
A Runtime and Analysis Framework Support for Unit Component Testing in
Distributed Systems

Jun Li, Keith Moore

 Hewlett-Packard Laboratories
Palo Alto, CA 94304

Email: {jun.li, keith.moore}@hp.com

Abstract

This paper presents a test framework to support

unit component testing in distributed component-based
systems that are built upon component technologies
like CORBA, COM/.NET, J2EE/RMI. The framework
exploits automatic code instrumentation at the stubs
and the skeletons of the calls in order to monitor a
global call session. The calls can be cross-thread,
cross-process and cross-processor. We further define
certain testing-related interfaces for driver
components in the component test harness and extend
the IDL compiler, such that at runtime, test-related
attributes can be automatically embedded in the call
session identifier and propagated system-wide. As a
result, various support for unit component testing can
be enabled, including behavior coordination for stub
components, collaborator component determination
from historical execution, selective regression testing,
and crash site pinpointing.

1. Introduction

Component-Based Systems (such as CORBA,
COM/.NET and J2EE/RMI) have improved the
construction of large-scale distributed systems.
However, testing these systems remains challenging,
as often they are deployed in multi-process and multi-
processor environments. Furthermore, they are usually
long-lived and evolve over time in order to take
advantage of new hardware platforms and to provide
new system functionalities according to ever-changing
business requirements. The combination of complex
system features introduction with shortened
development cycle time has made test automation
critical.

Unit component testing has proven to be critical to
ensure the overall system to deliver the functionalities
promised [2]. In a large-scale system, a component test
harness is itself a distributed component-based

application. The system involves the component under-
test, and a collection of collaborator components that
the component is dependent on. These dependent
components may have concrete implementations or be
stubbed with controlled implementations. The stub
components belong to the driver components in the
component test harness. In such a testing-related
distributed application, common questions asked are:
• How to test a component as if it were in the full

distributed system under development, without
running the full system?

• Which test cases in test suites should be rerun
when a component is modified?

• How can we effectively test a component under
different configurations, such as with/without
networking, or with different failure conditions,
and how to coordinate different components
across the distributed system?

• When a test case failed, how can the test
management system report the failure and its root
causal information automatically?

Our observation is that large component-based
systems are dynamically bound, multi-threaded
applications with complex component interactions.
The dynamic nature of these systems defeats static
analysis approaches that count on a one-to-one
mapping between interface and implementations, and
the concurrent component interactions and callbacks
defeat simple message interception and logging.

Software testing is an infrastructure technology
[17]. In this paper, we present a test framework to
component testing that leverages the previous work on
distributed applications monitoring. The framework
automatically instruments the applications by
extending the interface definition language (IDL) [11]
compiler to insert monitoring code (called probes) into
the generated stub and skeleton modules. The probes
establish a global session across all the components
involved. The data collected from these probes enables
the construction of the system-wide dynamic call graph

that reveals the system-wide function caller/callee
relationship at the component level, regardless of
reentrancy, callbacks, thread and process boundaries,
and unsynchronized clocks.

Furthermore, we carefully define a set of
component interfaces for driver components, such that
the IDL compiler can inject test-related attributes and
actions into the probes, with knowledge support from
these driver components. These actions are used to log
test-related attributes (such as test suite and test case
identifiers), allow these attributes to be embedded into
the global session identifier, and apply test-related
controls during the test execution.

With the test-augmented runtime monitoring
capability, the observed test execution behavior can be
automatically linked with the corresponding test cases,
both at runtime and offline environment. As a result,
we can understand and also control in a test harness,
how the component under test interacts with other
components, and therefore develop the test techniques
traditionally applicable only to sequential or weakly
distributed applications. To answer the questions
identified previously, we present in this paper several
testing techniques, including behavior coordination for
stub components, collaborator component
determination from historical execution, selective
regression testing, and crash site pinpointing.

The paper is organized as follows. Section 2
introduces the distributed systems monitoring
framework. Section 3 explains our testing-related
extension to the monitoring framework. Section 4
details stub components coordination and Section 5
presents various offline testing analyses.
Implementations results are shown in Section 6.
Related work is described in Section 7 and Section 8
provides summaries and future work.

2. Distributed Systems Monitoring

Distributed systems monitoring is important to
collect runtime information to help determine system-
wide component interactions. In distributed and
component-based systems, the caller and callee can be
located in different threads, different processes, or
even different processors. A simple approach of
monitoring the execution of each individual thread is
not sufficient as cross-thread causality cannot always
be determined in re-entrant code (regardless of
timestamps).

Our solution to the above problem is to add hidden
information between the caller and callee that
propagates a global causality identifier [13, 7, 8]. This
global causal relationship works cross-thread, cross-
process and cross-processor. Figure 1 shows an
example of distributed application with four
application components deployed in four different
machines (from M1 to M4). In fact, what Figure 1
illustrates is the Dynamic System Call Graph (DSCG),
constructed off-line by analyzing the runtime
information captured from the monitored application.
This graph unveils all the component-level invocations
with their call hierarchies (i.e., both sibling call
relationship like GetMetaData and GetFile, and the
parent/child relationship like Authenticate and
RetrieveMultiMediaDocument).

With the causal identifier propagated system-wide,
we can monitor functional behavior (input parameters,
output parameters, and possible exceptions) and run-
time resource allocation (timing latency, CPU, virtual
memory, number of threads spawned, etc.), and have
such captured runtime information to be annotated to
the constructed DSCG. The user can inspect the
captured runtime information when traversing the
DSCG graph. For example, in Figure 1, the user can

M1

void main(){
 //assume objA is with type ClassA for content management
 objA->RetrieveMultiMediaDocument();
}

//obj1, obj2 and obj3 refers to Identity Management,
//Document Repository, and Action Logger.
void ClassA::RetrieveMultiMediaDocument (){
 …
 boolean result =obj1->Authenticate();
 if (result) {
 MetaData mdata=obj2->GetMetaData();
 for (int i=0; i<mdata.Files;i++) {
 obj2->GetFile();
 }
 for (int i=0; i<mdata.VAnnotations; i++) {
 obj2->GetVoiceAnnotation();
 }
 obj3->LogAction();
 }
 …
}

RetrieveMultiMediaDocument

global causality propagation

main

M2

Authenticate

M3

GetMetaData

M3

GetFile

M3

GetFile
M3

GetVoiceAnnotation

M4
LogAction

Figure 1: An example of code about remote invocations and global causality propagation

find that the method RetrieveMultiMediaDocument
constantly increased virtual memory usage at M1.
Further inspection can reveal that memory leak only
happened when the method GetFile (hosted by M3)
was invoked. This finding can then lead to code
inspection on method implementation of
RetrieveMultiMediaDocument. The root cause of the
failure could be that the returned file content to M1 was
stored in M1’s memory for some post-processing, and
no memory release was performed at M1.

3. Test-Related Monitoring Extension

The test-related extension of the distributed
monitoring framework covers distributed call session,
a defined set of test-relating component interfaces, and
the IDL compiler extension. As a result, test-related
attributes can be injected, propagated, and
captured/retrieved system-wide at runtime. Later at the
analysis phase, these test-related attributes can be
superimposed to other analysis results, such as DSCG.

3.1. Distributed Call Sessions

We introduce a global distributed call session across
all the call instances that are with the same causality
identifier. A session container is attached to the global
distributed call session, to augment the information
carried in the global session. The core information
contained in the session is the causality identifier,
which is defined in CausalityInfo (shown in
Figure 2) and consists of a UUID to denote the global
identifier of this session and an event sequence number
that is incremented by one whenever a call-related
probing point (belonging to one of the following: stub
start, skeleton start, skeleton end, and stub end) is
encountered. A session container can further include
application-specific session information, defined by a
value type of ApplicationSession. Each
application under monitoring can have its own specific
session information, with its type extended from
ApplicationSession. A value type is an object
that is passed by value, rather than by reference, whose
primary purpose is to encapsulate object state
information and to allow application to construct a
local copy of an object from the object state [11]. The
corresponding language and runtime support in COM
is Customer Marshalling [3].

In this paper, the testing-related application session
information at least covers:

(1) The scope of the test case currently under
execution, represented as a test suite identifier and a
test case identifier;

(2) The selective instrumentation indicator. If an
interface method in a component is chosen for
monitoring, then in this distributed call session,
starting from this selected interface method, all the
downstream calls will bear this indicator to turn on the
instrumentation, but not the upstream of calls in this
distributed call session or the other distributed call
sessions that are not involved with this particular
interface method [7].

3.2. Testing Related Components

To construct a distributed component-based system,
following the Component Definition Language (CDL)
[5], to each component, in addition to the IDL
definitions for the supported interfaces, we have the
following information:
• Component Specifications: the supported

interfaces, threading (reentrancy), relationship to
other components (containment, aggregation,
factory, etc.), unique identifier, etc.

• Packaging and Deployment Specifications: to use
server thread or Dynamic-Linked-Library (DLL)
to host this component.

With automatic code generation from the declarative
packaging and deployment specifications, component
grouping and deployment in a multi-process
environment becomes simple and flexible. In CDL, the
IDL compiler that deals with stub and skeleton code

module GenericSession {

 struct CausalityInfo {
 UUID global_function_id;
 unsigned long event_seq_no;
 };

 valuetype ApplicationSession{

 };
};

module TestingRelatedSession {

 valuetype TestingRelatedAppSession:
 GenericSession::ApplicationSession{
 public UUID suite_id;
 public long case_id;
 };

 struct SessionContainer {
 GenericSession::CausalityInfo
 causalityInfo;
 TestingRelatedAppSession appSession;
 };

};

Figure 2: IDL definition for call session
container

automation becomes one particular running phase of
the CDL compiler.

A test harness typically involves one Component
under Test, a driver component called Test
Component, and a collection of Collaborator
Components that the component under test are
dependent on. More specifically, the test component is
responsible for creating an instance of the component
under test, and exposing a collection of test case
execution handlers to the test client. Examples of
these handlers are perform_test1 and perform_test2 in
TestInvocationInterface (shown in Figure
3). We define a special method called register in
TCInterface (with concrete implementation
provided). It accepts the test suite identifier and test
case identifier as the inputs. This method is always
invoked in the test case execution handlers. Through
this method, the test suite and test case identifiers are
all pushed into the distributed call session container,
and then propagated in the test harness.

A collaborator component that interacts with the
component under test can be replaced with a Stub
Component, to simulate various behaviors which may
occur in a final implementation of this collaborator
component. Its purpose is to verify the behavior of the
component under test in a controlled execution
environment. A stub component has its implementation
to follow the exact same interface(s) provided by a
concrete collaborator component. Such controlled
response can be as simple as to return a pre-defined
result or throw an exception. In addition to the
interfaces defined by the user-defined application

component, the corresponding stub component
supports the interface ComponentStubbing. This
interface is equipped with two methods, namely,
suite_id() and case_id(), to retrieve the test suite and
test case identifiers respectively, from the distributed
call session’s container. These two methods are
invoked during the execution of the stub method
defined in the stub component, to query which specific
test case is currently under execution.

Therefore, the methods: register(.) and
suite_id()/case_id() collectively form a push/pull
model to the testing-related attributes. The register(.)
method takes the test suite and test case identifiers, and
puts them into a Thread-Specific Storage (TSS) area in
the client thread. Before a request message is sent by
this calling thread, the call session container populates
these two identifiers by pulling them from the TSS. At
the server side, after the call request arrives, the test-
related identifiers are unpacked from the container, and
pushed into the TSS of the server thread. Finally, the
suite_id()/case_id() pulls the respective identifier out
from the TSS. The actual action about how these
identifiers are pushed to or pulled from the session
containers is done by the instrumented stubs/skeletons.

By interface querying of ComponentStubbing,
we can further determine whether the component is a
stub component or a real collaborator component.

Both the test component and the stub components
are referred to the driver components. With CDL
specifications and its compiler support, a component
test harness can be constructed flexibly, after the
component under test and driver components are
identified. For example, depending on high-level
testing objectives, the test harness can be deployed as a
single-process system to test functional behaviors, or a
multi-process system to test resource consumption, or
a multi-processor system to test communication
bandwidth and workload related issues.

3.3. Linking DSCGs with Test Cases

In a component test harness, the user follows the set
of testing related interfaces and methods defined in
Figure 3 to construct test cases. The monitoring related
stubs/skeletons are generated from the IDL compiler.
Other code generation involved is from the CDL
compiler about component packaging and deployment.
During the test execution of the entire test suite,
monitoring information is captured [8]. At the analysis
phase, we are able to construct the dynamic system call
graph (DSCG) for the monitored distributed
component-based application. Regarding testing-
related attributes capturing, through the IDL

interface TCInterface {
 void register (in TestCaseID case,
 in TestSuiteID suite);
};

interface TestInvocationInterface {
 void perform_test1();
 void perform_test2();
 ….
};

component TestComponent {
 supports TCInterface;
 supports TestInvocationInterface;
};

interface ComponentStubbing{
 UUID suite_id();
 long case_id();
};

Figure 3: Testing related specifications

instrumentation occurred at the stubs/skeletons, we can
allow test suite identifiers and test case identifiers to be
captured after the register method is called. As the
distributed call session propagates, at each component
(test component, or component under test, or a
collaborator component), these two testing-related
identifiers are captured/propagated in order to keep
track of the particular test case that the current
component is exercised for. Further, at each
component, the information on whether a component is
stubbed or not is captured. As a result, once the DSCG
is constructed, we can superimpose the call graph with
the testing-related information that we captured and
determine which sub graph in the DSCG corresponds
to a particular test case. Each graph node is
automatically annotated with its test suite identifier,
test case identifier, and the distinction of the methods
that are supported by either stub components or
concrete components.

Figure 4 shows an example of an annotated
dynamic call graph for a particular test case, following
the example in Figure 1. If capturing of functional
behaviors is turned on, for example, to capture the
thrown exceptions from different components in
different test cases, the DSCG’s node inspection can
reveal such captured runtime failure as well.

4. Dynamic Coordination of Stub
Components’ Controlled Behavior

In a complex distributed application, a component
under test likely involves multiple stub components,
each of which provides a controlled response to the
component under test or other collaborator components
that are with concrete implementation. The controlled
response can be varied from one test case to the other,

depending on a particular behavior aspect that the test
case is targeted to. Therefore, in the construction of the
component test harness, the stub components need to
conform to their user-defined component interfaces,
but their behavior-controlled implementation is
modifiable. For example, for a content-management
component under testing, to the method
RetrieveMultiMediaDocument, the stub component
IdentityManagement requires its stubbed method
authenticate to return true or false, or throw invalid
user exceptions, depending on which test case is
currently under execution.
RetrieveMultiMediaDocument is also involved with the
component DocumentRepository, a stub component.
Its method GetFile will return a large file, or no file
found, or respond after a significant time delay,
depending on the test case under current execution.

Overall, to respond to a test case, the stub
components in the component test harness need to
coordinate their behavior (their controlled response) in
order to satisfy the needs of the current active test case.
However, the component test harness is a distributed
application, which can have the involved components
deployed in different processes. To coordinate the
controlled behavior of different stub components
located in different processes becomes an issue.

One solution is a centralized test case coordinator
that allows the test component to push the test suite
and test case identifiers to the central store, and have
the stub components to pull the corresponding
identifiers from the store. The primary disadvantage is
that it disallows concurrent execution of test cases, as a
stub component might be serving two test cases
simultaneously, each of which is originated from a
different process.

A better solution is to take advantage of the
distributed call session container to perform such
coordination. More specifically, the test suite and test
case identifiers are stored in the session container,
propagated in the entire component test harness, and
retrieved by the related stub components right at the
point where it needs to provide its test-case-specific
response. The further advantage of this distributed
controlled behavior coordination scheme is that it can
be well integrated with the test-case-aware DSCGs
described in Section 3.3.

An example of incorporating test suite and test case
identifiers into stub components to achieve distributed
behavior coordination is shown in Figure 5. Each
if/else if structure accounts for different stub behaviors
required by different test cases. The stub behavior is
switched, to handle failure related situations such as IO
exception or authentication exception, depending on
the test suite id and test case id retrieved in the stub

test case 2

GetVoiceAnnotation

LogAction

GetMetaData

Authenticate

test suite 1

GetFile

RetrieveMultiMediaDocument

……

stubbed

stubbed

stubbed

Figure 4: Automatic annotation of DSCG from
test suite execution

method. Other common failure-related situations can
include long time delay, invalid message that leads to
marshalling related exceptions, etc.

5. Testing Related Analyses

 This section presents three offline testing-related
analyses to explore the runtime support about testing-
related distributed call session. The analyses rely on
the component-interaction models discovered from
runtime monitoring, in particular, the DSCG and its
automatic annotation of testing-related attributes.

5.1 Collaborators and Stubbing Boundary
Determination

In an evolvable large-scale distributed application,
two different consecutive releases typically only have
slight modifications to a small set of components,
especially when a release cycle is short. We can take
advantage of the old code from release Ri-1, to test the
new code in release Ri. One practice is to incorporate
the collaborator components with their implementation
from Ri-1, into the component test harness for
component C in Ri. A version control system supports
such mixing of components from two different
releases. If a collaborator component is unchanged,

reusing the previous component release greatly reduces
development effort for component testing. For a
complex application, test developers, often not
component developers, likely encounter the following
problems: (1) What are the collaborator components to
construct the component test harness? (2) If a real
collaborator component in Ri-1 is incorporated, what
other dependent components in Ri-1 need to be
included? (3) Component collaborator inclusion tends
to grow due to inter-component dependencies. Manual
stubbing should be employed to stop further inclusion.
Given multiple stubbing choices, which choice leads to
minimum stubbing effort and therefore the components
from Ri-1 can be reused at the largest degree?

The solution relies on thorough searching of the
stored DSCGs collected from all the component test
harnesses and the system integration test harness in Ri-

1. Here we assume that the system integration related
test suites S cover all the interactions happened in all
unit component test harness (this assumption will be
relaxed later). For a component P in a unit-component
test suite U in release Ri, we initialize n=0, Pn=P and
Qi-1=∅, and carry out the following:
(S1) For every test suite 11 −− ∈ ii

j Ss indexed with j,

scan its associated 1−i
jDSCG , and identify the

components 1−i
jQ that component Pn has ever

directly interacted in 1−i
js ’s execution;

(S2) The aggregation of all these identified components
over all test suites to achieve Qi-1,
i.e., UU

j

1-i
j

1-i1-i)Q(QQ = . Qi-1 represents all the

components that can directly interact with
component P in Release Ri-1.

(S3) For each component q ∈ Qi-1, if the user intends
to include the real implementation of q in Release
Ri-1 to the target test suite U, we have n=n+1 and
Pn=q, and revisit S1 for the next searching round.

The final Qi-1 is the set of collaborator components
from Ri-1 to construct the test harness for component P
in Ri.

At S3, if the user decides not to propagate further,
but complete manual stubbing for the entire component
q is too expensive, partial manual stubbing to a subset
of the interface methods for component q is
appropriate. The implementation of the non-stubbed
interface methods can still leverage the real component
implementation of q via certain degree of source code
reuse. Because the DSCG actually shows component
interactions at the interface method level, at S1, we can
determine the number of the components in Ri-1 that a

byte[] DocumentRepository::GetFile (…) {
if(suite_id()==Suite1.SUITE_ID) {
 if (case_id()==1) {
 throw new FileIOException();
 }
 else if (case_id()==2) {
 //large file
 byte[] content = new byte[100000000];
 Random.create(content);
 return content;
 }
 else {
 //average-size file
 byte[] content = new byte[100000];
 Random.create(content);
 return content;
 }
 }

}

boolean IdentityManagement::Authenticate(…) {
 if(suite_id()==Suite1.SUITE_ID) {
 if (case_id()==6) {
 throw new InvalidUserID();
 }
 else if (case_id()==7)
 return false;
 else
 return true;
 }
}

Figure 5: Stub component coordinated
response

particular interface method has ever interacted with.
The criterion is that the larger the number of the
components this interface method ever interacts with,
the more suitable this interface method is to be
manually stubbed.

In practice, system integration testing does not
necessarily provide the same coverage as unit
component testing and therefore cannot fully substitute
unit component testing. Often unit component test
suites exercise local component interactions more
thoroughly in order to expose component defects as
early as possible. The scanning procedures described
in S1 and S2 should also include all the DSCGs from
the execution of unit-component test suites. In
addition, in each component test suite, an interaction is
valid if the target component q ∈ Qi-1 is not marked
with “stubbing” and q is labeled with Ri-1.

5.2 Regression Test Cases Selection

It would be very inefficient and time consuming to
rerun all the unit component test suites when a
component is modified in the late development phase
of the large-scale distributed application. Such a
change can incur to component implementation with
possible interface modification. It is important to
determine only a subset of test cases in a subset of test
suites that really needs to be rerun to ensure that the
system still functions as it is supposed to be after the
change. Or at least, to prioritize the selected subset of
the test cases that needs to be rerun first.

In the current release Ri, the DSCGs can be
uncovered automatically for all the available
component test suites, by turning on runtime
monitoring for all these test suites and applying offline
analysis onto the captured runtime information. In each
DSCG associated with a test suite, following Section
3.3, we can determine a sub-graph, which is a DSCG
by itself and corresponds to a sequence of interface
method invocations in a test case execution. If a
change occurs to component C in release Ri, a test case
needs to be rerun if a test case’s DSCG contains at
least one method invocation to component C that
satisfies the following two conditions: (1) Component
C is not stubbed. The stubbing component has the
customized implementation in a specific test harness,
and is different from final real component’s
implementation; (2) Component C is from release Ri.
Components from release Ri-1 are historical and
therefore not subject to change any more.

Since DSCGs reveal component interactions at the
interface method level, this change impact estimation
can be actually applied to a specific method M

belonging to component C with more precise
estimation.

5.3 Crash Site Pinpointing

A component under test harness is a distributed
component-based system that can potentially involve
many components across different processes and even
different processors. When the system crashes during
test case execution (for example, nightly test execution
after system build), it is valuable to determine under
which test case the execution crashes, and which
component (either the component under test, or one of
the collaborator components) is the culprit for the
crash. Once the culprit component is determined, such
information can be further reported to the high-level
test management system, from which the developer
responsible for the component will be notified, along
with the captured runtime information.

Our approach to automatically pinpoint the crash
point is to extend the algorithm that uncovers the
DSCG [8]. This algorithm is based on a simple state
transition model of the events: stub start, skeleton start,
skeleton end, and stub end, produced by the
stub/skeleton-based probes. We assume that the crash
site always happens only to the implementation of the
user-defined application components, because the
middleware runtime infrastructure and the IDL
compiler are generally well developed and tested, and
thus much more reliable.

We further assume only a single failure happened to
a single component that leads to the crash. To prevent
monitoring data loss due to process crashing, we need
to ensure that every log collected in an active thread
(participating in a distributed call session) will be
recorded immediately to the persistent storage, such as
a file system. Each log file is designated to one process
(all log files will be collected to a central data
repository offline for monitoring/test related analyses).
This check-pointing mechanism allows us to have the
latest system snapshot just before the crash. Once the
crash occurs, through certain operating system
monitoring utility support, such as the WMI
management package in Windows, we can determine
the crash site at the process level.

By applying the DSCG construction tool to check
log information, we can determine which distributed
call session is terminated prematurely, if the probing
event in the session cannot follow the correct state-
transition model. The checking is done as follows.
According to our failure model, a chain c (that is, the
call session) is identified to be broken, if (1) c is
terminated with last event happened in the identified
crashed process; and (2) the last event of c is a skeleton

start (raised by the skeleton start probe). This is
because it is only after this probe that the thread of
control reached the user-defined method
implementation, and encountered crashing in this
method’s execution.

If c is unique, the interface method that leads to the
crash can be identified from the last skeleton start
event logged. The associated component and interface
identity can be inferred from this probe’s other
monitoring information. The identified component is
called a crash component. However, c might not be
unique, if when the crash happens, some other threads
in the process are in a waiting state (waiting for a lock
or a synchronous IO read/write). In general, from all
distributed call chains that meet Criteria 1 and 2, we
can identify a set of crash candidate components, if no
unique crash components can be determined. As a
result, the test management system can report both the
crash components and the involved call chains to the
responsible component developers.

For the developers to pinpoint the exact location of
the crash site, we can take advantage of flexible
repackaging and re-deployment of component-based
systems. A crash candidate component X is chosen,
based on the crash analysis results. In the test harness,
we modify its component configuration, such that X is
packaged now in a newly declared server thread Tnew,
and this Tnew is the only thread in a newly declared
process Pnew. We then rebuild the entire component test
harness and re-execute the test suite. If Pnew is the crash
site, we can determine that X is the crash component.
Otherwise, a new crash candidate component is
chosen, and the re-packaging, re-deployment and re-
execution of the test suite is performed in turn to
determine whether the newly chosen X is the crash
component. If the locking and IO related APIs are also
instrumented, the user can have more knowledge to
exclude those candidate components which were
actually in a waiting state due to the locking or IO, and
therefore speed up this crash pinpointing analysis.

6. Results and Discussion

The complete test infrastructure is still under
development. Herein we show the implementation
results that we have achieved in distributed systems
monitoring and related testing supports, on the way to
build the comprehensive test framework.

Our distributed monitoring framework, coSpy, has
been developed and demonstrated on a large-scale
industrial embedded application (built-upon a COM-
like middleware infrastructure). The largest system run
captured up to 200,000 inter-component calls in the

HPUX simulator environment. The entire system
totally has about 2 million lines of code, with a runtime
configuration of 4 processes over 32 threads on a
single-processor. The full DSCG graph is shown in
Figure 6, in which each graph node represents a
interface method call in a component.

By navigating the DSCG graph, each node can be
inspected carefully with the associated names of
component and interface. Timing latency distribution
observed across multiple call instances can be shown
as well. Once an application crashes, the DSCG will
become incomplete at some tree hierarchy, which can
allow users to identify the failure component, as
described in Section 5.3.

 Figure 7 provides the detailed components and
their interfaces/methods involved in the corresponding
DSCG from a particular system run. It serves as a test

Figure 7: Interface method level test coverage

Figure 6: An example of dynamic call graph

coverage report. From our experiments on the system
integration testing, it is found that only 800 interface
methods out of the total 4000 interface methods were
exercised in the particular test run that produces our
largest call graph, indicating only 25% coverage for
this test case (with a particular type of document file as
the input). Our experiments further showed that other
similar test cases, each of which is different only in
terms of test input (different document content for
processing), do not improve the test-coverage
significantly. Thus, our tool offers the assistance on
identifying missing test cases for the component(s)
under test.

We have successfully incorporated test suite and
test case identifiers into distributed call session. Figure
8 shows a portion of log file that we obtained from a
running application (with 2 processes) built upon our
CORBA-based infrastructure [10]. In each log, the first
line shows the current test case identifier, and the
second line shows the associated probing event
(stub/skeleton’s start/end) and causality identifier.
Optionally, the third line shows function parameters
(input/output/return) captured and possible exception
thrown from the method invocation. The detailed
function call logging is useful for the developers to
figure out the root cause of test case failure.

7. Related Work

Here we compare our framework support to other
techniques focused on distributed system testing.

Model-based testing environments often provide
runtime monitoring to validate user-defined models. In
Rhapsody [14], code is generated from user-defined
specifications. Event-based component interactions can
be captured and validated, as the tool provides a
thread-based object execution framework. Regarding
the capability of controlling the middleware runtime

and compiler support, our approach is focused on a
broader range of distributed environments with
multiple processes and processors, rather than just the
single-processed environment.

Regression test case selection has been explored for
C/C++ and Java applications by combining static
programming analysis and dynamic system tracing [4,
16, 6]. This approach is effective for single-processed
and multithreaded applications, but not for multi-
processed applications, as their tracing is at local
procedure call or basic-block level, and does not
explore causality linking between the call parties
located at two different processes.

Regarding component behavior checking, a
component’s behavior is specified as executable
specifications [1]. A proxy is installed between a client
and the component, which forwards the client request
messages to the execution engine. The results from the
server component and the execution engine are
compared by the proxy for behavior equivalence
between the component and its specification. However,
the behavior checker seems to deal with a single
component rather than multiple components.

Capture/replay technique has been explored to test
server-side application. In QALoad [12], all bi-
directional communication messages between a client
and the application server are recorded. The captured
one-client-one-server application run becomes the seed
for load testing. Multiple clients hosted in different
machines can be replicated to stimulate the server with
previously recorded request/response messages. It is
difficult to extend this technique to multiple servers,
since message channel interception is not sufficient to
ensure that the ordering (causality) replay of the
messages from multiple interacting parties.

In distributed test support, TCBeans [18] facilitates
test case implementation in Java Beans. RMI allows
these test cases to be distributed for concurrent

 host name: snowhite
process id: 7832
global process id:2988e185ed8745a8af111ce3fece72f300000000
…..
test case: f594363b06a847a68cda6888cfa9135a::100004
IDL:HelloWorld:1.0 test_call_back <skel start> 1182756:388071 1182756:388082 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 7 13 0
IDL:CORBA/Object:1.0:cb011cde-c8fc-4c2e-a211-a2377ce1538d(end point)+2f372531-b7c3-405c-9e0b-556fb3893860(object key)[1] 4[2]

test case: f594363b06a847a68cda6888cfa9135a::100004
IDL:CallBack:1.0 greeting <stub start> 1182756:390365 1182756:390372 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 8 14 0
test case: f594363b06a847a68cda6888cfa9135a::100004
IDL:CallBack:1.0 greeting <stub end> 1182756:397837 1182756:397850 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 8 17 0
Greeting from CallBack 1(return)
….
test case: f594363b06a847a68cda6888cfa9135a::100004
IDL:HelloWorld:1.0 test_call_back <skel end> 1182756:429437 1182756:429520 5(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 7 30 0
…..
test case: f594363b06a847a68cda6888cfa9135a::100009
IDL:HelloWorld:1.0 test_raiseexception_2 <skel end> 1182756:500343 1182756:500385 4(thread) fca81cdbfc4a489e8e2cfc243b06272f00000000(global) 27 54 0
IDL:ConceptNotFoundException:1.0(user exception)

Figure 8: Log file with test case identifier propagation and input/output parameters logging

execution. Execution parallelism is also explored in [9]
by dynamically scheduling different testing suites onto
different networked computers. Such frameworks only
reveal test execution results like PASS/FAIL, without
controlled behavior coordination and per-test-case
detailed failure reports.

8. Conclusions

We presented a test framework with runtime and
analysis support, to focus on unit component testing
for distributed component-based systems. The test
framework relies on the distributed systems monitoring
tool that has been demonstrated on both COM and
CORBA based applications. This test architecture
allows a distributed call session container to be
propagated in a component test harness, with testing
related attributes to be injected into this container. As a
result, we can at runtime coordinate the behavior of
multiple components involved, and at offline
environment to construct component-interaction model
from the captured test suite execution. The linking
between the test cases and the associated runtime
behavior model can be revealed. From such behavior
model, various testing analyses are presented,
including collaborator components determination, test
case selection/prioritization and crash component
report and pinpointing. The unique features of our test
architecture are:
• A monitoring framework facilitates an observable

testing environment, without modifying
application components and their interfaces;

• With the IDL compiler extension and runtime
testing-attributes injection, the linking and
synchronization between the test-related artifacts
and implementation-related artifacts is simplified;

• The component-interaction model automatically
constructed from the monitored test execution
enables various systematic test supports for
component-based applications’ maintenance and
evolution, both at runtime and offline
environments. Such tool supports distinguish
themselves from others in a cross-process and
cross-processor environment that involves
multiple implementation languages.

For future work, we can incorporate our stub
component coordination into unit testing tools like
JUnit and NUnit, to leverage their automatic test
execution environment. Capture/replay based testing
that involves more than two server components in the
call session [15], is also interesting. Enforcing global
session propagation with exact historical call ordering
is the key. Our testing techniques reported are focused

on unit component testing, certainly various issues,
e.g., scalability, will arise, when we try to extend such
techniques into system integration testing.

9. References

[1] M. Barnett and W. Schulte, “Spying on Components: A

Runtime Verification Technique,” OOPSLA 2001
Workshop on Specification and Verification of
Component-Based Systems, Oct. 2001.

[2] R. Binder, Testing Object-Oriented Systems: Models,
Patterns, and Tools, Addision-Wesley Pub. Co., 2003.

[3] D. Box, Essential COM, Addison-Wesly, Pub. Co.,
1998.

[4] Y. Chen, D. Rosenblum, and K. Vo, “TestTube: A
System for Selective Regression Testing,” Proceedings
of the 16th International Conference on Software
Engineering, pp. 211-220, 1994.

[5] P. Fulghum and K. Moore, “CDL,” HP Internal Design
Document, Dec. 1999.

[6] M. J. Harrold, “Regression Test Selection for Java
Software,” Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and
Applications, pp. 312-326, Oct. 2001.

[7] Jun Li, “Monitoring of Component-Based Systems,”
HPL Technical Report HPL-2002-25(R.1).

[8] Jun Li, “Monitoring and Characterization of
Component-Based Systems with Global Causality
Capture,” Proceedings of the 23rd International
Conference on Distributed Computing Systems, pp.
422-31, May 2003.

[9] J. Mathews, “Distributed Automated Software
Graphical User Interface (GUI) Testing,” US Patent No.
US 2003/0098879.

[10] K. Moore, and E. Kirshenbaum, “Building Evolvable
Systems: the ORBlite Project,” Hewlett-Packard
Journal, pp. 62-72, Vol. 48, No.1, Feb. 1997.

[11] OMG, The Common Object Request Broker:
Architecture and Specification, Oct. 2000.

[12] QALoad, http://www.compuware.com/.
[13] F. D. Reynolds, J. D. Northcutt, E. D. Jensen, R. K.

Clark, S. E. Shipman, B. Dasarathy, and D. P. Maynard,
“Threads: A Programming Construct for Reliable Real-
Time Distributed Computing,” Internal Journal of Mini
and Microcomputers, Vol. 12, No. 3, 1990, pp. 119-27.

[14] Rhapsody, http://www.ilogix.com/rhapsody/.
[15] M. Ronsse and K. D. Bosschere, “RecPlay: A Fully

Integrated Practical Record/Replay System,” ACM
Transactions on Computer Systems 17, 2 (May 1999),
pp. 133-52.

[16] G. Rothermel, M. J. Harrold, and J. Dedhia,
“Regression Test Selection for C++ Software,” Journal
of Software Testing, Verification and Reliability, pp.
77-109, Vol. 10, No. 2, June 2000.

[17] G. Tassey, “The Economic Impacts of Inadequate
Infrastructure for Software Testing,” Technical Report,
National Institute of Standards and Technology (NIST),
May 2002.

[18] TCBeans, http://www.haifa.il.ibm.com/

