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Abstract 

 
Current software development techniques and tools 

lack the capability to characterize function call chains in 
multithreaded and distributed applications built upon 
component technologies like CORBA, COM and J2EE. 
The root cause is that causal linkage information 
necessary to trace end-to-end call chains is private to 
each vendor’s runtime and often unavailable for logging 
or analysis. We propose and demonstrate a mechanism 
for maintaining and correlating global causality 
information of component-based applications, and using 
this information to expose and characterize function call 
chains and their associated behaviors in such 
multithreaded and distributed applications. Our approach 
relies on a global virtual tunnel facilitated by the 
instrumented stubs and skeletons. This tunnel maintains 
and correlates causal information throughout the end-to-
end call chains spanning threads, processes and 
processors. As a result, monitoring data captured locally 
can be correlated and system-wide propagation of timing 
latency and CPU utilization becomes perceivable. 
 
 
1. Introduction 

 
The successful development, maintenance and 

evolution of a software system require a full 
understanding of different system behaviors, including 
application-level semantic behavior (such as which 
function calls which function and why an exception is 
raised), timing behavior (such as the end-to-end timing 
latency of a function call), and shared resource usage 
behavior (such as CPU utilization under a constrained 
budget). 

To expose complex semantic behavior, monitoring 
and characterization tools and debuggers have been 
developed. Many of these tools perform well on single-
threaded and single-processed applications; however, 
when the system is multi-threaded, or worse, when the 

system is deployed across different processes, located in 
different processors, current tools are not able to monitor 
and analyze these sophisticated applications. Execution 
profiler GPROF [3] (popular for CPU bottlenecks 
pinpointing) merely reports the callee-caller propagation 
of CPU utilization within the same thread context. Well-
accepted debuggers like GDB and Microsoft Visual 
Studio are unaware of how threads interact and call 
frames propagate beyond thread and process boundaries. 
The root cause is that the tools that extract causal linkage 
information are tightly coupled to the specific runtime 
infrastructure used for deploying the application. Often, 
gathering such causality information is either impossible, 
or the retrieved information is insufficient to determine 
the full function call chains. Moreover, such causality 
information cannot span across different vendors’ runtime 
infrastructures. As a result, linking semantic behavior 
information about individual threads, processes and 
processors becomes a manual process that is error-prone, 
inefficient, and unmanageable for large-scale distributed 
applications. 

To better understand system-wide behavior for 
multithreaded and distributed applications, we have 
developed a runtime monitoring framework for 
component-based systems to capture both execution 
behavior and propagation of semantic causality spanning 
remote component-level function invocations, and the 
associated characterization tool to analyze and present the 
captured system behavior. 

Our approach exploits source code instrumentation on 
the stubs and skeletons. For components defined with the 
IDL interfaces, we use an IDL compiler to automate the 
instrumentation in the stubs and skeletons, without 
modifying the user-defined application code. A virtual 
tunnel is constituted in the instrumented system via the 
stubs and skeletons. This tunnel facilitates the semantic 
causality information concerning function invocation to 
be propagated across threads, processes and processors. It 
therefore establishes the correlation among the scattered 
monitoring data captured by the stub and skeleton probes.



 

The monitored behaviors include timing latency and 
shared resource utilization like CPU. The behavior 
characterization is performed on the collected log data. 
Rather than just offering basic query processing to present 
raw monitoring data (reminiscent of printf), the off-line 
tool constructs the dynamic system call graph based on 
the captured system-wide causality information. This 
graph exhibits dynamic system execution in terms of 
component object interaction. Timing latency and CPU 
consumption at the component level are computed. 
Moreover, with such unveiled causal relationship, latency 
and CPU utilization propagation across threads, processes 
and processors becomes perceivable. 

Compared with the existing distributed performance 
monitoring and distributed debugging techniques, our 
work makes the following contributions: 

• Component Level with Dissimilar Remote 
Invocation Infrastructures Our focus is at the 
component abstraction level and the developed 
technique is feasible to different runtime 
infrastructures following different remote 
invocation standards (e.g., COM and CORBA). 
Component object programming and invocation 
model, and multithreading strategies provided by 
underlying runtime infrastructures, impose a set of 
new challenges not presented in prior monitoring 
work both at component level and at more 
granular level (e.g., local procedure call and basic 
block); 

• Global Causality Capture and Propagation 
Causality tracing is enabled by a virtual tunnel 
crossing threads, processes and processors. This 
tunnel can be seamlessly propagated in the 
distributed application even when different remote 
invocation infrastructure standards are involved 
and bridging occurs between these infrastructures 
(e.g., the CORBA/COM hybrid systems); 

• Application-Level Behavior Capture and 
Correlation Our work brings together a collection 
of available technologies that effectively capture 
application-level semantic behavior, and 
application-level timing and resource utilization 
behavior. The captured global causality correlates 
all these behaviors that belongs to different 
subsystems and components to constitute a holistic 
view of component interactions. 

Our current tool implementation explores two 
different component technology infrastructures: a version 
of CORBA [14] called ORBlite [13], and an embedded 
infrastructure similar to COM [11]. The paper proceeds as 
follows. In Section 2, we present our monitoring 
technique to both CORBA and COM.  Section 3 provides 
monitoring data analysis. Section 4 shows experimental 
results from example systems, including a commercial 

large-scale embedded system. Section 5 describes some 
related work and summaries are drawn in Section 6. 

 
2. Monitoring Mechanism 
 

In this paper, the semantic causality relationship refers 
to the function caller/callee relationship. A richer set of 
causality relationships such as thread parent/child 
relationship [8, 9], will not be explored here. 

The caller/callee relationship is established when a 
function caller invokes its callee located in the other 
component following either a cascading (e.g., F calls G1 
and then calls G2) or nesting (e.g., F calls G and then G 
calls H) pattern. Such relationship can cross threads, 
processes and processors, and always manifests itself 
throughout the call chain without limitation on the call 
depth.  Note that callback and recursion both produce 
nesting calls. 

The CORBA oriented terminologies are used herein. 
However, the presented monitoring technique is general 
to both CORBA and COM distributed applications. Also, 
the term “function call (or invocation)” is synonymous 
with “function call (or invocation) across component 
boundaries”, unless stated explicitly. 

 
2.1. Stub/Skeleton Based Instrumentation 
 

The IDL compiler automatically generates a stub-
skeleton pair for each function defined in the IDL 
interface. The stub and the skeleton create an indirection 
layer between the function caller or client, and the callee 
function implementation of a component. Probing at this 
indirection layer captures runtime system behaviors.  The 
probe deployment is schematically shown in Figure 1. 
The four probes are located respectively at the start of the 
stub after the client invokes the function, at the beginning 
of the skeleton when the invocation request reaches the 
skeleton, at the end of the skeleton when the function 
execution concludes, and at the end of the stub when the 
response is sent back to the stub and ready to return to the 
client. The sequence numbers labeled in Figure 1 indicate 
the chronological order of probe activation along the 
invocation path. The IDL compiler automates the 
necessary stub and skeleton instrumentation. 

In this section, a simple component object invocation 
model is considered with the following restrictions: 

• Function calls are synchronous; 
• No support for Dynamic Invocation Interface 

(DII) or Dynamic Skeleton Interface  (DSI); 
• No collocation optimization for in-process 

component object invocation. Such optimization 
often allows the stub to intelligently locate the 
object interface pointer directly and therefore 
bypass the skeleton; 



 

• Multithreading servers follow only the thread-per-
request policy [18]. 

Section 2.2 will release all but the DSI/DII constraints 
to support flexible component object programming and 
multi-threading strategies. 

 
Monitoring of Different Behavior Aspects 

 
The probes in Figure 1 can collect four different 

behaviors: application semantics about each function call 
behavior (input/output/return parameter, thrown 
exceptions), end-to-end timing latency associated with 
each function call, shared resource usage, and semantic 
causality information to correlate system-wide application 
semantics, timing latency and resource utilization. All 
runtime behavior information is recorded individually by 
probes without coordination and global clock 
synchronization. 

In this paper, we focus only on timing latency and 
CPU utilization, along with semantic causality capture. 
Application semantics capture is primarily useful for 
application debugging and testing. Note that timing 
latency and CPU utilization rely on the underlying native 
operating system and even hardware configuration. Not 
all runtime information is available with standard 
operating system calls. For example, per-thread CPU 
consumption is available in HPUX version 11 but not 
earlier versions. And not all runtime information can be 
collected with equally favorable accuracy on different 
platforms. Timing with microsecond accuracy usually 
requires an on-chip high-resolution timer. 

To perform timing latency or CPU utilization 
monitoring, each of the four probes retrieves local time 
stamps or per-thread CPU usage, once when the probe is 
initiated and once when finished. No global time 
synchronization is required. To reduce interference, 
latency and CPU utilization probes are not activated 

simultaneously. However, they always perform causality 
capture. 

 
Causality Capture 
 

The basic idea of causality capture is to annotate a 
global identifier to two different threads, each of which 
represents the caller and callee respectively, independent 
of their physical location (they may degenerate into a 
single thread). Such global identifiers have to be 
propagated system-wide when further function calls are 
chained, from thread to thread, from process to process, 
and from processor to processor, i.e., causally linking a 
collection of runtime thread entities. 

Rather than manipulating the underlying operating 
system or runtime invocation infrastructures, we adopt the 
approach that requires only the instrumented stubs and 
skeletons to transport system-wide global identifier 
(called Function Universally Unique Identifier, or 
Function UUID), completely transparent to user 
applications.  Figure 2 schematically shows the 
constituents of the underlying virtual transportation 
tunnel. 
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Figure 1. Probe deployment in the stub and 
skeleton 
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Figure 2. The virtual tunnel to trace causality relationship system-wide 



 

The tunnel consists of a private communication 
channel between the instrumented stub and the 
instrumented skeleton (shown in solid lines), and the 
transportation from the function implementation body 
down to the further child function invocation through a 
thread-specific storage (shown in dashed lines). To 
determine the hierarchical call structure identified as 
sibling relationship and parent/child relationship (shown 
in Table 1), two additional items besides the Function 
UUID are introduced: tracing event and the associated 
event number. Tracing events include: stub start, stub 
end, skeleton start, skeleton end, each of which is 
recorded when the corresponding probe is activated. 
Event numbers are incremented along the function chain 
at each time a tracing event is encountered.  Table 1 also 
shows how the event chaining patterns determine the call 
structures. 

Figure 3 shows the Function-Transportable Log 
(FTL) data incorporating the Function UUID and the 
event sequence number. It is the FTL that propagates 
along the tunnel. To transfer the FTL from the 
instrumented stub to the instrumented skeleton, the IDL 
compiler generates the instrumented stub and skeleton in 
a way as if an additional in-out parameter is introduced 
into the function interface with the type corresponding to 
the FTL. The FTL is packaged at the stub and then 

transported to the skeleton, where the event number is 
further updated. No modification to the runtime 
infrastructure is necessary for the FTL’s transportation. 
Subsequently, the updated FTL is stored in the thread 
specific storage (TSS). Such a TSS is created at the 
monitoring initialization phase by loading the 
instrumentation-associated library, and is independent of 
user applications. If a child function G is invoked within 
F’s implementation, the FTL is retrieved from the TSS at 
G’s stub, gets updated and carried further down the chain. 

Therefore, the private transport channel underneath 
stubs and skeletons, and the TSS to bridge such private 
channels, collectively update the FTL along the system-
wide call chain transparent to user-applications. The 
tunnel in Figure 2 only shows the forward chain 
advancing. At the subsequent call return phase, the FTL is 
updated by Probes 3 and 4 in sequence. The FTL is also 

transported from one function to its immediate follower 
(sibling call). This is guaranteed because the previous 
function’s termination and the immediate follower’s 
invocation incurs always within the same thread, and the 
FTL can be transported by storing/retrieving the TSS. 

The FTL is recorded locally by probes associated with 
either timing latency or CPU utilization.  It is lightweight-
ed since no log concatenation occurs as the call 
progresses through the tunnel. Probes only update the 
FTL. Neither the user application nor the runtime 
infrastructure needs to be altered for tunneling. 

Table 1. Event chaining patterns and function 
invocation patterns 

 
Sibling  
 
void main(){ 
    F(…); 
    G(…); 
}  

F.stub_start )�VNHOBVWDUW )�VNHOBHQG 
)�VWXEBHQG 
*�VWXEBVWDUW *�VNHOBVWDUW 
*�VNHOBHQG *�VWXEBHQG 

Parent/Child  
 
void F(…) { 
     G(…); 
} 
void G(…) { 
     H(…); 
}  

F.stub_start )�VNHOBVWDUW *�VWXEBVWDUW
*�VNHOBVWDUW +�VWXEBVWDUW 
+�VNHOBVWDUW +�VNHOBHQG 
+�VWXEBHQG *.skel_end *�VWXEBHQG 
)�VNHOBHQG )�VWXEBHQG 

 
interface Probe { 
   
  struct FunctionTxLogType { 
      UUID  global_function_id; 
      unsigned long event_seq_no; 
  }; 
}; 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Code example of the FTL insertion by the IDL compiler 

module Example { 
  interface Foo{ 
 void funcA(in int x,  
  inout Probe::FunctionTxLogType log); 
   string funcB(in float y, 
  inout Probe::FunctionTxLogType log); 
   }; 
}; 

 
module Example { 
    interface Foo { 
  void funcA(in int x); 
  string funcB(in float y); 
 }; 
}; 
 

IDL Compiler Internal Translation  



 

 
2.2. Flexible Object Invocation and Threading 

to Monitored Applications 
 

This section releases all but the DII/DSI restrictions 
introduced in Section 2.1 to support flexible distributed 
applications. Only causality propagation needs 
reconsideration, as timing and CPU utilization are 
collected locally and independent of causality capture.    

 
Object Invocation 
 

Asynchronous (one-way) function calls are always 
cross-thread. From the perspective of the causality 
propagation, call dispatching spurs a fresh causality chain 
out of the callee thread that executes the actual function 
implementation, in parallel to the chain the caller thread 
still carrying forward. The original chain is the parent 
chain and correspondingly the newly created chain is its 
child. Such a parent/child chain relationship is recorded in 
the stub start probes of the one-way function calls. 

Component object invocation is not necessarily cross-
process or cross-processor. They can be collocated calls. 
To allow collocation optimization, the stub needs to be 
changed such that when the client and the component 
object share the process domain, both stub start and 
skeleton start probes are triggered before the execution 
falls into the user-defined function implementation. 
Similarly, both skeleton end and stub end probes are 
turned on at the function return phase. Therefore, the stub 
start (end) and skeleton start (end) probes degenerate into 
a single start (end) probe. 

Custom marshalling (or marshall-by-value) allows 
remote object invocation to be actually carried out in the 
client’s thread context, which basically turns remote calls 
into collocated calls. The probe adjustment suggested 
above applies. 

 
Server Multithreading 

 
To improve performance, advanced threading 

architectures are recommended for ORB, such as thread-
per-connection and variants of thread pooling [18].  The 
causality tracing techniques proposed before are still 
applicable in such complex threading architectures 
because of the following observations: 

(O1) A physical thread T is always dedicated to the 
incoming call C1 until C1 finishes execution. T 
never gets suspended and switched to serve 
another incoming call C2 before C1 finishes. Only 
when C1 finishes, T will be either reclaimed by 
the ORB (e.g., thread-per-connection and thread 
pooling) or by the underlying operating system 
(e.g., thread-per-request). 

(O2) When serving the incoming call C1, thread T is 
annotated with C1’s latest FTL. When T is 
reclaimed by the ORB, although T physically 
survives and holds the stale FTL, each time new 
call C2 comes and T is activated, T is always 
refreshed with the latest FTL of C2. 

Therefore, causality relationship will be clearly 
distinguished and propagated without being intertwined 
under different ORB threading policies. 

Note that O1 will not hold true for COM applications. 
For its Single-Threaded Apartment call dispatching, the 
server-side up-call is through a message loop [1]. The 
apartment thread T can switch to serve another incoming 
call C2 when the call C1 that T is serving issues an 
outbound call C3 and suffers blocking. C2 might get 
blocked later and T switches to continue serving C1 as C3 

has already returned. Techniques have been devised to 
avoid causal chain mingling [10].  In the actual 
implementation, only a very limited amount of 
instrumentation before and after call sending and 
dispatching is required to the COM infrastructure. 

 
2.3. Run-time Infrastructure’s Instrumentation 

Impact and Interoperability 
 

To achieve causality tracing, the IDL compiler 
handles the internal interface transformation and full 
probe deployment. This requires a back-end compilation 
flag to instruct the compiler for the instrumented or non-
instrumented version of stub and skeleton generation. 
Currently, for both CORBA and COM applications, our 
IDL compiler is modified to accommodate such 
instrumentation demand. The instrumentation-associated 
library is supplied externally at link time. For CORBA 
applications, no CORBA runtime modifications are 
required. For COM applications, as discussed before, due 
to thread multiplexing between blocking calls, the runtime 
infrastructure needs instrumentation to prevent causal 
chain intertwining. 

In a heterogeneous environment like a CORBA/COM 
application where different subsystems are flexibly built 
upon either CORBA or COM, as long as the bi-directional 
CORBA-COM bridge is aware of the extra FTL data 
hidden in the instrumented calls, and delivers it from the 
caller’s domain to the callee’s domain, causality will 
seamlessly propagate across the boundary, and continue 
to advance in the other domain. Again, timing and CPU 
utilization deal with individual threads locally, and are 
therefore not impacted. 

 
3. Application Behavior Characterization 

 
Section 2 detailed the capture and correlation of 

monitoring information. At runtime, the probes capture 
the runtime information locally. When the application 



 

ceases to exist or reaches a quiescent state (e.g., finishes 
processing a collection of transactions), the scattered logs 
are collected and eventually synthesized into a relational 
database. The data collector’s detailed design is described 
in [8]. This section presents the monitoring data analysis 
tools to help understand system behaviors at the 
component level: the reconstruction of global causal 
relationship into a dynamic system call graph, and timing 
and CPU utilization analysis that leverages this call graph. 
The analyzer currently is implemented as a stand-alone 
tool, rather than being incorporated into the runtime 
infrastructure for dynamic system adaptation or 
management. 
 
3.1. Dynamic System Call Graph 
 

Recall that following the function call chain, in each 
invocation, events are logged and event numbers are 
incremented for each event appearance. Moreover, the 
event repeating patterns uniquely manifest the calling 
patterns. The reconstruction of system-wide causality 
relationship first performs a query on the overall 
monitoring data and identifies the set of unique Function 
UUIDs ever created.  Then for each identified UUID, the 
second query sorts the events associated with the 
invocations sharing the UUID by ascending order. 
Subsequently, the analyzer scans the sorted event sets and 
reconstructs the call hierarchy following the state-
machine shown in Figure 4, similar to the compiler 
parsing that creates an abstract syntax tree and performs 
type checking.  

In Figure 4, a transition from one state to another 
produces a parsing decision. The state transitions labeled 

with solid lines evaluate synchronous function calls. The 
transitions labeled with dash lined govern asynchronous 
function calls (both the stub and skeleton sides). A 
decision about “in progress” indicates that call chain is 
advanced as expected. An additional “abnormal” 
transition state (not shown) is taken if the adjacent log 
function records follow none of the identified transition 
patterns. If that happens, the analysis will indicate the 
failure and restart from the next log record.  

As the result, each causal chain with a unique UUID 
will be unfolded into a tree Ti. A Dynamic System Call 
Graph (DSCG) is a tree by grouping {Ti}. A large-scale 
application’s DSCG potentially consist of millions of 
nodes. Conventional visualization tools based on planar 
graph display are incapable of presenting, navigating and 
inspecting such enormous amount of graph nodes. The 
hyperbolic space viewer [6] demonstrates its promising 
capability.  Section 4 will show an example of DSCG.  

The DSCG captures all component object invocation 
and preserves the complete call chains the application 
ever experienced, unlike GPROF [3] or QUANTIFY [16] 
that maintains the relationship with call-depth of 1. The 
call chain achieved by the DSCG is exactly the proposed 
call path [4]. The scenarios and techniques for call path 
profiling in single-processed procedure call environments 
can be extended naturally to multithreaded and distributed 
applications, as shown in Section 3.2. 

 
3.2. End-To-End Timing Latency and System-

Wide CPU Consumption 
 

The end-to-end timing latency for function F’s 
invocation is obtained by: 
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Figure 4. State machine to reconstruct causality relationship 



 

( ) FendFstartF OPPFL −−= ,1,,4,)(  

if F is a synchronous or stub side’s one-way call,  and  
( ) FendFstartF OPPFL −−= ,2,,3,)(  

if F is a collocated or skeleton side’s one-way call. OF 
denotes the overhead spent for causality capture, which is 
determined by (N is the total number of child functions): 

( )∑ ∑ −=
= ∈

N

i FRj
startjiendjiF PPO

1 )(
,,,,  

P denotes the value from latency probing. The second and 
third scripts respectively denote the sequencing number of 
Figure 1, and the time stamp at the start or end of the 
probing. R(F)={1,2,3,4} if F is a synchronous call and 
R(F)={1,4} if F is a one-way call. 

Latency can be annotated to the DSCG’s nodes to help 
perceive latency dispersed throughout the system-wide 
call hierarchy, besides reported in a certain statistical 
format. 

Our CPU characterization identifies how function 
invocation utilizes CPU and how such utilization 
propagates in a distributed cross-thread, cross-process and 
cross-processor environment. It involves the following 
three phases. 

First, it computes the CPU consumption of each 
function invocation, i.e., the exclusive or self CPU 
consumption that refers to the only portion consumed 
during executing the function implementation, with the 
portion spent inside its child functions excluded. It is 
computed by (L is the number of the immediate child 
functions): 

∑ −−−=
=

L

i 1
i,1,startendi,4,endF,2,F,3,startF )PP()P(PSC  

The subscripting follows the above equations. 
It then propagates the result following the caller/callee 

relationship to obtain the inclusive or total CPU 
consumption of a function. It accounts for the above self 
portion, and the descendent CPU consumption from the 
child functions calculated by:   

{ }
∑ +=

∈ tionschild-funcimmediate-f
ffF DCSCDC )(  

Note that the result of DCF is represented generally by 
<C1, C2,….CM> where M is the number of different 
processor types in the application. 

Finally, it synthesizes the inclusive CPU consumption 
with the DSCG to form a CPU Consumption 
Summarization Graph (CCSG) that exhibits system-
wide CPU utilization propagation. The detailed CCSG 
construction and visualization can be found in [9]. A 
CCSG example will be shown in Section 4. 
 
4. Experiments on Example Systems 
 

We use two examples: a commercial large-scale 
embedded system based on an infrastructure similar to 
COM, and a simple CORBA-based Printing Pipeline 
Simulator (PPS), to demonstrate our tool. We have 
completed call graph construction for both COM and 
CORBA applications. We use this particular commercial 
system to demonstrate its scalability and practicality. 
Because timing latency and CPU utilization 

 

Figure 5. Dynamic System Call Graph (DSCG) shown in hyperbolic tree viewer 



 

characterization have not been completed for COM 
applications, only the PPS’ CORBA-related result is 
shown here.   

The commercial system contains more than 1 million 
lines of code.  The experiment was performed in the 
HPUX 11.i development environment.  The code base is 
partitioned into 32 threads in a single-processor 4 
processes configuration. The largest system run ever 
conducted so far consisted of about 195,000 calls, with a 
total of 801 unique methods in 155 unique interfaces from 
176 unique components. With the current Java 
implementation, it took the analyzer 28 minutes to 
compute the DSCG on a HP x4000 1.7 GHz dual-
processor Windows 2000 computer. A portion of the 
DSCG is shown in Figure 5. By navigating the DSCG, 
with the superior navigation capability from the viewer 
[6], within minutes, developers were able to identify 
certain code implementation inefficiency, demonstrating 
its potential usage in high-level system review process.   

The PPS system is ORBlite based and consists of 11 
components [8, 9]. It has been flexibly configured into 
multiple processes hosted by different platforms that 
include HPUX, Windows and VxWorks. 

For the PPS, timing latency of each individual 
function call is presented at the bottom section of the 
hyperbolic tree viewer when the mouse hovers over the 
tree node. To understand our end-to-end latency result’s 
accuracy due to overhead on causality information 
capture, we compared it with manual measurement. The 
manual counterpart was carried out by having one probe 
for one target function in one system run. This probe 
retrieves time stamps at the beginning and end of the 
target function. With the configuration involved with 4 
processes, two on Windows NT and two on HPUX 11.0, 
we observed that the automatic measurement and manual 
measurement were matched within 60% [8]. The 
collocated calls (with optimization turned off) tend to 
have larger difference compared with the remote calls.  

In terms of the PPS’s system-wide CPU utilization, 
Figure 6 shows a snapshot under Internet Explorer (as an 
XML viewer). It unveils the CPU propagation on a 
configuration of single-processor 4-process on a HPUX 

11.0 machine. The self and descendent CPU results are 
structured following the call hierarchy. Each node is 
identified by the interface and function names, along with 
its unique object identifier. To estimate the overhead or 
interference devoted to the necessary causality 

 
 
ObjectID: the universal identifier of the object; InvocationTimes: number of times the function has been invoked 
IncludedFunctionInstances: all the invocation instances occurred to the function 
SelfCPUConsumption and DescendentCPUConsumption are shown in [second, microsecond] format 

Figure 6. A CPU Consumption Summarization Graph (CCSG) from the XML viewer 



 

information capture, we first evaluated that the automatic 
measurement from the monolithic single-thread 
configuration matches the true manual measurement to 
within less than 10%. Then we compared the 
measurement result on the above mentioned single-
processor 4-process configuration with this monolithic 
single-thread configuration under the same HPUX 11.0 
machine, and obtained good matching (within 40% 
difference) between these two configurations. 

 
5. Related Work 
 

Instead of providing a comprehensive survey on 
monitoring, characterizing and debugging multithreaded 
and distributed applications, herein we discuss only the 
existing techniques closest to our approach. 

Global causality identifiers have been used for 
runtime system management. Alpha [17], realizes the 
control flow migration in cross-thread function 
invocation, and automatically transfers thread-specific 
attributes to the new thread, such that logical thread 
control remains seamless. COM’s Object RPC protocol 
uses logical thread identifier to manage message 
dispatching and to correlate response/request messages. 
Our global causality identifier correlates both remote and 
collocated user-level calls. Also, from Sections 2 and 3, it 
is clear that without the additional event number in the 
FTL, the full causality relationship reconstruction into a 
call graph is impossible. 

Interceptors have been standardized or explored in 
CORBA and COM. CORBA interceptor [14] allows user-
defined message manipulation. While it might be 
employed to capture causality information, timing latency 
and CPU utilization will be less accurate because of the 
unknown overhead from the interceptors. Moreover, 
depending on vendor implementation, the interceptor and 
the dispatching of the execution of the function 
implementation might be carried by different thread 
contexts.  This would break both the tracing tunnel and 
the transparency of the skeleton dispatching since thread-
specific storage is key to our monitoring. 

OVATION [15] is an example of employing CORBA 
interceptors for runtime monitoring. It provides a 
graphical tool to unveil component runtime interaction for 
CORBA based applications. Similar to our approach, the 
involved interceptor provides four different timing 
anchors: client pre-invoke and post-invoke, servant pre-
invoke and post-invoke. Object method calls are 
presented in a sequence chart with respect to time 
progressing, along with their corresponding runtime 
execution entities (thread, process, and host). The major 
difference to our work is that it does not provide global 
causality capture. As the result, for each method 
invocation ever happens between two distributed objects, 

the tool cannot determine how this particular invocation is 
related to the rest of method invocations. 

Universal Delegator is an application-level COM 
interceptor [2].  All components under interception are 
aggregated by an Interceptor Component (IC) handling 
calls’ pre/post-processing. The IC uses a Trace Object 
(TO) to log call information verbosely. To trace cross-
apartment calls, channel hooks are placed to the COM 
ORPC channel. The IC mandates manual component 
aggregation. Even though the TO resembles our FTL in 
terms of global migration, the TO concatenates log info 
during call progression and unavoidably introduces the 
barrier for the call chains that exceed tens of thousands 
calls. Finally, the proposed TO is not sufficient to 
determine the hierarchical call graph. 

The above interceptor mechanism in either COM or 
CORBA confines distributed application monitoring to 
their own domain, whereas our approach is applicable 
across dissimilar standardized infrastructures.  

BBN’s work on Resource Status Service [21] relies on 
in-band and out-of-band runtime measurements for QoS 
parameters evaluation to perform runtime quality of 
adaptation. In-band measurements are conducted on the 
remote function invocation paths. It also requires probing 
on the delegate objects (encapsulating stubs and 
skeletons) and the ORB, similar to our approach. 
However, to correlating client and server’s measurements, 
it requires an explicit additional interface for each 
component. This interface accommodates an additional 
parameter to every interface method in order to carry 
trace records back and forth between the client and server. 
This trace record parameter is essentially the Trace Object 
in [2]. Consequently, application developers have to be 
aware of this QoS oriented interface and its 
implementation. Such tracing records are sufficient to 
determine individual client-server pairs. However, if the 
global view of object interaction has to be determined, to 
large-scale applications, in the runtime adaptation 
environment, the size limitation for the involved function 
call chain is certainly the concern, due to the trace record 
concatenation with respect to the call chain advancing.  

Other distributed debugging, profiling and monitoring 
tools, including tools to produce logging at the source 
code level like AIMS [20], binary-rewriting tools like 
QUANTIFY [16], per-thread debuggers like Microsoft 
Visual Studio, GDB, and SmartGDB [19] and 
network/OS message logging tools such as HP’s 
OpenView [5], all lack the capability of correlating 
monitoring information across thread, process and 
processor boundaries. Finally, JaViz [7] produces call 
graphs like ours for JVM-hosted applications. Its principal 
disadvantage is no support for language-intermixing 
applications other than Java. 

 
6. Summary 



 

 
A framework to monitor and characterize distributed 

and multithread applications built upon component 
technologies is developed. Compared with the existing 
tools and development environments in the context of 
distributed and multithreaded applications, our framework 
provides the unique features of: 

• Integrating different well-established monitoring 
techniques to form an integrated framework that 
performs application-centric multi-dimensional 
behavior monitoring, including application 
semantics, timing, and resource consumption; 

• End-to-end capture of dynamic system topology 
in terms of interface method invocation, which 
facilitates off-line system-wide characterization of 
both timing latency and shared resource 
consumption; 

• Full IDL compiler automation for monitoring 
probes deployment without disturbing user-
defined application code; 

• Capable of handling both CORBA and COM 
applications, and feasible of dealing with the 
applications involved with the CORBA and COM 
bridging. 

We have implemented the monitoring and 
characterization framework for CORBA applications on 
Windows NT, HPUX, and VxWorks (the VxWorks 
CORBA does not currently support CPU), and are 
finishing the COM version on HPUX. One future effort is 
to investigate the adoption of our monitoring techniques 
to the J2EE-based applications. We strive for the 
monitoring framework capable of monitoring the end-to-
end application that consists of different subsystems, each 
of which is built upon a different remote invocation 
infrastructure. Other promising avenues for future 
research are to provide richer end-to-end system behavior 
characterization support, to apply the global causality 
capturing technique from the on-line perspective for 
application-level system management, and to automate or 
semi-automate test harness generation for multithreaded 
and distributed systems testing. 
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