
Monitoring and Characterization of Component-Based Systems with Global
Causality Capture

Jun Li
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

junli@hpl.hp.com

Abstract

Current software development techniques and tools

lack the capability to characterize function call chains in
multithreaded and distributed applications built upon
component technologies like CORBA, COM and J2EE.
The root cause is that causal linkage information
necessary to trace end-to-end call chains is private to
each vendor’s runtime and often unavailable for logging
or analysis. We propose and demonstrate a mechanism
for maintaining and correlating global causality
information of component-based applications, and using
this information to expose and characterize function call
chains and their associated behaviors in such
multithreaded and distributed applications. Our approach
relies on a global virtual tunnel facilitated by the
instrumented stubs and skeletons. This tunnel maintains
and correlates causal information throughout the end-to-
end call chains spanning threads, processes and
processors. As a result, monitoring data captured locally
can be correlated and system-wide propagation of timing
latency and CPU utilization becomes perceivable.

1. Introduction

The successful development, maintenance and

evolution of a software system require a full
understanding of different system behaviors, including
application-level semantic behavior (such as which
function calls which function and why an exception is
raised), timing behavior (such as the end-to-end timing
latency of a function call), and shared resource usage
behavior (such as CPU utilization under a constrained
budget).

To expose complex semantic behavior, monitoring
and characterization tools and debuggers have been
developed. Many of these tools perform well on single-
threaded and single-processed applications; however,
when the system is multi-threaded, or worse, when the

system is deployed across different processes, located in
different processors, current tools are not able to monitor
and analyze these sophisticated applications. Execution
profiler GPROF [3] (popular for CPU bottlenecks
pinpointing) merely reports the callee-caller propagation
of CPU utilization within the same thread context. Well-
accepted debuggers like GDB and Microsoft Visual
Studio are unaware of how threads interact and call
frames propagate beyond thread and process boundaries.
The root cause is that the tools that extract causal linkage
information are tightly coupled to the specific runtime
infrastructure used for deploying the application. Often,
gathering such causality information is either impossible,
or the retrieved information is insufficient to determine
the full function call chains. Moreover, such causality
information cannot span across different vendors’ runtime
infrastructures. As a result, linking semantic behavior
information about individual threads, processes and
processors becomes a manual process that is error-prone,
inefficient, and unmanageable for large-scale distributed
applications.

To better understand system-wide behavior for
multithreaded and distributed applications, we have
developed a runtime monitoring framework for
component-based systems to capture both execution
behavior and propagation of semantic causality spanning
remote component-level function invocations, and the
associated characterization tool to analyze and present the
captured system behavior.

Our approach exploits source code instrumentation on
the stubs and skeletons. For components defined with the
IDL interfaces, we use an IDL compiler to automate the
instrumentation in the stubs and skeletons, without
modifying the user-defined application code. A virtual
tunnel is constituted in the instrumented system via the
stubs and skeletons. This tunnel facilitates the semantic
causality information concerning function invocation to
be propagated across threads, processes and processors. It
therefore establishes the correlation among the scattered
monitoring data captured by the stub and skeleton probes.

The monitored behaviors include timing latency and
shared resource utilization like CPU. The behavior
characterization is performed on the collected log data.
Rather than just offering basic query processing to present
raw monitoring data (reminiscent of printf), the off-line
tool constructs the dynamic system call graph based on
the captured system-wide causality information. This
graph exhibits dynamic system execution in terms of
component object interaction. Timing latency and CPU
consumption at the component level are computed.
Moreover, with such unveiled causal relationship, latency
and CPU utilization propagation across threads, processes
and processors becomes perceivable.

Compared with the existing distributed performance
monitoring and distributed debugging techniques, our
work makes the following contributions:

• Component Level with Dissimilar Remote
Invocation Infrastructures Our focus is at the
component abstraction level and the developed
technique is feasible to different runtime
infrastructures following different remote
invocation standards (e.g., COM and CORBA).
Component object programming and invocation
model, and multithreading strategies provided by
underlying runtime infrastructures, impose a set of
new challenges not presented in prior monitoring
work both at component level and at more
granular level (e.g., local procedure call and basic
block);

• Global Causality Capture and Propagation
Causality tracing is enabled by a virtual tunnel
crossing threads, processes and processors. This
tunnel can be seamlessly propagated in the
distributed application even when different remote
invocation infrastructure standards are involved
and bridging occurs between these infrastructures
(e.g., the CORBA/COM hybrid systems);

• Application-Level Behavior Capture and
Correlation Our work brings together a collection
of available technologies that effectively capture
application-level semantic behavior, and
application-level timing and resource utilization
behavior. The captured global causality correlates
all these behaviors that belongs to different
subsystems and components to constitute a holistic
view of component interactions.

Our current tool implementation explores two
different component technology infrastructures: a version
of CORBA [14] called ORBlite [13], and an embedded
infrastructure similar to COM [11]. The paper proceeds as
follows. In Section 2, we present our monitoring
technique to both CORBA and COM. Section 3 provides
monitoring data analysis. Section 4 shows experimental
results from example systems, including a commercial

large-scale embedded system. Section 5 describes some
related work and summaries are drawn in Section 6.

2. Monitoring Mechanism

In this paper, the semantic causality relationship refers
to the function caller/callee relationship. A richer set of
causality relationships such as thread parent/child
relationship [8, 9], will not be explored here.

The caller/callee relationship is established when a
function caller invokes its callee located in the other
component following either a cascading (e.g., F calls G1
and then calls G2) or nesting (e.g., F calls G and then G
calls H) pattern. Such relationship can cross threads,
processes and processors, and always manifests itself
throughout the call chain without limitation on the call
depth. Note that callback and recursion both produce
nesting calls.

The CORBA oriented terminologies are used herein.
However, the presented monitoring technique is general
to both CORBA and COM distributed applications. Also,
the term “function call (or invocation)” is synonymous
with “function call (or invocation) across component
boundaries”, unless stated explicitly.

2.1. Stub/Skeleton Based Instrumentation

The IDL compiler automatically generates a stub-
skeleton pair for each function defined in the IDL
interface. The stub and the skeleton create an indirection
layer between the function caller or client, and the callee
function implementation of a component. Probing at this
indirection layer captures runtime system behaviors. The
probe deployment is schematically shown in Figure 1.
The four probes are located respectively at the start of the
stub after the client invokes the function, at the beginning
of the skeleton when the invocation request reaches the
skeleton, at the end of the skeleton when the function
execution concludes, and at the end of the stub when the
response is sent back to the stub and ready to return to the
client. The sequence numbers labeled in Figure 1 indicate
the chronological order of probe activation along the
invocation path. The IDL compiler automates the
necessary stub and skeleton instrumentation.

In this section, a simple component object invocation
model is considered with the following restrictions:

• Function calls are synchronous;
• No support for Dynamic Invocation Interface

(DII) or Dynamic Skeleton Interface (DSI);
• No collocation optimization for in-process

component object invocation. Such optimization
often allows the stub to intelligently locate the
object interface pointer directly and therefore
bypass the skeleton;

• Multithreading servers follow only the thread-per-
request policy [18].

Section 2.2 will release all but the DSI/DII constraints
to support flexible component object programming and
multi-threading strategies.

Monitoring of Different Behavior Aspects

The probes in Figure 1 can collect four different

behaviors: application semantics about each function call
behavior (input/output/return parameter, thrown
exceptions), end-to-end timing latency associated with
each function call, shared resource usage, and semantic
causality information to correlate system-wide application
semantics, timing latency and resource utilization. All
runtime behavior information is recorded individually by
probes without coordination and global clock
synchronization.

In this paper, we focus only on timing latency and
CPU utilization, along with semantic causality capture.
Application semantics capture is primarily useful for
application debugging and testing. Note that timing
latency and CPU utilization rely on the underlying native
operating system and even hardware configuration. Not
all runtime information is available with standard
operating system calls. For example, per-thread CPU
consumption is available in HPUX version 11 but not
earlier versions. And not all runtime information can be
collected with equally favorable accuracy on different
platforms. Timing with microsecond accuracy usually
requires an on-chip high-resolution timer.

To perform timing latency or CPU utilization
monitoring, each of the four probes retrieves local time
stamps or per-thread CPU usage, once when the probe is
initiated and once when finished. No global time
synchronization is required. To reduce interference,
latency and CPU utilization probes are not activated

simultaneously. However, they always perform causality
capture.

Causality Capture

The basic idea of causality capture is to annotate a
global identifier to two different threads, each of which
represents the caller and callee respectively, independent
of their physical location (they may degenerate into a
single thread). Such global identifiers have to be
propagated system-wide when further function calls are
chained, from thread to thread, from process to process,
and from processor to processor, i.e., causally linking a
collection of runtime thread entities.

Rather than manipulating the underlying operating
system or runtime invocation infrastructures, we adopt the
approach that requires only the instrumented stubs and
skeletons to transport system-wide global identifier
(called Function Universally Unique Identifier, or
Function UUID), completely transparent to user
applications. Figure 2 schematically shows the
constituents of the underlying virtual transportation
tunnel.

stub

skel.

f(x)

C
l
i
e
n
t

Probe 1 Probe 2

Probe 4 Probe 3

Figure 1. Probe deployment in the stub and
skeleton

F (Stub)
Probe 1

F (Skeleton)
Probe 2

Thread-Specific Storage

Function UUID

Event No.

Function
Implementation of F

G (Stub)
Probe 1

Client

Process A

(G is F’s child function)

Figure 2. The virtual tunnel to trace causality relationship system-wide

The tunnel consists of a private communication
channel between the instrumented stub and the
instrumented skeleton (shown in solid lines), and the
transportation from the function implementation body
down to the further child function invocation through a
thread-specific storage (shown in dashed lines). To
determine the hierarchical call structure identified as
sibling relationship and parent/child relationship (shown
in Table 1), two additional items besides the Function
UUID are introduced: tracing event and the associated
event number. Tracing events include: stub start, stub
end, skeleton start, skeleton end, each of which is
recorded when the corresponding probe is activated.
Event numbers are incremented along the function chain
at each time a tracing event is encountered. Table 1 also
shows how the event chaining patterns determine the call
structures.

Figure 3 shows the Function-Transportable Log
(FTL) data incorporating the Function UUID and the
event sequence number. It is the FTL that propagates
along the tunnel. To transfer the FTL from the
instrumented stub to the instrumented skeleton, the IDL
compiler generates the instrumented stub and skeleton in
a way as if an additional in-out parameter is introduced
into the function interface with the type corresponding to
the FTL. The FTL is packaged at the stub and then

transported to the skeleton, where the event number is
further updated. No modification to the runtime
infrastructure is necessary for the FTL’s transportation.
Subsequently, the updated FTL is stored in the thread
specific storage (TSS). Such a TSS is created at the
monitoring initialization phase by loading the
instrumentation-associated library, and is independent of
user applications. If a child function G is invoked within
F’s implementation, the FTL is retrieved from the TSS at
G’s stub, gets updated and carried further down the chain.

Therefore, the private transport channel underneath
stubs and skeletons, and the TSS to bridge such private
channels, collectively update the FTL along the system-
wide call chain transparent to user-applications. The
tunnel in Figure 2 only shows the forward chain
advancing. At the subsequent call return phase, the FTL is
updated by Probes 3 and 4 in sequence. The FTL is also

transported from one function to its immediate follower
(sibling call). This is guaranteed because the previous
function’s termination and the immediate follower’s
invocation incurs always within the same thread, and the
FTL can be transported by storing/retrieving the TSS.

The FTL is recorded locally by probes associated with
either timing latency or CPU utilization. It is lightweight-
ed since no log concatenation occurs as the call
progresses through the tunnel. Probes only update the
FTL. Neither the user application nor the runtime
infrastructure needs to be altered for tunneling.

Table 1. Event chaining patterns and function
invocation patterns

Sibling

void main(){
 F(…);
 G(…);
}

F.stub_start)�VNHOBVWDUW)�VNHOBHQG
)�VWXEBHQG
*�VWXEBVWDUW *�VNHOBVWDUW
*�VNHOBHQG *�VWXEBHQG

Parent/Child

void F(…) {
 G(…);
}
void G(…) {
 H(…);
}

F.stub_start)�VNHOBVWDUW *�VWXEBVWDUW
*�VNHOBVWDUW +�VWXEBVWDUW
+�VNHOBVWDUW +�VNHOBHQG
+�VWXEBHQG *.skel_end *�VWXEBHQG
)�VNHOBHQG)�VWXEBHQG

interface Probe {

 struct FunctionTxLogType {
 UUID global_function_id;
 unsigned long event_seq_no;
 };
};

Figure 3. Code example of the FTL insertion by the IDL compiler

module Example {
 interface Foo{
 void funcA(in int x,
 inout Probe::FunctionTxLogType log);
 string funcB(in float y,
 inout Probe::FunctionTxLogType log);
 };
};

module Example {
 interface Foo {
 void funcA(in int x);
 string funcB(in float y);
 };
};

IDL Compiler Internal Translation

2.2. Flexible Object Invocation and Threading

to Monitored Applications

This section releases all but the DII/DSI restrictions
introduced in Section 2.1 to support flexible distributed
applications. Only causality propagation needs
reconsideration, as timing and CPU utilization are
collected locally and independent of causality capture.

Object Invocation

Asynchronous (one-way) function calls are always
cross-thread. From the perspective of the causality
propagation, call dispatching spurs a fresh causality chain
out of the callee thread that executes the actual function
implementation, in parallel to the chain the caller thread
still carrying forward. The original chain is the parent
chain and correspondingly the newly created chain is its
child. Such a parent/child chain relationship is recorded in
the stub start probes of the one-way function calls.

Component object invocation is not necessarily cross-
process or cross-processor. They can be collocated calls.
To allow collocation optimization, the stub needs to be
changed such that when the client and the component
object share the process domain, both stub start and
skeleton start probes are triggered before the execution
falls into the user-defined function implementation.
Similarly, both skeleton end and stub end probes are
turned on at the function return phase. Therefore, the stub
start (end) and skeleton start (end) probes degenerate into
a single start (end) probe.

Custom marshalling (or marshall-by-value) allows
remote object invocation to be actually carried out in the
client’s thread context, which basically turns remote calls
into collocated calls. The probe adjustment suggested
above applies.

Server Multithreading

To improve performance, advanced threading

architectures are recommended for ORB, such as thread-
per-connection and variants of thread pooling [18]. The
causality tracing techniques proposed before are still
applicable in such complex threading architectures
because of the following observations:

(O1) A physical thread T is always dedicated to the
incoming call C1 until C1 finishes execution. T
never gets suspended and switched to serve
another incoming call C2 before C1 finishes. Only
when C1 finishes, T will be either reclaimed by
the ORB (e.g., thread-per-connection and thread
pooling) or by the underlying operating system
(e.g., thread-per-request).

(O2) When serving the incoming call C1, thread T is
annotated with C1’s latest FTL. When T is
reclaimed by the ORB, although T physically
survives and holds the stale FTL, each time new
call C2 comes and T is activated, T is always
refreshed with the latest FTL of C2.

Therefore, causality relationship will be clearly
distinguished and propagated without being intertwined
under different ORB threading policies.

Note that O1 will not hold true for COM applications.
For its Single-Threaded Apartment call dispatching, the
server-side up-call is through a message loop [1]. The
apartment thread T can switch to serve another incoming
call C2 when the call C1 that T is serving issues an
outbound call C3 and suffers blocking. C2 might get
blocked later and T switches to continue serving C1 as C3

has already returned. Techniques have been devised to
avoid causal chain mingling [10]. In the actual
implementation, only a very limited amount of
instrumentation before and after call sending and
dispatching is required to the COM infrastructure.

2.3. Run-time Infrastructure’s Instrumentation

Impact and Interoperability

To achieve causality tracing, the IDL compiler
handles the internal interface transformation and full
probe deployment. This requires a back-end compilation
flag to instruct the compiler for the instrumented or non-
instrumented version of stub and skeleton generation.
Currently, for both CORBA and COM applications, our
IDL compiler is modified to accommodate such
instrumentation demand. The instrumentation-associated
library is supplied externally at link time. For CORBA
applications, no CORBA runtime modifications are
required. For COM applications, as discussed before, due
to thread multiplexing between blocking calls, the runtime
infrastructure needs instrumentation to prevent causal
chain intertwining.

In a heterogeneous environment like a CORBA/COM
application where different subsystems are flexibly built
upon either CORBA or COM, as long as the bi-directional
CORBA-COM bridge is aware of the extra FTL data
hidden in the instrumented calls, and delivers it from the
caller’s domain to the callee’s domain, causality will
seamlessly propagate across the boundary, and continue
to advance in the other domain. Again, timing and CPU
utilization deal with individual threads locally, and are
therefore not impacted.

3. Application Behavior Characterization

Section 2 detailed the capture and correlation of

monitoring information. At runtime, the probes capture
the runtime information locally. When the application

ceases to exist or reaches a quiescent state (e.g., finishes
processing a collection of transactions), the scattered logs
are collected and eventually synthesized into a relational
database. The data collector’s detailed design is described
in [8]. This section presents the monitoring data analysis
tools to help understand system behaviors at the
component level: the reconstruction of global causal
relationship into a dynamic system call graph, and timing
and CPU utilization analysis that leverages this call graph.
The analyzer currently is implemented as a stand-alone
tool, rather than being incorporated into the runtime
infrastructure for dynamic system adaptation or
management.

3.1. Dynamic System Call Graph

Recall that following the function call chain, in each
invocation, events are logged and event numbers are
incremented for each event appearance. Moreover, the
event repeating patterns uniquely manifest the calling
patterns. The reconstruction of system-wide causality
relationship first performs a query on the overall
monitoring data and identifies the set of unique Function
UUIDs ever created. Then for each identified UUID, the
second query sorts the events associated with the
invocations sharing the UUID by ascending order.
Subsequently, the analyzer scans the sorted event sets and
reconstructs the call hierarchy following the state-
machine shown in Figure 4, similar to the compiler
parsing that creates an abstract syntax tree and performs
type checking.

In Figure 4, a transition from one state to another
produces a parsing decision. The state transitions labeled

with solid lines evaluate synchronous function calls. The
transitions labeled with dash lined govern asynchronous
function calls (both the stub and skeleton sides). A
decision about “in progress” indicates that call chain is
advanced as expected. An additional “abnormal”
transition state (not shown) is taken if the adjacent log
function records follow none of the identified transition
patterns. If that happens, the analysis will indicate the
failure and restart from the next log record.

As the result, each causal chain with a unique UUID
will be unfolded into a tree Ti. A Dynamic System Call
Graph (DSCG) is a tree by grouping {Ti}. A large-scale
application’s DSCG potentially consist of millions of
nodes. Conventional visualization tools based on planar
graph display are incapable of presenting, navigating and
inspecting such enormous amount of graph nodes. The
hyperbolic space viewer [6] demonstrates its promising
capability. Section 4 will show an example of DSCG.

The DSCG captures all component object invocation
and preserves the complete call chains the application
ever experienced, unlike GPROF [3] or QUANTIFY [16]
that maintains the relationship with call-depth of 1. The
call chain achieved by the DSCG is exactly the proposed
call path [4]. The scenarios and techniques for call path
profiling in single-processed procedure call environments
can be extended naturally to multithreaded and distributed
applications, as shown in Section 3.2.

3.2. End-To-End Timing Latency and System-

Wide CPU Consumption

The end-to-end timing latency for function F’s
invocation is obtained by:

Fskel,start
In Progress Fskel,end

Fstub,start
Gstub,end

Gskel,end

Fstub,end

In Progress Child Function Returns
In Progress

In Progress In Progress

In Progress

Child Function
Starts

Continued with
Sibling Function

Gstub,start

Gskel,start

One-Way Function Skel-Side Returns

One-Way
Function Stub-
Side Returns

Figure 4. State machine to reconstruct causality relationship

() FendFstartF OPPFL −−= ,1,,4,)(

if F is a synchronous or stub side’s one-way call, and
() FendFstartF OPPFL −−= ,2,,3,)(

if F is a collocated or skeleton side’s one-way call. OF
denotes the overhead spent for causality capture, which is
determined by (N is the total number of child functions):

()∑ ∑ −=
= ∈

N

i FRj
startjiendjiF PPO

1)(
,,,,

P denotes the value from latency probing. The second and
third scripts respectively denote the sequencing number of
Figure 1, and the time stamp at the start or end of the
probing. R(F)={1,2,3,4} if F is a synchronous call and
R(F)={1,4} if F is a one-way call.

Latency can be annotated to the DSCG’s nodes to help
perceive latency dispersed throughout the system-wide
call hierarchy, besides reported in a certain statistical
format.

Our CPU characterization identifies how function
invocation utilizes CPU and how such utilization
propagates in a distributed cross-thread, cross-process and
cross-processor environment. It involves the following
three phases.

First, it computes the CPU consumption of each
function invocation, i.e., the exclusive or self CPU
consumption that refers to the only portion consumed
during executing the function implementation, with the
portion spent inside its child functions excluded. It is
computed by (L is the number of the immediate child
functions):

∑ −−−=
=

L

i 1
i,1,startendi,4,endF,2,F,3,startF)PP()P(PSC

The subscripting follows the above equations.
It then propagates the result following the caller/callee

relationship to obtain the inclusive or total CPU
consumption of a function. It accounts for the above self
portion, and the descendent CPU consumption from the
child functions calculated by:

{ }
∑ +=

∈ tionschild-funcimmediate-f
ffF DCSCDC)(

Note that the result of DCF is represented generally by
<C1, C2,….CM> where M is the number of different
processor types in the application.

Finally, it synthesizes the inclusive CPU consumption
with the DSCG to form a CPU Consumption
Summarization Graph (CCSG) that exhibits system-
wide CPU utilization propagation. The detailed CCSG
construction and visualization can be found in [9]. A
CCSG example will be shown in Section 4.

4. Experiments on Example Systems

We use two examples: a commercial large-scale
embedded system based on an infrastructure similar to
COM, and a simple CORBA-based Printing Pipeline
Simulator (PPS), to demonstrate our tool. We have
completed call graph construction for both COM and
CORBA applications. We use this particular commercial
system to demonstrate its scalability and practicality.
Because timing latency and CPU utilization

Figure 5. Dynamic System Call Graph (DSCG) shown in hyperbolic tree viewer

characterization have not been completed for COM
applications, only the PPS’ CORBA-related result is
shown here.

The commercial system contains more than 1 million
lines of code. The experiment was performed in the
HPUX 11.i development environment. The code base is
partitioned into 32 threads in a single-processor 4
processes configuration. The largest system run ever
conducted so far consisted of about 195,000 calls, with a
total of 801 unique methods in 155 unique interfaces from
176 unique components. With the current Java
implementation, it took the analyzer 28 minutes to
compute the DSCG on a HP x4000 1.7 GHz dual-
processor Windows 2000 computer. A portion of the
DSCG is shown in Figure 5. By navigating the DSCG,
with the superior navigation capability from the viewer
[6], within minutes, developers were able to identify
certain code implementation inefficiency, demonstrating
its potential usage in high-level system review process.

The PPS system is ORBlite based and consists of 11
components [8, 9]. It has been flexibly configured into
multiple processes hosted by different platforms that
include HPUX, Windows and VxWorks.

For the PPS, timing latency of each individual
function call is presented at the bottom section of the
hyperbolic tree viewer when the mouse hovers over the
tree node. To understand our end-to-end latency result’s
accuracy due to overhead on causality information
capture, we compared it with manual measurement. The
manual counterpart was carried out by having one probe
for one target function in one system run. This probe
retrieves time stamps at the beginning and end of the
target function. With the configuration involved with 4
processes, two on Windows NT and two on HPUX 11.0,
we observed that the automatic measurement and manual
measurement were matched within 60% [8]. The
collocated calls (with optimization turned off) tend to
have larger difference compared with the remote calls.

In terms of the PPS’s system-wide CPU utilization,
Figure 6 shows a snapshot under Internet Explorer (as an
XML viewer). It unveils the CPU propagation on a
configuration of single-processor 4-process on a HPUX

11.0 machine. The self and descendent CPU results are
structured following the call hierarchy. Each node is
identified by the interface and function names, along with
its unique object identifier. To estimate the overhead or
interference devoted to the necessary causality

ObjectID: the universal identifier of the object; InvocationTimes: number of times the function has been invoked
IncludedFunctionInstances: all the invocation instances occurred to the function
SelfCPUConsumption and DescendentCPUConsumption are shown in [second, microsecond] format

Figure 6. A CPU Consumption Summarization Graph (CCSG) from the XML viewer

information capture, we first evaluated that the automatic
measurement from the monolithic single-thread
configuration matches the true manual measurement to
within less than 10%. Then we compared the
measurement result on the above mentioned single-
processor 4-process configuration with this monolithic
single-thread configuration under the same HPUX 11.0
machine, and obtained good matching (within 40%
difference) between these two configurations.

5. Related Work

Instead of providing a comprehensive survey on
monitoring, characterizing and debugging multithreaded
and distributed applications, herein we discuss only the
existing techniques closest to our approach.

Global causality identifiers have been used for
runtime system management. Alpha [17], realizes the
control flow migration in cross-thread function
invocation, and automatically transfers thread-specific
attributes to the new thread, such that logical thread
control remains seamless. COM’s Object RPC protocol
uses logical thread identifier to manage message
dispatching and to correlate response/request messages.
Our global causality identifier correlates both remote and
collocated user-level calls. Also, from Sections 2 and 3, it
is clear that without the additional event number in the
FTL, the full causality relationship reconstruction into a
call graph is impossible.

Interceptors have been standardized or explored in
CORBA and COM. CORBA interceptor [14] allows user-
defined message manipulation. While it might be
employed to capture causality information, timing latency
and CPU utilization will be less accurate because of the
unknown overhead from the interceptors. Moreover,
depending on vendor implementation, the interceptor and
the dispatching of the execution of the function
implementation might be carried by different thread
contexts. This would break both the tracing tunnel and
the transparency of the skeleton dispatching since thread-
specific storage is key to our monitoring.

OVATION [15] is an example of employing CORBA
interceptors for runtime monitoring. It provides a
graphical tool to unveil component runtime interaction for
CORBA based applications. Similar to our approach, the
involved interceptor provides four different timing
anchors: client pre-invoke and post-invoke, servant pre-
invoke and post-invoke. Object method calls are
presented in a sequence chart with respect to time
progressing, along with their corresponding runtime
execution entities (thread, process, and host). The major
difference to our work is that it does not provide global
causality capture. As the result, for each method
invocation ever happens between two distributed objects,

the tool cannot determine how this particular invocation is
related to the rest of method invocations.

Universal Delegator is an application-level COM
interceptor [2]. All components under interception are
aggregated by an Interceptor Component (IC) handling
calls’ pre/post-processing. The IC uses a Trace Object
(TO) to log call information verbosely. To trace cross-
apartment calls, channel hooks are placed to the COM
ORPC channel. The IC mandates manual component
aggregation. Even though the TO resembles our FTL in
terms of global migration, the TO concatenates log info
during call progression and unavoidably introduces the
barrier for the call chains that exceed tens of thousands
calls. Finally, the proposed TO is not sufficient to
determine the hierarchical call graph.

The above interceptor mechanism in either COM or
CORBA confines distributed application monitoring to
their own domain, whereas our approach is applicable
across dissimilar standardized infrastructures.

BBN’s work on Resource Status Service [21] relies on
in-band and out-of-band runtime measurements for QoS
parameters evaluation to perform runtime quality of
adaptation. In-band measurements are conducted on the
remote function invocation paths. It also requires probing
on the delegate objects (encapsulating stubs and
skeletons) and the ORB, similar to our approach.
However, to correlating client and server’s measurements,
it requires an explicit additional interface for each
component. This interface accommodates an additional
parameter to every interface method in order to carry
trace records back and forth between the client and server.
This trace record parameter is essentially the Trace Object
in [2]. Consequently, application developers have to be
aware of this QoS oriented interface and its
implementation. Such tracing records are sufficient to
determine individual client-server pairs. However, if the
global view of object interaction has to be determined, to
large-scale applications, in the runtime adaptation
environment, the size limitation for the involved function
call chain is certainly the concern, due to the trace record
concatenation with respect to the call chain advancing.

Other distributed debugging, profiling and monitoring
tools, including tools to produce logging at the source
code level like AIMS [20], binary-rewriting tools like
QUANTIFY [16], per-thread debuggers like Microsoft
Visual Studio, GDB, and SmartGDB [19] and
network/OS message logging tools such as HP’s
OpenView [5], all lack the capability of correlating
monitoring information across thread, process and
processor boundaries. Finally, JaViz [7] produces call
graphs like ours for JVM-hosted applications. Its principal
disadvantage is no support for language-intermixing
applications other than Java.

6. Summary

A framework to monitor and characterize distributed

and multithread applications built upon component
technologies is developed. Compared with the existing
tools and development environments in the context of
distributed and multithreaded applications, our framework
provides the unique features of:

• Integrating different well-established monitoring
techniques to form an integrated framework that
performs application-centric multi-dimensional
behavior monitoring, including application
semantics, timing, and resource consumption;

• End-to-end capture of dynamic system topology
in terms of interface method invocation, which
facilitates off-line system-wide characterization of
both timing latency and shared resource
consumption;

• Full IDL compiler automation for monitoring
probes deployment without disturbing user-
defined application code;

• Capable of handling both CORBA and COM
applications, and feasible of dealing with the
applications involved with the CORBA and COM
bridging.

We have implemented the monitoring and
characterization framework for CORBA applications on
Windows NT, HPUX, and VxWorks (the VxWorks
CORBA does not currently support CPU), and are
finishing the COM version on HPUX. One future effort is
to investigate the adoption of our monitoring techniques
to the J2EE-based applications. We strive for the
monitoring framework capable of monitoring the end-to-
end application that consists of different subsystems, each
of which is built upon a different remote invocation
infrastructure. Other promising avenues for future
research are to provide richer end-to-end system behavior
characterization support, to apply the global causality
capturing technique from the on-line perspective for
application-level system management, and to automate or
semi-automate test harness generation for multithreaded
and distributed systems testing.

7. Acknowledgements

The author would like to thank Keith Moore for his
suggestions for building the monitoring framework. Many
ideas expressed in this paper originated from the weekly
discussion. The author would also like to acknowledge
the contribution from Patrick Fulghum for his work on the
COM interceptor. Thanks also to Ming Hao for providing
the hyperbolic tree viewer, Scott Marovich for helping
access the PA-RISC performance counter, and Mohamed
Dekhil, Rajesh Shenoy and Simon Widdowson for paper
review.

8. References

[1] D. Box, Essential COM, Addision-Wesley Pub. Co., 1998.
[2] K. Brown, “Building a Lightweight COM Interception

Framework Part I: The Universal Delegator,” Microsoft
Systems Journal, Jan. 1999. Presentation about Unobtrusive
COM Tracing:
http://www.develop.com/kbrown/com/comtrace.ppt.

[3] S. Graham, P. Kessler and M. McKusick, " An Execution
Profiler for Modular Programs," Software - Practice and
Experience, Vol. 13, No. 8, 1983, pp. 671-85.

[4] R. J. Hall, and A. J. Goldberg, “Call Path Profiling of
Monotonic Program Resources in Unix,” Proceedings of
the Summer 1993 USENIX Conference, pp. 1-13.

[5] HP OpenView, http://www.openview.hp.com/
[6] Hyperbolic Tree Toolkit, http://www.inxight.com.
[7] I. Kazi, D. Jose, B. Ben-Hamida, C. Hescott, C. Kwok, J.

Konstan, D. Lilja, and P.Yew, "JaViz: A Client/Server Java
Profiling Tool,” IBM Systems Journal, Vol. 39, No. 1,
2000, pp. 96-117.

[8] Jun Li, “Monitoring of Component-Based Systems,” HP
Labs Technical Report HPL-2002-25(R.1).

[9] Jun Li, “Characterization and Impact Estimation of CPU
Consumption in Multi-Threaded Distributed Applications,”
HP Labs Technical Report HPL-2002-50(R.1).

[10] Jun Li, “Monitoring and Characterization of COM-Based
Systems,” HP Labs Technical Report in preparation.

[11] Microsoft, “The Component Object Model Specification,”
Version 0.9, 1995.

[12] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R.
Irvin, K. Karavanic, K. Kunchithapadam and T. Newhall,
"The Paradyn Parallel Performance Measurement Tool,"
IEEE Computer 28(11), pp. 37-46, Nov. 1995.

[13] K. Moore, and E. Kirshenbaum, “Building Evolvable
Systems: the ORBlite Project,” Hewlett-Packard Journal,
pp. 62-72, Vol. 48, No.1, Feb. 1997.

[14] OMG, The Common Object Request Broker: Architecture
and Specification, Revision 2.4, Oct. 2000.

[15] Ovation, http://www.ociweb.com/product/ovation.html
[16] Quantify, http://www.rational.com/products.
[17] F. D. Reynolds, J. D. Northcutt, E. D. Jensen, R. K. Clark,

S. E. Shipman, B. Dasarathy, and D. P. Maynard, “Threads:
A Programming Construct for Reliable Real-Time
Distributed Computing,” International Journal of Mini and
Microcomputers, Vol. 12, No. 3, 1990, pp. 119-27.

[18] D. Schmidt, “Evaluating Architectures for Multithreaded
Object Request Brokers,” Commun. ACM, Vol. 41, pp. 54-
60, Oct. 1998.

[19] SmartGDB, http://hegel.ittc.ku.edu/projects/smartgdb/.
[20] J. C. Yan, S. R. Sarukkai, and P. Mehra, "Performance

Measurement, Visualization and Modeling of Parallel and
Distributed Programs using the AIMS Toolkit," Software
Practice & Experience, Vol. 25, No. 4, pp. 429-61.

[21] J. Zinky, J. Loyall, R. Shapiro, “Runtime Performance
Modeling and Measurement of Adaptive Distributed Object
Applications,” Proceeding of International Symposium on
Distributed Object and Applications, 2002.

