
 1

Exploiting Global Causality in Testing of Distributed and Component-Based
Applications

Jun Li, Keith Moore
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

{junli, kem}@hpl.hp.com

Abstract

A new approach to testing component-based

applications is presented, which exploits the practice in
component-based systems of generating stub/skeleton
modules and using these stubs/skeletons to construct a
global perspective of end-to-end causality of inter-
component communication. This global causality is
captured regardless of reentrancy, callbacks, thread and
process boundaries, and unsynchronized clocks.

The captured logs created from the interception points
are used to construct a system-wide component
interaction model that can expose the inter-component
dependencies usually hidden in static analysis of
application code. These discovered dependencies are
used to create a test boundary for applying a component
test harness for that component and the set of dependent
components. Similarly, the discovered dependencies can
be applied to pruning the available test cases to identify
those cases that are best suited to exposing defects when
one or more components are changed. A particular
advantage of the approach has been the ability to isolate
the sequence of events that led up to a crash or a deadlock
condition and view the entire system behavior (not just a
particular thread’s perspective or a linear log of
intercepted messages).

1. Summary

Component-based systems (such as CORBA, J2EE,

and COM/.NET) have improved the construction of large-
scale distributed systems; however, testing these systems
remains challenging. Our observation is that large
industrial component-based systems are dynamically
bound, multi-threaded applications with complex
component interactions. The dynamic nature of these
systems defeats static analysis approaches that count on a
one-to-one mapping between interface and
implementation, and the concurrent component
interactions defeat simple message interception.

Our approach to component testing leverages previous
work on a distributed applications monitoring framework
called coSpy [1]. The IDL compiler automatically inserts
probes into generated stub and skeleton modules. These
probes propagate global causality at runtime without
modification to application components. The data
collected from these probes reveals the system-wide
function caller/callee relationship at the component
interface level. We have deployed the monitoring
framework on an industrial application (2 million lines of
code) that involves 200,000 inter-component interactions.

As a further refinement, we allow the annotation of
the component interface definitions with test specification
such that the IDL compiler can inject test-related actions
into the instrumentation probes. These actions are used to
log test-related attributes (such as test suite number or test
case number), and also apply test-related control during
test execution. Analysis of the logs from these augmented
probes automatically links observed test execution
behavior with the test specifications.

This testing framework is then used to perform:
• Collaborator components and their stubbing

boundary determination: to determine which
components form tight collaborations by
monitoring the running system and use this
information to construct a unit component test
harness for the current release;

• Regression test case selection: to resolve a
subset of test cases for retesting when a
component changes;

• Crash/deadlock site pinpointing: to identify the
sequence of events and the set of
components/component interactions that lead up
to a crash/deadlock during integration or system
test.

[1] Jun Li, “Monitoring and Characterization of Component
Based Systems with Global Causality Capture,” Proceedings of
the 23rd International Conference on Distributed Computing
Systems, pp. 422-31, May 2003.

