {  
        throw new  FileIOException(); 
   } 
   else if (case_id()==2) { 
      //large file 
      byte[] content = new byte[100000000]; 
      Random.create(content); 
      return content; 
   } 
   else { 
      //average-size file 
      byte[] content = new byte[100000]; 
      Random.create(content); 
      return content; 
   } 
 }                        

} 
 
boolean IdentityManagement::Authenticate(…) { 
 if(suite_id()==Suite1.SUITE_ID) { 
  if (case_id()==6) { 
       throw new InvalidUserID(); 
  } 
  else if (case_id()==7)  
     return false;  
  else  
     return true; 
 } 
} 
 
 

Figure 5: Stub component coordinated 
response 



particular interface method has ever interacted with. 
The criterion is that the larger the number of the 
components this interface method ever interacts with, 
the more suitable this interface method is to be 
manually stubbed.  

In practice, system integration testing does not 
necessarily provide the same coverage as unit 
component testing and therefore cannot fully substitute 
unit component testing. Often unit component test 
suites exercise local component interactions more 
thoroughly in order to expose component defects as 
early as possible. The scanning procedures described 
in S1 and S2 should also include all the DSCGs from 
the execution of unit-component test suites. In 
addition, in each component test suite, an interaction is 
valid if the target component q ∈  Qi-1 is not marked 
with “stubbing” and q is labeled with Ri-1.  

 
5.2 Regression Test Cases Selection 
 

It would be very inefficient and time consuming to 
rerun all the unit component test suites when a 
component is modified in the late development phase 
of the large-scale distributed application. Such a 
change can incur to component implementation with 
possible interface modification. It is important to 
determine only a subset of test cases in a subset of test 
suites that really needs to be rerun to ensure that the 
system still functions as it is supposed to be after the 
change. Or at least, to prioritize the selected subset of 
the test cases that needs to be rerun first.  

In the current release Ri, the DSCGs can be 
uncovered automatically for all the available 
component test suites, by turning on runtime 
monitoring for all these test suites and applying offline 
analysis onto the captured runtime information. In each 
DSCG associated with a test suite, following Section 
3.3, we can determine a sub-graph, which is a DSCG 
by itself and corresponds to a sequence of interface 
method invocations in a test case execution. If a 
change occurs to component C in release Ri, a test case 
needs to be rerun if a test case’s DSCG contains at 
least one method invocation to component C that 
satisfies the following two conditions: (1) Component 
C is not stubbed. The stubbing component has the 
customized implementation in a specific test harness, 
and is different from final real component’s 
implementation; (2) Component C is from release Ri. 
Components from release Ri-1 are historical and 
therefore not subject to change any more. 

Since DSCGs reveal component interactions at the 
interface method level, this change impact estimation 
can be actually applied to a specific method M 

belonging to component C with more precise 
estimation.  

 
5.3 Crash Site Pinpointing  
 

A component under test harness is a distributed 
component-based system that can potentially involve 
many components across different processes and even 
different processors. When the system crashes during 
test case execution (for example, nightly test execution 
after system build), it is valuable to determine under 
which test case the execution crashes, and which 
component (either the component under test, or one of 
the collaborator components) is the culprit for the 
crash. Once the culprit component is determined, such 
information can be further reported to the high-level 
test management system, from which the developer 
responsible for the component will be notified, along 
with the captured runtime information.  

Our approach to automatically pinpoint the crash 
point is to extend the algorithm that uncovers the 
DSCG [8]. This algorithm is based on a simple state 
transition model of the events: stub start, skeleton start, 
skeleton end, and stub end, produced by the 
stub/skeleton-based probes. We assume that the crash 
site always happens only to the implementation of the 
user-defined application components, because the 
middleware runtime infrastructure and the IDL 
compiler are generally well developed and tested, and 
thus much more reliable. 

We further assume only a single failure happened to 
a single component that leads to the crash. To prevent 
monitoring data loss due to process crashing, we need 
to ensure that every log collected in an active thread 
(participating in a distributed call session) will be 
recorded immediately to the persistent storage, such as 
a file system. Each log file is designated to one process 
(all log files will be collected to a central data 
repository offline for monitoring/test related analyses). 
This check-pointing mechanism allows us to have the 
latest system snapshot just before the crash. Once the 
crash occurs, through certain operating system 
monitoring utility support, such as the WMI 
management package in Windows, we can determine 
the crash site at the process level.  

By applying the DSCG construction tool to check 
log information, we can determine which distributed 
call session is terminated prematurely, if the probing 
event in the session cannot follow the correct state-
transition model. The checking is done as follows. 
According to our failure model, a chain c (that is, the 
call session) is identified to be broken, if (1) c is 
terminated with last event happened in the identified 
crashed process; and (2) the last event of c is a skeleton 



start (raised by the skeleton start probe). This is 
because it is only after this probe that the thread of 
control reached the user-defined method 
implementation, and encountered crashing in this 
method’s execution. 

If c is unique, the interface method that leads to the 
crash can be identified from the last skeleton start 
event logged. The associated component and interface 
identity can be inferred from this probe’s other 
monitoring information. The identified component is 
called a crash component. However, c might not be 
unique, if when the crash happens, some other threads 
in the process are in a waiting state (waiting for a lock 
or a synchronous IO read/write). In general, from all 
distributed call chains that meet Criteria 1 and 2, we 
can identify a set of crash candidate components, if no 
unique crash components can be determined. As a 
result, the test management system can report both the 
crash components and the involved call chains to the 
responsible component developers.  

For the developers to pinpoint the exact location of 
the crash site, we can take advantage of flexible 
repackaging and re-deployment of component-based 
systems. A crash candidate component X is chosen, 
based on the crash analysis results. In the test harness, 
we modify its component configuration, such that X is 
packaged now in a newly declared server thread Tnew, 
and this Tnew is the only thread in a newly declared 
process Pnew. We then rebuild the entire component test 
harness and re-execute the test suite. If Pnew is the crash 
site, we can determine that X is the crash component. 
Otherwise, a new crash candidate component is 
chosen, and the re-packaging, re-deployment and re-
execution of the test suite is performed in turn to 
determine whether the newly chosen X is the crash 
component. If the locking and IO related APIs are also 
instrumented, the user can have more knowledge to 
exclude those candidate components which were 
actually in a waiting state due to the locking or IO, and 
therefore speed up this crash pinpointing analysis.  
 
6. Results and Discussion  
 

The complete test infrastructure is still under 
development. Herein we show the implementation 
results that we have achieved in distributed systems 
monitoring and related testing supports, on the way to 
build the comprehensive test framework.  

Our distributed monitoring framework, coSpy, has 
been developed and demonstrated on a large-scale 
industrial embedded application (built-upon a COM-
like middleware infrastructure). The largest system run 
captured up to 200,000 inter-component calls in the 

HPUX simulator environment. The entire system 
totally has about 2 million lines of code, with a runtime 
configuration of 4 processes over 32 threads on a 
single-processor. The full DSCG graph is shown in 
Figure 6, in which each graph node represents a 
interface method call in a component. 

By navigating the DSCG graph, each node can be 
inspected carefully with the associated names of 
component and interface. Timing latency distribution 
observed across multiple call instances can be shown 
as well. Once an application crashes, the DSCG will 
become incomplete at some tree hierarchy, which can 
allow users to identify the failure component, as 
described in Section 5.3. 

 Figure 7 provides the detailed components and 
their interfaces/methods involved in the corresponding 
DSCG from a particular system run. It serves as a test 

 
Figure 7: Interface method level test coverage 

Figure 6: An example of dynamic call graph 



coverage report. From our experiments on the system 
integration testing, it is found that only 800 interface 
methods out of the total 4000 interface methods were 
exercised in the particular test run that produces our 
largest call graph, indicating only 25% coverage for 
this test case (with a particular type of document file as 
the input). Our experiments further showed that other 
similar test cases, each of which is different only in 
terms of test input (different document content for 
processing), do not improve the test-coverage 
significantly. Thus, our tool offers the assistance on 
identifying missing test cases for the component(s) 
under test.  

We have successfully incorporated test suite and 
test case identifiers into distributed call session. Figure 
8 shows a portion of log file that we obtained from a 
running application (with 2 processes) built upon our 
CORBA-based infrastructure [10]. In each log, the first 
line shows the current test case identifier, and the 
second line shows the associated probing event 
(stub/skeleton’s start/end) and causality identifier. 
Optionally, the third line shows function parameters 
(input/output/return) captured and possible exception 
thrown from the method invocation. The detailed 
function call logging is useful for the developers to 
figure out the root cause of test case failure. 
 
7. Related Work  
 

Here we compare our framework support to other 
techniques focused on distributed system testing.  

Model-based testing environments often provide 
runtime monitoring to validate user-defined models. In 
Rhapsody [14], code is generated from user-defined 
specifications. Event-based component interactions can 
be captured and validated, as the tool provides a 
thread-based object execution framework. Regarding 
the capability of controlling the middleware runtime 

and compiler support, our approach is focused on a 
broader range of distributed environments with 
multiple processes and processors, rather than just the 
single-processed environment. 

Regression test case selection has been explored for 
C/C++ and Java applications by combining static 
programming analysis and dynamic system tracing [4, 
16, 6]. This approach is effective for single-processed 
and multithreaded applications, but not for multi-
processed applications, as their tracing is at local 
procedure call or basic-block level, and does not 
explore causality linking between the call parties 
located at two different processes. 

Regarding component behavior checking, a 
component’s behavior is specified as executable 
specifications [1]. A proxy is installed between a client 
and the component, which forwards the client request 
messages to the execution engine. The results from the 
server component and the execution engine are 
compared by the proxy for behavior equivalence 
between the component and its specification. However, 
the behavior checker seems to deal with a single 
component rather than multiple components.  

Capture/replay technique has been explored to test 
server-side application. In QALoad [12], all bi-
directional communication messages between a client 
and the application server are recorded. The captured 
one-client-one-server application run becomes the seed 
for load testing. Multiple clients hosted in different 
machines can be replicated to stimulate the server with 
previously recorded request/response messages. It is 
difficult to extend this technique to multiple servers, 
since message channel interception is not sufficient to 
ensure that the ordering (causality) replay of the 
messages from multiple interacting parties.  

In distributed test support, TCBeans [18] facilitates 
test case implementation in Java Beans. RMI allows 
these test cases to be distributed for concurrent 

 host name: snowhite 
process id: 7832 
global process id:2988e185ed8745a8af111ce3fece72f300000000 
….. 
test case: f594363b06a847a68cda6888cfa9135a::100004 
IDL:HelloWorld:1.0 test_call_back <skel start> 1182756:388071 1182756:388082 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 7 13 0  
IDL:CORBA/Object:1.0:cb011cde-c8fc-4c2e-a211-a2377ce1538d(end point)+2f372531-b7c3-405c-9e0b-556fb3893860(object key)[1] 4[2]  
 
test case: f594363b06a847a68cda6888cfa9135a::100004 
IDL:CallBack:1.0 greeting <stub start> 1182756:390365 1182756:390372 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 8 14 0  
test case: f594363b06a847a68cda6888cfa9135a::100004 
IDL:CallBack:1.0 greeting <stub end> 1182756:397837 1182756:397850 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 8 17 0  
Greeting from CallBack 1(return)  
…. 
test case: f594363b06a847a68cda6888cfa9135a::100004 
IDL:HelloWorld:1.0 test_call_back <skel end> 1182756:429437 1182756:429520 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 7 30 0  
….. 
test case: f594363b06a847a68cda6888cfa9135a::100009 
IDL:HelloWorld:1.0 test_raiseexception_2 <skel end> 1182756:500343 1182756:500385 4(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 27 54 0  
IDL:ConceptNotFoundException:1.0(user exception) 

  
Figure 8: Log file with test case identifier propagation and input/output parameters logging  



execution. Execution parallelism is also explored in [9] 
by dynamically scheduling different testing suites onto 
different networked computers. Such frameworks only 
reveal test execution results like PASS/FAIL, without 
controlled behavior coordination and per-test-case 
detailed failure reports.  
 
8. Conclusions 
 

We presented a test framework with runtime and 
analysis support, to focus on unit component testing 
for distributed component-based systems. The test 
framework relies on the distributed systems monitoring 
tool that has been demonstrated on both COM and 
CORBA based applications. This test architecture 
allows a distributed call session container to be 
propagated in a component test harness, with testing 
related attributes to be injected into this container. As a 
result, we can at runtime coordinate the behavior of 
multiple components involved, and at offline 
environment to construct component-interaction model 
from the captured test suite execution. The linking 
between the test cases and the associated runtime 
behavior model can be revealed. From such behavior 
model, various testing analyses are presented, 
including collaborator components determination, test 
case selection/prioritization and crash component 
report and pinpointing. The unique features of our test 
architecture are: 
• A  monitoring framework facilitates an observable 

testing environment, without modifying 
application components and their interfaces; 

• With the IDL compiler extension and runtime 
testing-attributes injection, the linking and 
synchronization between the test-related artifacts 
and implementation-related artifacts is simplified; 

• The component-interaction model automatically 
constructed from the monitored test execution 
enables various systematic test supports for 
component-based applications’ maintenance and 
evolution, both at runtime and offline 
environments. Such tool supports distinguish 
themselves from others in a cross-process and 
cross-processor environment that involves 
multiple implementation languages.  

For future work, we can incorporate our stub 
component coordination into unit testing tools like 
JUnit and NUnit, to leverage their automatic test 
execution environment. Capture/replay based testing 
that involves more than two server components in the 
call session [15], is also interesting. Enforcing global 
session propagation with exact historical call ordering 
is the key.  Our testing techniques reported are focused 

on unit component testing, certainly various issues, 
e.g., scalability, will arise, when we try to extend such 
techniques into system integration testing.  
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