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Abstract. A new class of embedded devices is emerging that has a mixture of 
traditional firmware (written in C/C++) with an embedded virtual machine (e.g., 
Java).  For these devices, the main part of the application is usually written in 
C/C++ for efficiency and extensible features can be added on the virtual ma-
chine (even after product shipment). These late bound features need access to 
the C/C++ code and may in fact replace or extend functionality that was origi-
nally deployed in ROM. This paper describes the JeCOM bridge that dramati-
cally simplifies development and deployment of such add-on features for the 
embedded devices and allows the features to be added without requiring the 
firmware to be reburned or reflashed. After being dynamically loaded onto the 
device’s Java virtual machine, the JeCOM bridge facilitates transparent bi-
directional communication between the Java application and the underlying 
firmware. Our bridging approach focuses on embedded applications develop-
ment and deployment, and makes several significant advances over traditional 
Java Native Interface or other fixed stub/skeleton COM/CORBA/RMI ap-
proaches.  In particular, we address object discovery, object lifecycle manage-
ment, and memory management for parameter passing. While the paper focuses 
on the specific elements and experiences with an HP proprietary infrastructure, 
the techniques developed are applicable to a wide range of mixed language and 
mixed distributed object-based systems. 

1   Introduction 

A new class of smart devices is emerging that combines the efficiency of ROM-based 
C/C++ code with the flexibility of an embedded Java virtual machine. The firmware in 
these devices is usually burned into ROM, and therefore difficult to update or modify 
after product shipment. However, after product shipment, there is often a need to 
introduce a new feature not foreseen in the development phase.  The new feature may 
be a customization of an existing feature (such as a custom logo on the front-panel of 
the device), or may be a new capability that extends the features of the device (such as 
adding secure authentication to the login procedure at the device, in order to access 
the user’s email account). 



The Java virtual machine creates a safe sandbox in which these augmented features 
are added; however, extending, invoking and replacing ROM features requires bi-
directional communication between Java and the underlying firmware.  

In this paper, we present a middleware bridging framework called JeCOM that en-
ables bidirectional invocation and feature replacement between Java and embedded 
firmware. In our specific environment, the C/C++ firmware is written to an object 
model known as eCOM (based on the Microsoft COM model) and thus our solution 
also addresses Java/COM interoperability in the embedded environment. 

The contribution in this paper is the creation of a Java/COM bridge that is imple-
mented as a new protocol in a Java-based Object Request Broker.  This new protocol 
provides significant ease-of-use advantages over Java Native Interface, performance 
comparable to distributed object systems, while requiring no change to existing firm-
ware implementation and infrastructure.  

The problem of bridging Java and C/C++ is not new. However, bridging these lan-
guages in the embedded domain and addressing object discovery, lifecycle manage-
ment, and memory management within the ORB protocol for bidirectional communi-
cation is new. Please see the related work in Section 6 for alternatives to our ap-
proach.  

The rest of this paper is structured as follows. In Section 2, we provide the over-
view of the JeCOM bridge that enables Java and firmware bi-directional interaction. 
Section 3 presents an example to illustrate how to use the bridge to develop and de-
ploy device features. Section 4 details the core techniques of the bridge that meets the 
challenges imposed by the fixed eCOM and firmware. Section 5 reports current im-
plementation status and performance results of this embedded bridge. Section 6 identi-
fies the related work and finally in Section 7 we conclude this paper. 

2   Bi-Directional Bridging Overview  

There are three popular approaches for bridging Java code to C++ code:  
• Java Native Interface (JNI) 
• Modified Java Virtual Machine (VisualJ++/COM) 
• Java Object Request Broker (JORB) 

In JNI [11], a Java interface can be implemented in C++ by using a tool to con-
struct an additional Dynamic Link Library (DLL).  This library must be deployed with 
the C++ code and available to the Java virtual machine for the Java class loader to 
properly execute. Although this is efficient, JNI introduces a versioning problem for 
extensible Java programs namely that they need to ensure that the embedded firmware 
supports the DLL containing the desired native interface.  In our domain, this guaran-
tee cannot be given for the interface may exist in one version of firmware, but not in 
another. 

In VisualJ++/COM [18], Microsoft addressed this limitation in JNI, by extending 
the Java virtual machine to check for the existence of the desired class (implemented 
internally using CoGetClassObject) and to verify that the desired interface is still 
supported by the C++ target (using QueryInterface). The most significant disad-



vantage of this approach is that the virtual machine has to be knowledgeable about 
COM and the layout of a C++ vtable. 

In JORB [15, 19], a standard wire protocol is used to bridge Java to C++ code 
(e.g., IIOP).  This works well when the C++ code is written to the CORBA object 
model. When the C++ code is not in the CORBA object model, it must be wrapped 
with a CORBA view object.  Thus Java calls the view object using IIOP and then the 
view object (typically written in C++) calls the intended C++ target. OrbixCOMet by 
IONA [7] is an example of such a system.  A problem for such systems is the installa-
tion of the view object.  Essentially, a view object must be installed as a DLL for each 
object or interface that is (or may be) exposed in the COM C++ objects.  For the em-
bedded domain, this introduces considerable memory overhead for potential access 
points. 

In JeCOM, we address this overhead question by dynamically creating the view ob-
ject.  This avoids needing an explicit C++ view for each COM target and substantially 
reduces the memory footprint for the released firmware.  A single DLL is installed 
when the C++ firmware is deployed.  This DLL is independent of any specific firm-
ware interface or object, but can be used by Java to communicate with any exposed 
COM interface.  The technology is bi-directional (meaning Java can call COM and 
COM can call Java), thread-safe, re-entrant, and is independent of the underlying 
virtual machine.  Java code can be used to replace, modify, or extend existing firm-
ware components written in C++. In the rest of the paper, we refer to the path from 
Java to COM as the forward bridge and the path from COM to Java as the callback 
bridge. 

2.1 Technology Choices 

The architecture described in this paper is applicable to any Java ORB implementation 
and we believe maps to the general Microsoft COM infrastructure [12].  However, the 
technology used is a particular Java ORB and a proprietary embedded implementation 
of COM (known as eCOM). The eCOM infrastructure was developed years ago with 
low overhead for communication and latency. The specific Java ORB supports multi-
ple simultaneous protocols (e.g., IIOP, SOAP, DCE-CIOP) and thus the bridge is 
implemented at the protocol level as an additional Environment Specific Inter-ORB 
protocol (ESIOP) [15]. The architecture is shown in Figure 1. The specific ORB used 
is a Java implementation of ORBlite [13]. HP Chai is used as the embedded JVM, 
which is called ChaiVM in this paper.  The JORB and Java application code can be 
dynamically loaded into the ChaiVM. The Java client can remotely invoke firmware 
components via the bridge (from Point 1 to Point 2), and the firmware client can re-
motely invoke Java components via the bridge as well (from Point 3 to Point 4).  

Also, in JORB, with the IIOP (or SOAP) communication channel, the Java compo-
nents can delegate the requests originated from the firmware client to other compo-
nents external to the device (from Point 1 to Point 5). 

By taking the Java/eCOM bridging approach, we can keep the existing firmware 
code base untouched, as porting the entire code base from one object model (COM) to 



the other (CORBA) would require tremendous effort. Furthermore, our approach 
works with the devices that have already been deployed.  

2.2 Flow of Control in Bi-Directional Bridging 

Through the forward bridge, a Java client can remotely access firmware components. 
After the client discovers the firmware component via the bridge, it performs a remote 
request to this component.  The remote request flows through the ORB core runtime 
and reaches the specific protocol, i.e., the bridge. The bridge then establishes the na-
tive eCOM communication channel to the server based on the eCOM target object’s 
object reference, and constructs a request message native to eCOM. After the request 
message reaches the remote component, and the component finishes processing the 
request, the bridge translates back the response message into return parameters and 
delivers them back to the Java client. 

Conversely, the callback bridge allows an eCOM client to perform the remote re-
quest to the Java component object located in ORB, after the component implemented 
in Java is discovered in eCOM. The callback bridge is much more complex. During 
the ORB’s initialization, the callback bridge is initialized after ORB creates a server 
thread dedicated to this protocol (bridge). Shown in Figure 2, this server thread uses 
JNI to migrate itself into the eCOM domain, where the thread further transforms itself 
into an eCOM apartment through eCOM initialization routines. This server thread is 
therefore both an ORB protocol server and an eCOM apartment at the same time, and 
is called the Bridge Apartment Thread. The thread of control then returns to Java. 

Later, at ORB’s run phase, the bridge apartment thread migrates from Java to 
eCOM again, and spins in a message loop. Whenever a request comes in, the message 
queue access returns, along with the retrieved message. The bridge decodes the mes-
sage, identifies the target Java ORB object, and dispatches the call to the intended 
Java object. After the object finishes execution, the control falls back to the bridge 
apartment thread along with the returned results. The bridge translates the results into 
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Fig. 1. The JeCOM bridge built upon ORBlite (Java ORB) to establish bi-directional com-
munication between the embedded Java virtual machine and firmware built upon eCOM 



the response message and deposits the message back to the eCOM communication 
channel. The eCOM runtime then delivers the response to the eCOM client. The con-
trol is returned back to the message loop, waiting for further eCOM requests. 

 As illustrated in Figure 2 for the callback bridge, the JNI interfaces are well encap-
sulated in the ORB protocol. Actually, internal to the bridge, we further provide the 
abstraction of open/close, select, read/write over the RPC communication 
channel and channel endpoints, such that we can significantly reuse the code imple-
mentation from other protocols like IIOP and SOAP. 

3   An Example of Using the JeCOM Bridge 

This section provides an example to illustrate how to develop device features through 
the JeCOM bridge. ORBlite and eCOM are involved in our implementation as the two 
object systems that are bridged. This bi-directional bridge and its related compiler 
support for code auto-generation, allow us to develop device features in pure Java, 
such that no tedious and error-prone manual JNI coding is required to enable 
Java/C++ cross-language invocation.   

 We use the Component Definition Language (CDL) [4] to illustrate components 
and their specifications. Although the CDL is specific to our domain, it should be 
familiar to those knowledgeable of CORBA IDL or COM MIDL. 

The example component is a network time related component called CNT. Its speci-
fication is shown below. 

namespace NT { 
  interface Admin { 
      void GetStatus(out NetworkTimeStatus stat,  
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Fig. 2. The callback bridging in the JeCOM bridge 



              out NetworkTimeTimeVal time,  
              out NeworktimeConfig config); 
      … 
  }; 
}; 

[singleton, reentrant]  
coclass CNT { 
        supports NT::Admin;  
        … 
}; 

3.1 Feature Development   

To achieve access from a Java client to the firmware, after compilation of the above 
CDL specifications to obtain necessary helper classes, only the simple Java code 
shown below is required to invoke GetStatus.  The steps are commented inline.  

//other imported package… 
import idlGlobal.ComponentPackage.*;  
import NT.*; 

public class TestECOMInvocation { 
 public static void main (String[] args)  
   try { 
     //step 1: prepare an eCOM object instance 
     CNT admin=new CNTHelper(); 
     //step 2: prepare all necessary data structures 
     NetworktimeStatusHolder status=  
            new NetworktimeStatusHolder(); 
     NetworkTimeTimeValHolder timeval= 
            new NetworkTimeTimeValHolder(); 
     NetworkTimeConfigHolder confval= 
            new NetworkTimeConfigHolder(); 
     //step 3: safe cast to a specific interface 
     AdminRef objRef=(AdminRef)admin;  
     //step 4: invoke the method 
     objRef.GetStatus(status, timeval, confval);  
   } 
   catch (org.omg.corba.CORBAException ex) { 
    …. 
   } 
…. 
} 

Such a simple client implementation is dramatically different from the manual JNI 
code already in place. The existing implementation starts with a user-defined class 
NetworkTimeNativeImpl, which contains the native method GetStatus. Yet 
another class NetworkTimeApp is defined to package the returned structures for 
GetStatus. No one-to-one mapping happens between the CNT component interface 
and the user-defined Java classes NetworkTimeNativeImpl and Network-



TimeApp. The JNI implementation for the method GetStatus has 142 source 
lines. With the JeCOM bridge, such JNI coding is completely unnecessary.  

Suppose the CNT component is instead implemented in Java. We follow the re-
quired component interface to implement the component in Java. Also, on the Java 
side, we need to perform CNT’s cross-bridge object registration, as shown below, in 
order to make it callable from eCOM. Its registration is hidden in the constructor of 
CNTFactory, a class auto-generated by the compiler.  

public class AppServiceImpl implements IAppService,  
           IChaiServer { 
     public void init(….) { 

       org.omg.corba.ORB.init(); 
       //component registration encapsulated  
       CNTFactory f=new CNTFactory(); 
       com.hp.embedded.ORBlite.SOA.run(); 
       … 
     } 
} 

 Object registration takes place in the initialization method init associated with a 
Chai service, which is called AppService herein. Once this Chai service is started, 
and the ORBlite component is registered, the eCOM client can then remotely invoke 
this component, as if it is native in eCOM. Therefore, the eCOM client is completely 
unaware of the target component’s implementation nature.  

3.2 Feature Deployment  

The entire JeCOM bridge is packaged as a jar file to contain Java classes and native 
code libraries, which is called the bridge-related package. Both user-defined Java 
implementation (including the Chai service) and auto-generated Java code are pack-
aged in a second jar file, which is called the feature-related package. These two pack-
ages are loaded to the ChaiVM. When the ChaiVM starts to execute the Chai service’s 
initialization (shown above), the service initialization further invokes Java ORB’s 
initialization method (which includes loading the native libraries of the bridge into the 
ChaiVM runtime), registers the Java ORB components onto the ORB platform, and 
then issues run to launch the JeCOM bridge (a protocol).  

Once the JeCOM bridge is running, the device can then start the bi-directional 
Java/eCOM remote invocation.  

4 Detailed Design  

In this section, we present the details on how the bidirectional communication is 
achieved in JeCOM. No eCOM runtime and firmware components need to be modi-
fied. The changes to the ORB necessary to introduce bi-directional bridging between 
Java and COM are encapsulated at the protocol level. In our Java ORB implementa-



tion called ORBlite, the bridge is implemented as yet another transport protocol, in 
parallel to IIOP and SOAP.  We focus on how the bridge protocol addresses the fol-
lowing issues that we believe are essential to cross-object-system bridging: 
• Discovery: how does an object in Java locate an object in C/C++ (and vice versa)? 
• Translation: how are invocation parameters converted between the two runtimes? 
• Lifecycle: how long do objects live? 
• Concurrency: how to bridge thread concurrency models between the two runtimes? 
• Memory management: how is memory management addressed for passed parame-

ters? 
• Transparency: how natural does an object in one runtime appear to the other run-

time? 
As background information, the ORBlite protocol abstraction layer consists of the 

following major interfaces: 
• TransportInputStream defines marshalers for primitive types like short 

and float, and TxType (transmittable type) for composite types (structures, se-
quences, object types, etc.) by following the Visitor pattern [5].  

• TransportOutputStream is the counterpart of TransportInputStream 
for demarshaling.  

• TransportClient allows the application client to perform remote invocation to 
the server object, with a particular protocol derived from the corresponding IOR 
profile [15] of the object reference to the server object, and subsequently receives 
the call response.  

• TransportServer is responsible for remote object registration, and remote 
object invocation processing by upcalling ORB component objects. The Trans-
portServer can be viewed as a service in the Service Configurator pat-
tern [8], whose initialization, start, and shutdown is controlled by the Object Adap-
tor. 

4.1 Object Model  

The bridge’s object model aims to provide the linking between ORBlite and eCOM, 
the two distinct object models, and to present a uniform view of objects to both OR-
Blite and eCOM clients with the perception that the remote object (callee) is always 
native to the caller. 

Object Reference Encoding 
 

ORBlite and eCOM have completely different representations for object references. 
The ORBlite object reference is capable of holding profiles for multiple protocols 
(including the eCOM ESIOP). Therefore, a Bridge Profile encodes object references 
to the eCOM objects discovered by ORBlite. An eCOM object reference contains the 
information about the object’s apartment thread location (identifiers for process and 
apartment), and the object’s unique identification local to the apartment thread. The 



bridge profile, also referred to as the JNIECOM profile, is defined with internal 
data structures in Java to fully store these two information pieces. 

On the other hand, eCOM is not capable of holding CORBA object references, be-
cause the eCOM object reference is highly optimized (a 128 bit value). The OMG 
COM/CORBA specification details how a CORBA object reference can be encapsu-
lated in a non-CORBA object reference by creating a surrogate object.  We use this 
approach by holding the actual CORBA IOR inside a temporary eCOM object at the 
bridge. 

The bridge creates an object instance from a component called Universal 
Bridge Component (UBC), whose component specification is the following: 

namespace Bridge {  

  interface Indexer{ 
        //empty, no methods declared.  

  }; 
}; 
 

[reentrant]  

coclass CUbc{ 
    supports Bridge::Indexer; 
}; 
 
These UBC objects are private to the bridge. For each unique ORBlite object refer-

ence passed into the bridge, instead of encoding the information of the full ORBlite 
object reference, the bridge creates a UBC object instance, which is returned to the 
eCOM client. The bridge further transforms this UBC object reference into a 
JNIECOM profile, following the reference encoding mechanism described above. The 
bridge holds a private hash table called Bridge Object Table (BOT), to provide map-
ping between this JNIECOM profile (and therefore the native eCOM object reference) 

 
ORBlite 

eCOM 

Bridge 

Bridge Object Table 
 (in Java) 

profile  1 reference 1 

pair 

derive … … 

point to 

Java ORB 
Component Object

 
UBC 

… … 
eCOM object 
reference  

Client  

 

Fig. 3. Universal Bridge Component and its use in object reference encoding  



and the true Java ORBlite object reference. As a result, when a remote invocation 
request comes from an eCOM client, the bridge is able to determine which ORBlite 
object is the true target object. Figure 3 shows how to use the UBC objects to fully 
represent ORBlite objects. 

Cross-Bridge Object Discovery   
 
 Object discovery is separately resolved for the ORBlite client to discover the eCOM 
component, and vice versa.  

An interface method called initial_reference is introduced in Trans-
portServer, which accepts input parameters that include the CLSID of the target 
component. The method returns the object reference of the factory object OBJFac 
associated with the eCOM component, following the cross-bridge object reference 
encoding described above. 

Note that in eCOM, components and their interfaces are uniquely identified by 
CLSIDs and IIDs respectively. Such unique identifiers are digitally signed with the 
keys derived from their corresponding definitions. The signing is automatically per-
formed by the CDL compiler and therefore guarantees unique versioning of eCOM 
components and their interfaces. 

 The initial_reference method is invoked by the ORBlite client. The 
thread of control sinks down to the bridge transport, where the thread transforms itself 
into an eCOM thread (via CoInitialize). It then uses the eCOM-supported API 
(CoGetClassObject) to obtain OBJFac registered under the specified CLSID. The 
bridge then encodes OBJFac in a JNIECOM profile contained by an ORBlite IOR-
based reference, which then returns to the ORBlite client. The resulting ORBlite ob-
ject reference is called eCOM-Encoded Object Reference. 

A helper method is actually generated by the compiler for each component to 
streamline initial_reference, and subsequent creation of the object instance 
OBJecom from the discovered OBJFac via the method CreateInstance (defined 
in IClassFactory). The ORBlite user-level method invocation can then be per-
formed over this new OBJecom. To simplify programming, this helper method is fur-
ther encapsulated in the constructor method, which belongs to a Java class auto-
generated from the compiler (e.g., the class CNTHelper shown in Section 3.1).  

To the eCOM firmware, the eCOM client still follows the native eCOM object dis-
covery mechanism to locate a component object, even when this object is actually 
implemented in ORBlite. Therefore, our bridge transport is responsible for registering 
the ORBlite component into eCOM to provide such an illusion, as described next.  

Cross-Bridge Object Registration  
 
Object registration facilitates ORBlite components to be registered into the eCOM 
runtime, such that the eCOM clients can discover them. Because no firmware is modi-
fied, eCOM components do not perform this cross-bridge registration. The work has 
to be done in ORBlite unilaterally. 



We introduce an interface method called register_classobject under 
TransportServer. It accepts an ORBlite singleton class factory instance (the 
factory-related code is auto-generated from the compiler), along with the component’s 
CLSID. The actual registration is delegated down to the bridge. The bridge provides a 
private hash table called Class Factory Table (CFT) to store all these class factory 
instances, with their CLSIDs being the keys. 

Later, before the bridge apartment thread enters its message loop to serve incoming 
invocation requests (in Figure 2), for each registered ORBlite component factory 
object FCTYjava, the bridge creates a factory object instance FCTYecom whose com-
ponent type is UBC’s factory. FCTYecom is then registered into the eCOM’s global 
object registry, with FCTYjava’s CLSID being the registry key. Each FCTYjava is 
further stored into a bridge-private hash table called Bridge Factory Object Table 
(BFOT), with the corresponding JNIECOM profile derived from FCTYecom being the 
key. 

Figure 4 illustrates the above steps. The details about cross-bridge object registra-
tion are encapsulated in a helper method for each component, which can be further 
encapsulated in the constructor belonging to a Java class automatically generated (e.g., 
the class CNTFactory shown in Section 3.1). This constructor is invoked at the 
application initialization to register ORBlite components to eCOM.  

Cross-Bridge Object Lifecycle Management  
 
In eCOM, lifecycle management relies on object reference counting through AddRef 
and Release in the IUnknown interface. An object is destroyed whenever its 
reference count decreases to 0. By contrast, life cycle management service is optional 
in OMG CORBA [15], and currently is not supported in ORBlite. 

To ensure firmware runtime correctness, eCOM object reference counting is en-
forced when eCOM object references cross the bridge to ORBlite. The enforcement is 
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performed by the bridge, completely transparent to user-level programming in OR-
Blite. Eventually, when the Java application finishes using the eCOM remote object, 
the corresponding eCOM-encoded object reference (introduced in Section 4.1) is out 
of scope and subsequently destroyed by the Garbage Collector. The remote object’s 
reference count is correspondingly decreased. If no other eCOM clients hold addi-
tional references to the server object, the server object is then destroyed.    

In a pure eCOM environment, the user-level application is responsible for issuing 
AddRef and Release, following the COM programming paradigm [1]. The eCOM 
runtime provides supports to ensure that reference counting is carried out on remote 
objects correctly. In fact, a user-level’s invocation is always only an in-process invo-
cation to the proxy. The impact of local reference counting to remote objects only 
happens at construction and destruction of proxy objects, from which the associated 
RPC channels are established or torn down, which then further triggers reference 
count manipulation on the corresponding eCOM stub objects. Only the reference 
counts of stub objects have direct impact on the lifetime of server objects. Under other 
circumstances, local reference counting acts independently. 

The bridge performs implicit reference counting, as if the bridge is yet another 
eCOM apartment. Therefore, the reference counting supports provided by a native 
eCOM apartment and their RPC channels are mimicked. In particular, reference 
counting supports happen at:  
• Object Discovery and Registration. For object registration, when the bridge cre-

ates the UBC factory objects, it increases their reference counts by 1 deliberately. 
Therefore these UBC factory objects are never destroyed and remain valid in the 
BFOT table. Object discovery deals with eCOM’s class factory objects (stored in 
eCOM’s global object registry) and therefore no specific actions are required. 

• Remote Method Invocation. When the Java client makes a remote invocation, in 
TransportClient, right after the communication channel to eCOM is estab-
lished, the reference count to this channel (and therefore to the stub of target ob-
ject) is increased. Correspondingly, right after this remote invocation finishes and 
before the control exits TransportClient, the reference count to the channel 
(and therefore to the stub) is decreased.  In TransportServer, the bridge proc-
esses remote AddRef and Release actions requested by other native eCOM cli-
ents. When the UBC objects’ reference counts are decreased to 0, they are purged 
from the BOT table.  

• Object Reference Marshaler and Demarshaler. For an eCOM object reference 
to be sent across the bridge and converted to an eCOM-encoded object reference in 
ORBlite, the corresponding TransportOutputStream mimics the actions re-
lated to the native eCOM object reference’s demarshaling. Reference counting in 
eCOM’s object demarshaling is then carried out. For an ORBlite object reference 
to be marshaled to the eCOM side, we extract the associated JNIECOM profile, 
convert the profile fields into the respective fields in the eCOM object reference, 
and then perform marshaling of the eCOM object reference. Reference counting in 
eCOM’s object marshaling is then carried out.  

• JNIECOM Profile Finalizer. The profile’s finalizer ensures that the correspond-
ing eCOM remote object’s reference count will be decreased by 1, when the 
eCOM-encoded object reference in ORBlite is garbage-collected. 



4.2 Memory Management for Parameter Passing 

eCOM uses a shared-memory based protocol. Unlike IIOP whose marshaling is inde-
pendent of native memory layout, eCOM heavily relies on shared memory to perform 
shallow marshaling, in order to reduce marshaling overhead. The shallowness can be 
very beneficial for bulk data transfer. Overall, the shallowness mandates that for a 
composite data type parameter, only the first-level data structures are value-copied 
into the communication channel’s message buffer [3]. If further sub-layer data struc-
tures exist, they have to be allocated in shared memory regions, and do not directly 
participate in marshaling and demarshaling, except for the pointers of the top-most 
shared memory regions. In the extreme case, if the entire composite data structure 
representing the parameter is populated in shared memory, then only the pointer to the 
top-most structure is marshaled.  

The implementation of TransportInputStream and Transportoutput-
Stream collectively enforce the shallow-marshaling rules. The parameter-passing 
rules in [3] also demand shared-memory management in parameter passing. Funda-
mentally, these rules require that the client is responsible for memory allocation at the 
beginning of the call, and memory release when the call returns. The callee (or server 
object) is eligible to allocate (for out parameters) or modify (for inout parame-
ters) shared-memory regions, on behalf of the caller. 

Such rules have to be enforced in cross-bridge remote invocations, even though ei-
ther the ORBlite client (to invoke eCOM object) or the ORBlite object (to serve the 
eCOM client invocation) is under Java, which does not have knowledge about native 
memory. The bridge has the implementation of TransportInputStream and 
TransportOutputStream to bear this responsibility. 

 One difficulty happens when the invocation from an ORBlite client to the eCOM 
object carries inout parameters. Suppose the bridge allocates a shared-memory 
region on behalf of the client, and this region is released by the eCOM object subse-
quently. When the call response returns, if the bridge tries to release the already-
released region, memory-related failure can likely occur if the memory manager has 
already reclaimed this memory region.  In order to have such unpredictable server-
side memory modification become predictable, shared-memory reference counting is 
adopted (the related APIs is supported by the eCOM runtime facility). When the 
bridge first allocates memory regions for parameter marshaling, it stores these regions’ 
pointers into a private table. Furthermore, the bridge deliberately increases the refer-
ence counts of these regions by 1, such that at the eCOM object implementation, the 
user-level’s CoTaskMemFree (a COM API) calls cannot decrease the counts to 0. 
When the response comes back, the bridge retrieves the shared-memory pointers from 
the table, decreases their counts until the counts all reach 0, and therefore allows these 
regions to be reclaimed by the memory manager. 

4.3 Cross-Programming-Language Server-Side Dispatching  

Server-side dispatching in the callback bridge is much more difficult, compared to the 
client-side invocation in the forward bridge. First, the callback bridge needs to mimic 



server-side dispatching of an eCOM server thread, but the target object invocation 
actually occurs in Java. Secondly, server-side dispatching can potentially involve 
more than one thread, depending on the adopted dispatching policy [6]. Thirdly, to 
make the implementation clean, we decide not to use the JNI’s Invocation API [11]. 
To each interaction between Java and C/C++, the control always starts from Java, 
migrates into C/C++, and returns to Java. 

Different types of remote invocation are involved in eCOM, including channel 
connection/disconnection, user-defined method invocation, remote version of Ad-
dRef/Release, invocation acknowledgement, etc.  Our bridge, viewed as an eCOM 
server thread by the eCOM client, handles all these invocation types. Herein we only 
focus on method invocation. Other invocation types’ handling is detailed in [10]. 

The handling of a method called CreateInstance (defined in COM’s 
IClassFactory interface) is detailed next, as it requires the most sophisticated 
switching between Java and C/C++. The complexity mostly is because actual ORBlite 
object creation has to be done in Java, whereas this object (in Java) cannot be returned 
to the eCOM client directly. The UBC object is involved, following the similar treat-
ment for cross-bridge object registration described in Section 4.1. 

 CreateInstance is invoked by the eCOM client after it obtains the class fac-
tory object FCTYecom, the result of the cross-bridge ORB component’s registration to 
eCOM. When the thread of control is in Java, the bridge apartment determines the 
identity of CreateInstance by making a call to the eCOM environment to query 
the interface and method identifier, based on the incoming request message. The na-
tive eCOM environment then extracts the class factory object reference FCTYecom 
from the incoming request message header, and encapsulates into a JNIECOM profile 
P1 as the return. Then in Java, the bridge searches the BFOT to identify the actual 
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Bridge (Native Part) 
Transport Server   

CreateInstance with 
Factory FCTYecom 
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is a CreateInstance  call ? 
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with return of OBJjava
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return profile P2 for OBJecom
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return created UBC OBJecom 

Create UBC 
OBJecom 

 
 

Fig. 5.  Migration of thread of control between Java and native eCOM for CreateInstance 



Java class factory object FCTYjava, and subsequently invokes CreateInstance 
associated with FCTYjava. The return is an ORBlite component object OBJjava. 

Subsequently, the thread of control migrates back to eCOM to create a UBC called 
OBJecom to represent OBJjava and return a JNIECOM profile P2 encapsulating OBJe-

com. P2 then is returned back to Java. In Java, the bridge registers the ORBlite com-
poent object OBJjava into the BOT table, with P2 as the key. To conclude this method 
invocation, the thread of control migrates back to eCOM, where the just created OB-
Jecom is returned to the eCOM client. The full sequence of control is shown in Figure 
5. 

For a user-defined method invocation from eCOM to ORBlite, the bridge handles it 
similarly. The CreateInstance method described above is substituted by a user-
defined interface method. The only difference is that upcalling from the bridge to the 
ORBlite objects, depending on the chosen threading policy, might have object method 
execution happened in a different Java thread. Currently, to avoid deadlocking under 
recursive cross-bridge invocation, the thread-per-request policy [6], which leads to a 
simple implementation, is adopted.  

4.4 Compiler Support 

Interface specification in ORBlite is based on the OMG IDL. The eCOM is based on 
CDL [4] for component and interface specifications, and is augmented from the OMG 
IDL. We have unified component and interface specifications for both object systems 
under the CDL. Furthermore, both ORBlite and eCOM’s compilers share the same 
front end, such that their code generators are just two different back-ends of the com-
piler.   

A component therefore can be specified in CDL (one example is shown in Section 
3.1), independent of the object system from which this component is to be developed 
and deployed. Such development and deployment choices are explicitly stated in the 
component’s private specification that regards the component’s implementation. The 
existing CDL supports “implemented in C++” or “implemented in C” to specify which 
programming language (either C or C++) is used for a component’s implementation. 
The CDL can be extended to support “implemented in Java”, to specify that this com-
ponent is to be an ORBlite component implemented in Java (In our current compiler 
implementation, this private implementation information is instead provided to the 
compiler via a backend compilation flag). 

The unified CDL compiler auto-generates not only traditional stubs and skeletons, 
but also the helper class and factory class that are necessary to incorporate cross-
bridge object discovery and registration. The detailed code generation can be found in 
[10].  

5 Results and Performance 

The bridge currently is packaged into the Java and native two parts. The native part 
includes a shared library loadable to the ChaiVM (our embedded JVM) and two DLLs 



designated for UBC (the difference between shared libraries and DLLs is symbol table 
stripping in DLLs). The shared library is loaded by the ChaiVM, along with other Java 
classes, when the related Chai service (refer to Section 3) is started (e.g., at device 
power up). During the bridge apartment thread’s initialization, the two DLLs are fur-
ther loaded via code execution in the shared library. For the MIPS processor based 
target platform, the entire bridge package (a jar file) is about 360KB, with the native 
part using the g++ compiler (with O2 turned on). 

The bridge is currently running on both the HPUX development platform and the 
MIPS processor based target platform. We have conducted its performance measure-
ment in the HPUX development platform (a HP 9000/78 workstation with PA 8500 
550MHZ CPU, 1536MB RAM, and HPUX11i OS), which is detailed next. 

In the execution environment, the ChaiVM hosting the Java application is in one 
process, launched by the eCOM runtime.  Either the eCOM client or the eCOM server 
is configured in another process. Therefore, performance testing of Java→eCOM and 
eCOM→Java happens between processes. The results are shown in Columns 2, 3 in 
Table 1. Column 4 shows performance results for eCOM→eCOM invocation, with the 
client and the server hosted in two different processes. Column 5 aims to compare our 
systematic bridge with the manually written JNI bridge that is specific to this 
performance test suite.  

Furthermore, to compare our bridge (an ORB protocol instance) with the IIOP 
(another ORB protocol instance), we also measured Java→Java remote invocation 
over IIOP, using the same ORB infrastructure. Since it is difficult to configure the 
execution environment to launch two ChaiVM processes simultaneously in our HPUX 
development environment, the IIOP testing is under two different configurations. The 
first configuration is to have the client and the server hosted in the single ChaiVM 

Table 1.  Performance measurement of JeCOM bridge in HPUX development environment (all 
measurement results are in millisecond. c stands for client, and s stands for server) 

Java (c) 
Java (s) 

(over IIOP) 

Method  Java(c) 
eCOM(s) 

eCOM(c) 
Java(s) 

eCOM(c) 
eCOM(s) 
(over native 

eCOM 
runtime) 

Java (c) 
eCOM(s) 

(over 
manual JNI 

bridge ) 
Inside 
Firmware 

Stand- 
alone  

ping (0 B) 1.04 1.97 0.053 0.056 2.67 1.94 

sendString 
(512 B) 

1.63  2.17  0.070 0.179 70.1 5.97 

sendStrings 
(8192 B) 

1.78  2.73  0.080 0.342  104.7 66.3 

sendInfo 
(90 B ) 

1.97  2.59  0.074 0.278 6.34 4.00 

sendObjRef 2.53 2.63  0.769 0.772 4.99 3.93 

getObjRef 1.50 2.85  0.673 0.712 5.12 3.61 

 



launched by the eCOM runtime. The second configuration is to have the ChaiVM 
launched from a Unix shell as a standalone Unix process. Also in the second 
configuration, the client and the server are hosted in two different ChaiVMs at the 
same machine. In the first configuration, the ChaiVM has its resources (e.g., memory) 
constrained by the firmware launcher, in order to simulate the real embedded 
execution environment. Such resource constraints are not enforced in the second 
configuration. The measurement results of two configurations are shown in the two 
subcolumns in Column 6, marked as “inside firmware” and “standalone” respectively. 

Following [14], we chose 6 testing methods, as shown in Table 1’s Column 1, 
along with the related payloads (in bytes). The data in sendInfo is a sequence of 
elements each of which is a structure that further contains a sequence. In each method 
test case, the method was invoked for 100 times (expect for eCOM→eCOM in 
Column 4, and Java→eCOM over manual JNI in Column 5, 1000 invocations were 
chosen in these two configurations due to much smaller latencies). We then repeated 
the method test case 3 times, and chose the median value as the method’s testing 
result.   

The results in Table 1 show that our bridge always experiences low-millisecond-
ranged latencies, for the invocations in both Java→eCOM and eCOM→Java. In 
particular, the latencies are quite resilient to string sizes, because marshaling in eCOM 
communication channels is essentially the marshaling of the pointer to the shared-
memory region that stores the string content. We also observed some latency 
difference between Java→eCOM and eCOM→Java.  The most significant factor may 
be due to ORBlite and eCOM’s threading models.  In eCOM, server threads are with 
the reentrant single threaded apartment model [1], and therefore no dynamic thread 
spawning is involved. However, in Java, the thread-per-request model is currently 
adopted. With thread pooling [17], the eCOM→Java invocation latencies are expected 
to decrease. 

Notice that by taking advantage of the extremely fast eCOM runtime infrastructure 
(shown in Column 4), our bridge provides much faster response, compared to the IIOP 
protocol under the same ORB infrastructure. Such dramatic latency difference be-
comes much clearer when marshaling large strings. This is because our bridge relies 
on eCOM’s shared-memory-based marshaling scheme, whereas the IIOP protocol uses 
CDR-based parameter serialization scheme. The difference between the two configu-
rations in Column 6 can be attributed to constrained runtime resources in the “inside 
firmware” configuration, which becomes much clearer for the invocations involved 
with large strings. 

From Column 5, we can also find that the manual JNI bridge is very efficient in 
terms of latencies. However, each testing method has a designated JNI interface with 
manual and tedious implementation, similar to the experience described in Section 
3.1. We implemented in such a way that the Java client only crosses JNI to the native 
eCOM domain once, in order to make a native eCOM invocation. 

Overall, the performance results in Table 1 indicate that our bridge, as a transport 
under the Java ORB, outperforms the IIOP protocol under the same ORB. Even 
though the JNI manual bridge for Java/eCOM invocations, or the eCOM runtime for 
eCOM/eCOM invocations, performs much better than the JeCOM bridge, the JeCOM 
bridge brings us the flexibility to develop and deploy Java-based device feature exten-



sion using CORBA, with no firmware modification required. Furthermore, since the 
extended device features are typically on the execution paths that are not time-critical, 
the low-millisecond-ranged latencies provided by the JeCOM bridge mostly can sat-
isfy our device application needs.   

Currently the JeCOM bridge allows bi-directional method invocation with primitive 
types, composite data types (struct, sequence, and their nested composition), and ob-
ject types. It also supports code generation for singleton and factory components. The 
bridge implementation still needs further improvement for more features, such as 
marshaling of null objects, multiple-interface supports, and custom marshaling. There 
is only one fundamental limitation, which is about passing parameters with the Na-
tive type. In eCOM firmware, a Native parameter is actually a pointer without 
explicit type definition. Consequently, In Java (the other side of the bridge), without 
explicit type definitions, we cannot populate the actual pointed data structure via auto-
generated code.  

6 Related Work 

In this section, we focus on the bridge frameworks that are between CORBA and 
COM/.NET. Overall, these bridging frameworks have been developed for desktop or 
enterprise applications, and therefore they are not focused on runtime execution con-
straints like code size and memory resource that are important to embedded devices. 

IONA’s OrbixCOMet [7] supports bi-directional invocation between COM and 
CORBA applications, conforming to the OMG CORBA/COM Interworking specifica-
tion [15]. The COM applications are developed with the Microsoft IDL (MIDL) 
specification. Separately, CORBA applications are developed with the OMG IDL 
specification. A standalone IDL language conversion tool between these two IDL 
variants is used for cross-bridge remote invocation. The OrbixCOMet is independent 
of user-defined interfaces. For the invocation from COM to CORBA, such interface 
independency is achieved via the DII at CORBA. Standalone GUI-based configura-
tion tools are also available to simplify cross-bridge object discovery and registration. 

There exist other bridging between ActiveX and the platforms that include CORBA 
and Java. They do not always conform to the CORBA/COM Interworking specifica-
tion. For example, Bridge2Java [2] in WebSphere facilitates Java to COM unidirec-
tional invocation via JNI. The Java/COM bi-directional invocation is supported by J-
Integra [9]. These frameworks share the common objective of reusing ActiveX com-
ponents and exposing them to either Java or CORBA. As a result, automating object 
discovery and registration, in order to make the client application unaware of the tar-
get server’s object model and implementation nature, is not supported in their bridging 
framework. 

[14] presents a transparent integration between CORBA and .NET framework, by 
exploring the extensible .NET remoting infrastructure. The difference to our approach 
is that we rely on the ORB to establish bi-directional communication channels, and 
make no assumption about the other middleware runtime’s extensibleness. Secondly, 
component and interface specification languages for the two dissimilar object systems 



are unified in our environment, and we explicitly address cross-bridge object discov-
ery and registration with both runtime and compiler support.  

Microsoft Visual J++ facilitates bidirectional invocation between Java and COM 
[18]. The Java virtual machine requires special implementation to know COM, and 
expose Java objects to the COM. Thus, the bridging actually happens in the virtual 
machine. The associated tool produces java code that contains specific @com direc-
tives, which are compiled into byte code attributes and interpreted at runtime by the 
JVM. Therefore, such bridging approach requires special Microsoft programming and 
runtime environment. 

Finally, the multi-protocol approach has been addressed to evolve communication 
protocols in ORBlite [13], to satisfy QoS requirements in TAO [16], and to replace 
RPC transports in COM [20]. In particular, half-transport [13] has been demonstrated 
in ORBlite to allow ORBlite to communicate with legacy applications. However, this 
half-transport does not consider the issues like cross-bridge object discovery and reg-
istration, and object lifecycle management. 

7 Conclusion 

We have designed and implemented a Java/COM bridge called JeCOM that allows bi-
directional communication between Java and device firmware components built upon 
eCOM runtime. This bridge is built as a protocol under a Java ORB running atop the 
embedded Java virtual machine. This bridge allows add-on device features to be de-
veloped as Java applications and rapidly deployed onto the embedded JVM, without 
device firmware modification. 

The key contributions of the JeCOM bridge are: 
• It facilitates bi-directional communication between the two object models (i.e., 

CORBA and COM) that has the efficiency of JNI with the flexibility and easy-of-
use of CORBA; 

• It addresses object discovery, object lifecycle, and memory management require-
ments that are critical in the embedded domain. The solution is fully encapsulated 
in the ORB protocol interfaces; 

• It enables rapid development and deployment of after market extensions to the base 
smart device by leveraging the Java virtual machine while preserving the perform-
ance of the underlying firmware. 
Some lessons are learned from building the JeCOM bridge. They are applicable to 

a wide range of mixed language and mixed distributed object-based systems. First, by 
addressing cross-programming-language interoperability at the middleware level, 
possibly involved with middleware interoperability, we can take advantage of the 
infrastructures and techniques of distributed object systems to achieve a simple and 
flexible environment to develop and deploy applications. Secondly, a protocol ab-
straction, if designed correctly, can be used to enable interoperability between two 
different middleware runtimes, by reconciling not only messaging format difference, 
but also object discovery, life cycle, and memory management, etc. Finally, the bridg-
ing-related code auto-generation should be designed to encapsulate the underlying 



complex method invocations in some simple methods that are exposed to user-level 
applications, such that end-user application development is simple, and natural to the 
already chosen object programming paradigm. 

We have demonstrated the bridging technique in HP’s embedded devices and will 
exploit this feature deployment platform for system testing, to ensure that embedded 
device reliability can be preserved, even in highly unpredictable service integration 
environments.   

References 

1. D. Box, Essential COM, Additioni-Wesley Pub. Co., 1998. 
2. Bridge2Java, https://secure.alphaworks.ibm.com/tech/bridge2java. 
3. P. Fulghum, “Parameter Passing in ECOM/CDL,” HP internal design document, Mar. 2000. 
4. P. Fulghum and K. Moore, “CDL,” HP Internal Design Document, Dec. 1999. 
5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Resuable 

Object-Oriented Software, Reading, MA: Addison-Wesley, 1995. 
6. M. Henning and S. Vinoski, Advanced CORBA Programming with C++, Addison-Wesley, 

1999. 
7. IONA, “OrbixCOMet Desktop Programmer’s Guide and Reference,” http://www.iona.com/ 
8. P. Jain and D. C. Schmidt, “Service Configurator: a pattern for dynamic configuration of 

services,” Proceedings of the 3rd USENIX Conference on Object-Oriented Technologies and 
Systems, pp. 209-19, 1997. 

9. J-Integra, http://www.intrinsyc.com/ 
10. J. Li and K. Moore, “Enabling Rapid Feature Deployment on Embedded Platforms with 

JeCOM Bridge,” HP Labs Technical Report HPL-2003-256, Dec. 2003. 
11. S. Liang, The Java Native Interface Programmer’s Guide and Specification, Addison-

Wesley, 1999. 
12. Microsoft, The Component Object Model Specification, Version 0.9, 1995. 
13. K. Moore and E. Kirshenbaum, “Building Evolvable Systems: the ORBlite Project,” Hew-

lett-Packard Journal, pp. 62-72, Vol. 48, No.1, Feb. 1997. 
14. J. Oberleitner and T. Gschwind, “Transparent Integration of CORBA and the .NET Frame-

work,” Proceedings of the International Symposium on Distributed Objects and Applica-
tions, Nov. 2003. 

15. Object Management Group, The Common Object Request Broker: Architecture and Speci-
fication, Revision 2.4, Oct. 2000. The CORBA/COM Interworking architecture and lan-
guage mapping are addressed in Chapter 17, 18, 19. 

16. C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The Design and Per-
formance of a Pluggable Protocols Framework for Real-Time Distributed Object Computing 
Middleware,” Proceedings of Middleware 2000, LNCS 1795, pp. 372-95, 2000. 

17. D. C. Schmidt, “Evaluating Architectures for Multithreaded Object Request Brokers,” 
Commun.  ACM, Vol. 41, pp. 54-60, Oct. 1998. 

18. K. Siyan, Inside Visual J++, New Riders Publishing, 1996. 
19. S. Vinoski, “CORBA: Integrating Diverse Applications within Distributed Heterogeneous 

Environments,” IEEE Communications Magazine, vol.35, no.2, pp. 46-55, Feb. 1997.  
20. Y. M. Wang and W. J. Lee, “COMERA: COM Extensible Remoting Architecture,” Pro-

ceedings of the Fourth USENIX Conference on Object-Oriented Technologies and Systems. 
(COOTS), pp. 79-88, April 1998.  


