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Abstract—We consider transmitting a source across a pair
of independent, nonergodic channels with random states (e.g.,
slow-fading channels) so as to minimize the average distortion. The
general problem is unsolved. Hence, we focus on comparing two
commonly used source and channel encoding systems which cor-
respond to exploiting diversity either at the physical layer through
parallel channel coding or at the application layer through mul-
tiple description (MD) source coding. For on–off channel models,
source coding diversity offers better performance. For channels
with a continuous range of reception quality, we show the reverse
is true. Specifically, we introduce a new figure of merit called the
distortion exponent which measures how fast the average distor-
tion decays with signal-to-noise ratio. For continuous-state models
such as additive white Gaussian noise (AWGN) channels with
multiplicative Rayleigh fading, optimal channel coding diversity
at the physical layer is more efficient than source coding diversity
at the application layer in that the former achieves a better distor-
tion exponent. Finally, we consider a third decoding architecture:
MD encoding with joint source–channel decoding. We show that
this architecture achieves the same distortion exponent as sys-
tems with optimal channel coding diversity for continuous-state
channels, and maintains the advantages of MD systems for on–off
channels. Thus, the MD system with joint decoding achieves the
best performance from among the three architectures considered,
on both continuous-state and on–off channels.

Index Terms—Application layer diversity, diversity, joint
source–channel coding, multiple description coding, parallel
channels.

I. INTRODUCTION

CONSIDER transmitting a source such as audio, video, or
speech over a wireless link. Due to the nature of wire-

less channels, effects such as fading, shadowing, interference
from other transmitters, and network congestion can cause
the channel quality to fluctuate during transmission. When the
channel varies on a time scale longer than the delay constraints
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of the desired application, such channel fluctuations cause
outages. Specifically, when the channel quality is too low, the
receiver will be unable to decode the transmitted data in time
to reconstruct it at the appropriate point in the source stream.
Thus, some frames of video or segments of speech/audio will
be reconstructed at the receiver with large distortions.

As illustrated in Fig. 1, one approach to combat such channel
fluctuations is to code over multiple parallel channels (e.g.,
different frequency bands, antennas, or time slots) and leverage
diversity in the channel. A variety of source and channel coding
schemes can be applied to this scenario, including progressive
and multiple description source codes [1]–[30], broadcast
channel codes [31]–[36], and hybrid analog-digital codes [37,
Ch. 3]–[41]; however, the best source and channel coding
architecture to exploit such parallel channels is still unknown.
In this paper, we examine system architectures based upon two
encoding algorithms that exploit diversity in the source coding
and channel coding, respectively, along with two compatible
decoding algorithms for the first encoder, and one compatible
decoding algorithm for the second encoder. We compare per-
formance of these systems by studying their average distortion
performance on various block-fading channel models.

More specifically, Fig. 2 illustrates the two classes of en-
coders we consider. In the channel coding diversity system of
Fig. 2(a), the source is encoded into by a single description
(SD) source coder. Next is jointly encoded into by
the channel coder and transmitted across a parallel channel. For
the source coding diversity system of Fig. 2(b), the source is
encoded into and by a multiple description (MD) source
coder. Each is then separately encoded into by a channel
coder and transmitted across the appropriate channel.

Since the encoders in Fig. 2 exploit the inherent diversity of a
parallel channel in qualitatively different ways, we focus on the
following two questions.

1) Which of the basic architectures in Fig. 2 achieves the
smallest average distortion? If neither architecture is uni-
versally best, for what channels is one architecture better
than the other?

2) Is there a way to combine the best features of both systems
in Fig. 2?

Essentially, the answers we develop can be illustrated through
Fig. 3. For channel coding diversity, the source codeword can
be reliably decoded only if the total channel quality is high
enough to support the transmission rate. So this system achieves
diversity in the sense that even if one of the channels is bad, then
as long as the overall channel quality is good, the receiver will
still be able to recover the encoded source. In contrast, for source
coding diversity, each source codeword can be decoded if the
quality of the corresponding individual channel is high enough.

0018-9448/$20.00 © 2005 IEEE
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Fig. 1. Conceptual illustration of the parallel diversity coding problem considered in this paper. An encoder must map a source sequence, , into a pair of channel
inputs and without knowing the channel states and . A decoder must map the channel outputs and along with knowledge of the channel states
into an estimate of the source, ^. The optimal encoding and decoding architecture is unknown.

Fig. 2. Transmitter and channel block diagrams for (a) channel coding diversity and (b) source coding diversity.

Fig. 3. Conceptual illustration of successful decoding regions for source and
channel coding diversity systems designed to have the same distortion when all
codewords are received. For channel coding diversity, the receiver will be able
to decode the transmitted source description if the sum of the channel qualities
exceeds a threshold represented by the solid diagonal line. For source coding
diversity, the first (respectively, second) source description will be successfully
decoded provided the first (resp., second) channel quality exceeds the vertical
(resp., horizontal) dashed line. The ’s represent the four possible channel
qualities for a packet loss channel where each channel is either on or off.

This system achieves diversity in the sense that even if one of
the channels is bad and one description is unrecoverable, then as
long as the other channel is good and the remaining description
is recovered, a low-fidelity source reconstruction is obtained. If
both channels are good and both descriptions are successfully
decoded, then they are combined to form a high-fidelity recon-
struction.

Fig. 3 compares the two systems when the source coders are
designed to achieve the same distortion if all source codewords
are successfully decoded (i.e., in region III). Furthermore, in re-
gion I, both systems fail to decode and again have the same dis-
tortion. In regions II and V, channel coding diversity is superior
since the channel conditions are such that at most one source
codeword is decoded under source coding diversity. Conversely,
in region IV, source coding diversity is superior since one source

codeword is received, and channel coding diversity fails to de-
code. Therefore, our first question about which of the architec-
tures in Fig. 2 is best essentially a question about in which region
the channel quality is most likely to lie. If regions II and V are
more probable, channel coding diversity will be superior; con-
versely, if regions IV are more likely, source coding diversity
will be superior.

As a specific example, in the classic MD coding problem
modeling link failure or packet erasure [28], each channel is ei-
ther off, in which case no information can be communicated, or
supports a particular rate. The four channel conditions for this
scenario are indicated by ’s in Fig. 3 for an example packet
erasure channel. For such discrete models, source coding diver-
sity is clearly superior, since both SD and MD source coding
achieve the same distortions in regions I and III, but channel
coding diversity fails completely in region IV. In this region,
source coding diversity recovers one source codeword and pro-
duces a low-fidelity reconstruction of the source.

The opposite occurs for channels where a continuous1 range
of rates can potentially be supported (e.g., additive white
Gaussian noise (AWGN) channels with Rayleigh fading).
For these channels, the channel quality is essentially more
likely to lie in region II than in IV, and thus channel coding
diversity is superior. Specifically, we characterize performance
by analyzing how quickly the average distortion decays as a
function of the signal-to-noise ratio for various systems. We
refer to the slope of the distortion versus signal-to-noise ratio
on a log–log plot as the “distortion exponent” and use this
as our figure of merit. In particular, our analysis shows that
optimal channel coding diversity is generally superior to source
coding diversity on continuous channels in the sense that an
optimal channel coding diversity architecture achieves a better
distortion exponent than a source coding diversity architecture.

Since source coding diversity is best for on–off channels, and
optimal channel coding diversity is best for continuous-state
channels, our second question of whether there exists an ar-
chitecture that combines the advantages of both becomes rel-

1Some mild technical conditions are required for our results on continuous
channels. Essentially, we must be able to expand the outage probability in a
Taylor series for high signal-to-noise ratio. See Section IV-A for details.
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evant. In addition to our analysis of the two previously known
diversity architectures in Fig. 2, our second main contribution
is the description of a new joint source–channel decoding ar-
chitecture that achieves the best qualities of both. Specifically,
to perform well on both continuous-state channels and on–off
channels we do not propose a third encoding architecture, but a
third new joint decoding architecture. We show that the main in-
efficiency of source coding diversity on continuous-state chan-
nels results from the channel decoders ignoring the correlation
between the descriptions. By explicitly accounting for the struc-
ture of the source encoding when performing channel decoding,
we prove a coding theorem characterizing the performance of
source coding diversity with joint decoding. We show that such
a system can achieve the same performance as optimal channel
coding diversity on continuous channels and the same perfor-
mance as source coding diversity for on–off channels.

A. Related Research

The problem of MD coding was initially studied from a rate-
distortion perspective, having been formalized by Gersho, Wit-
senhausen, Wolf, Wyner, Ziv, and Ozarow at the 1979 IEEE In-
formation Theory Workshop. Their initial contributions to the
problem appear in [29], [42]–[44]. El Gamal and Cover de-
velop an achievable rate region for two descriptions in [28],
and this region is shown to be optimal for the Gaussian source,
with mean-square distortion, by Ozarow [44]. Specialized re-
sults for the binary-symmetric source, with Hamming distor-
tion, are developed by Berger and Zhang [24], [26], [45] and
Ahlswede [27]. Zamir [23] develops high-rate bounds for mem-
oryless sources. Most recently, work by Venkatarami et al. [3],
[21] provides achievable rate regions for many descriptions that
generalize the results in [26], [28]. Important special cases of
the MD coding problem have also been examined, including
successive refinement, or layered coding, [1], [46] and certain
symmetric cases [2], [20].

Some practical approaches to MD coding include MD scalar
quantization, dithered MD lattice quantization, and MD trans-
form coding. Vaishampayan [25] pioneered the former, Frank-
Dayan and Zamir considered the use of dither [7], and Wang,
Orchard, Vaishampayan, and Reibman [22] and later Goyal and
Kovačević [16] studied the latter. See [17] for a thorough review
of these approaches. Recently, the design of MD video coders
has received considerable attention [4], [8]–[10], [13], [19].

All of the classical work on MD coding utilizes an “on–off”
model for the channels or networks under consideration,
without imposing strict delay constraints. More specifically,
source codes are designed assuming that each description is
completely available (error free) at the receiver, or otherwise
completely lost. Furthermore, the likelihood of these events
occurring is independent of the choice of source coding rates.
Under such conditions, it is not surprising that MD coding
outperforms SD coding; however, for many practical channel
and network environments, these conditions do not hold. For
example, in delay-constrained situations, suitable for real-time
or interactive communication, descriptions may have to be
encoded as multiple packets, each of which might be received
or lost individually. Furthermore, congestion and outage con-
ditions often depend heavily upon the transmission rate. Thus,

it is important to consider MD coding over more practical
channel models, as well as to fairly compare performance with
SD coding.

Some scattered work is appearing in this area. Ephremides
et al. [11] examine MD coding over a parallel-queue channel,
compare to SD coding, and show that MD coding offers signif-
icant advantages under high traffic (congestion) situations. This
essentially results because the MD packets are more compact
than SD packets, and indicates the importance of considering
the influence of rate on congestion. Coward et al. [6], [15] ex-
amine MD coding over several channel models, including mem-
oryless symbol-erasure and symbol-error channels, as well as
block-fading channels. For strict delay constraints, they show
that MD outperforms SD; for longer delay constraints, allowing
for more sophisticated channel coding, they show that SD out-
performs MD. Thus, the impact of delay constraints is impor-
tant. This paper examines fading conditions similar to those in
[6], [15], but considers a wider variety of channel coding and
decoding options, with an emphasis on architectural considera-
tions as well as performance.

B. Outline

We begin by summarizing our system model in Section II.
Section III studies on–off channels, Section IV treats continuous
state channels, and Section V develops source coding diversity
with joint decoding. Many of the more detailed proofs are de-
ferred to Appendices. Finally, Section VI closes the paper with
some concluding remarks and directions for further research.

II. SYSTEM MODEL

Fig. 1 depicts the general system model we consider in this
paper. Our objective is to design and evaluate methods for com-
municating a source signal with small distortion over cer-
tain channels with independent parallel components. In partic-
ular, focusing on memoryless source models for simplicity of
exposition, we consider nonergodic channels models in which
delay constraints or limited channel variations limit the effec-
tive blocklength at the encoder. Of many possible examples, we
focus on on-off channels and additive noise channels with block
fading.

While cross-layer design is generally acknowledged to
yield superior performance to layered design, simultaneously
optimizing all facets of a system is usually too complex. Hence
we consider various architectures based upon using a classical
system at one layer combined with an optimized system at
another layer. In the remainder of this section, after briefly
introducing some notation, we summarize the source and
channel models, discuss architectural options for encoding and
decoding, and review high-resolutions approximations for the
various source coding algorithms employed throughout the
paper.

A. Notation

Vectors and sequences are denoted in bold (e.g., ) with the
th element denoted as . Random variables are denoted using

the sans serif font (e.g., ), and random vectors and sequences
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are denoted with bold sans serif (e.g., ). We denote mutual in-
formation, differential entropy, and expectation as , ,

, respectively. Calligraphic letters denote sets (e.g., ).
When its argument is a set or alphabet, denotes the cardinality
of the argument. To simplify the discussion of architectures, we
use the symbols and to denote a generic en-
coder and decoder. To specialize this generic notation to one of
the architectures discussed in Section II-D, we will employ sub-
scripts representing the relevant system variables.

B. Source Model

We model the source as a sequence of independent and iden-
tically distributed (i.i.d.) samples . For example, such a dis-
crete-time source may be obtained from sampling a continuous-
time, appropriately band-limited, white-noise random process.
We denote the probability density for the discrete-time source
sequence as

(1)

We assume that the process is such that the differential entropy,
, and second moment, , both exist and are finite.

To measure quality of the communication system, we employ
a distortion measure between the source signal and its recon-
struction . Specifically, given a per-letter distortion mea-
sure , we extend it additively to blocks of source
samples, i.e.,

(2)

We may characterize performance in terms of various statistics
of the distortion, viewed as a random variable. In particular, we
focus on the expected distortion

(3)

Throughout our development, we will emphasize squared-error
distortion, for which ; in this case, (3) is the
mean-square distortion.

C. (Parallel) Channel Model

The channel depicted by Fig. 1 consists of two branches, each
of which corresponds to an independent channel with indepen-
dent states. Specifically, a channel input block consists of two
subblocks, and , and the corresponding channel output
block consists of the two subblocks, and . The channel
states are denoted by random variables and , respectively.
The channel law is the product of the two independent and iden-
tical subchannel laws

(4)

For simplicity, we only consider channels for which the input
distribution that maximizes the mutual information is indepen-
dent of the channel state. Throughout the paper, we consider the
case where both the transmitter and receiver know the channel
state distribution and the channel law , but only the re-
ceiver knows the realized channel states and channel outputs.

To examine fundamental performance and compare between
systems, we analyze random coding over these nonergodic
channels using outage probability [47] as a performance mea-
sure. Briefly, because the mutual information , corresponding
to the supportable transmission rate of the channel, is a function
of the fading coefficients or other channel uncertainty, it too
is a random variable. For fixed transmission rate (in nats
per channel use), the outage probability measures
channel coding robustness to uncertainty in the channel.2

The structure of the channel coding and decoding affects
the form of the outage probability expression [47]. If coding
is performed over only the first component channel, then
the probability of decoding failure is . If
repetition coding is performed across the parallel channels,
then a single message is encoded as . With
selection combining at the receiver, the probability of decoding
failure is ; with optimal
maximum-ratio combining at the receiver, the probability of
decoding failure is . Finally, if optimal
parallel channel coding is performed using a pair of jointly de-
signed codebooks with and independent, the probability
of decoding failure is .

D. Architectural Options

In this section, we specify some architectural options for en-
coding and decoding in the source–channel diversity system de-
picted in Fig. 1.

1) Joint Source–Channel Diversity: In the most general
setup, joint source–channel diversity consists of a pair of map-
pings . The encoder
maps a sequence of source letters into pairs of channel
inputs; correspondingly, the decoder maps pairs of channel
outputs into reconstruction letters. The ratio (some-
times referred to as the processing gain, excess bandwidth,
or bandwidth expansion factor) is denoted with the symbol

.3 Mathematically

(5)

(6)

If the range of , i.e., , is finite, we
define the rate of the code as

(7)

2 Mutual information is often used to measure channel robustness when long
block lengths are allowed. In [48], however, Zheng and Tse show that mutual
information (viewed as a random variable), and more specifically outage prob-
ability, is a relevant quantity for finite block lengths since outage probability
dominates error probability. This suggests that outage can be a relevant quantity
even for very tight delay constraints at high signal-to-noise ratio.

3 The processing gain in [49] (denoted by L) is defined slightly differently
from �. Specifically, since [49] considers a complex source and Rayleigh-fading
Gaussian noise channel, L = 2�.
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Fig. 4. Channel coding diversity.

Fig. 5. Source coding diversity system model described more precisely in Section II-D3.

which has units of nats per parallel channel use.
Regarding the nonergodic nature of the channels, we consider

situations in which is large enough to average over source
fluctuations, i.e., the source is ergodic, but is not large enough
to average over channel variations, i.e., the channel is noner-
godic.

2) Channel Coding Diversity: From one perspective, a nat-
ural way to exploit diversity in the channel is to employ repe-
tition or more powerful channel codes applied to a single dig-
ital representation of the source. In such scenarios, Fig. 1 spe-
cializes to that shown in Fig. 4. Such channel coding diver-
sity consists of a source pair of encoder and decoder mappings

and a channel pair of encoder and de-
coder mappings . As in classical
rate-distortion source coding, the source encoder maps a se-
quence of input letters to a finite index, and the source de-
coder maps an index into a sequence of reconstruction letters

(8)

(9)

Further, as in classical channel coding, the channel encoder
maps an index into pairs of channel inputs, and the channel
decoder maps pairs of channel outputs into an index

(10)

(11)

Note that we include the index at the output of the channel
decoder and input to the source decoder. This serves as a flag in
the event of a (detected) channel coding error or outage in which
case the source decoder reconstructs to the mean of the source.

For the channel coding diversity approach, a key parameter is
the rate defined by

(12)

where again the units are nats per parallel channel use.
3) Source Coding Diversity: Instead of exploiting diversity

through channel coding, an emerging class of source coding al-
gorithms based upon MD coding allows diversity to be exploited
by the source coding layer.

For such source coding diversity, the block diagram of Fig. 1
specializes to that shown in Fig. 5. Source coding diversity
employs two independent, but otherwise classical, channel

encoder and decoder pairs and

(13)

(14)

for . Again, we allow for the output of the channel
decoding process to be to indicate a (detected) error. Here the
rates

(15)

both in nats per parallel channel use, are key parameters of the
system.

The source encoder consists of two mappings

(16)

The source decoder can be viewed as four separate mappings,
depending upon whether or not there are channel decoding er-
rors on the individual channels. Specifically, the source decoder
can be constructed from the following four mappings:

(17)

(18)

(19)

(20)

where is a constant determined by the distortion measure for
the source; for example, if mean-square distortion is important,
then .

4) Source Coding Diversity With Joint Decoding: Finally,
we also consider source coding diversity with joint decoding, as
depicted in Fig. 6. Here all is the same as in the source coding di-
versity model of Fig. 5, except that source and channel decoding
is performed jointly across channels by accounting for correla-
tion among the channel coding inputs and . Specifically,
the channel decoding for this approach is a mapping

(21)

which also takes into account knowledge of the source coding
structure. In practice, full joint design of the decoder may not
be required and a partially separated design where likelihood
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Fig. 6. Source coding diversity with joint source–channel decoding.

ratios, quantized likelihood ratios, or similar information are ex-
changed between the source and channel decoders may be suf-
ficient.

E. High-Resolution Approximations for Source Coding

An important practical example of our source model is the
Gaussian source, for which is a Gaussian density func-
tion with zero mean and unit variance. The Gaussian source also
serves as a useful approximation to other sources in the high-res-
olution (low-distortion) regime [23], [50]. We now summarize
the well-known results for SD and MD source coding for the
Gaussian case, and generalize them using high-resolution dis-
tortion approximations. These high-resolution approximations
are utilized throughout the sequel in our performance analysis.

1) SD Source Coding: In SD source coding, or classical
rate-distortion theory, the source, , is quantized into a single
description, , using rate .

In general, the rate-distortion function is difficult to deter-
mine, but a number of researchers have determined the rate-dis-
tortion function in the high-resolution limit. Specifically, under
some mild technical conditions [50]

(22)

This result also implies that4

(23)

Without loss of generality, we scale a given source under con-
sideration so that to simplify the notation. Further-
more, instead of measuring the quantization rate in bits, we will
find it more convenient to measure the rate in nats per channel
sample by using the processing gain defined in Section II-D1.
Thus, we will use the expressions

and (24)

to approximate and in high resolution.
As is well known, the rate (in nats per channel sample) re-

quired for SD source coding of a unit-varaince Gaussian source
at average distortion is [36]

(25)

Therefore, one way to interpret (23), is that for quadratic differ-
ence distortion measures in the high-resolution limit all sources
essentially look Gaussian except for scaling by the constant

4 Throughout the paper, the approximation f(x) � g(x) is in the sense that
f(x)=g(x)! 1 and jf(x)�g(x)j ! 0 as x approaches a limit, either x! 0
or x ! 1, which should be clear from the context.

factor . Note that the form of the rate-distor-
tion function in (23) is asymptotically accurate and not a worst
case result like those in [51], [52].

2) MD Source Coding: In contrast to SD coding, MD source
coding quantizes the source into two descriptions, and , so
that if only one description is received then moderate distortion
is incurred, and if both descriptions are received then lower dis-
tortion is obtained [28].

In the case of low distortions ( ), the rates
and distortions achievable by coding a unit variance Gaussian
source into two equal-rate descriptions with a total rate of
nats per channel sample (i.e., each description requires
nats), satisfy [28]

for (26a)

where is the distortion when both descriptions are received
and is the description when only a single description is re-
ceived. For high distortions with ( ), there is no
penalty for the multiple descriptions and the total rate required
is

for (26b)

The general rate-distortion region for the MD coding problem
is still unknown, in the Gaussian case for more than two descrip-
tions, and for more general sources. In the high-resolution limit,
the rate-distortion region is the same as for a Gaussian source
with variance [23]. Hence, for our asymp-
totic analysis we use the rate-distortion function in (26) for both
Gaussian and non-Gaussian sources with

Exponentiating (26a) yields

(27)

(28)

(29)

where the last line follows since and

as and . If only , then the in (29)
must be replaced with . Any reasonable multiple descrip-
tion system has (otherwise, for asymptotically low
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distortions, the denominator of (26a) could be easily increased
while decreasing the distortion by setting ). So since

we obtain

(30)
where the lower bound holds when and the upper
bound also requires .

III. ON–OFF COMPONENT CHANNELS

In this section, we examine the performance of source and
channel coding diversity for scenarios in which each of the com-
ponent channels is either “on,” supporting a given transmis-
sion rate, or “off,” supporting no rate (or an arbitrarily small
rate). Much of the literature suggests that source coding di-
versity was developed for, and performs well on, such channel
models. Our analysis is based upon channels that are parame-
terized in a manner similar to the continuous channels in Sec-
tion IV. This parameterization allows us to compare source and
channel coding diversity over a broad range of operating condi-
tions. In addition to confirming that there exist operating con-
ditions for which source coding diversity significantly outper-
forms channel coding diversity, our results illustrate that there
also exist operating conditions for which the performance differ-
ence between source and channel coding diversity is negligible.

A. Component Channel Model

For cases in which we are concerned with prolonged, deep
fading or shadowing in a mobile radio channel, strong first-ad-
jacent interference in a terrestrial broadcast channel, or conges-
tion in a network, we can model the channel state as taking on
only two possible values. Specifically, we can consider on–off
channels where the channel mutual information has probability
law

with probability
with probability .

(31)

In (31), corresponds to the signal-to-noise ratio and pa-
rameterizes the channel quality when the channel is on, and
parameterizes the probability that the channel is off. There is no
connection between the channels’ probability of being off and
the quality in the on state; that is, neither nor the selected
encoding rate affects . By contrast, for the continuous chan-
nels discussed in Section IV, will depend directly on both.

For simplicity of exposition, and ease of comparison with
continuous channel scenarios in the sequel, the term outage will
refer to the inability of a given approach to convey information
over the pair of component channels. If both channels are off,
then the system experiences outage regardless of the communi-
cation approach; however, as we will see, different approaches

may or may not experience outage when one of the channels is
on and the other is off. For all of the approaches we discuss, due
to the nature of the on–off channels, performance can be clas-
sified into two regimes. The quality-limited regime has average
distortion performance varying dramatically with the channel
quality in the on state, because the distortion under no outage
dominates the average distortion. In this case, the distortion
under no outage is limited by the rate communicated, which,
in turn, is limited by the channel quality. The outage-limited
regime has average distortion performance that does not vary
dramatically with the channel quality in the on state, because
the distortion under outage dominates the average distortion.

B. No Diversity

Combining an SD source coder with a single component
channel with channel encoder and decoder, the average distor-
tion, as a function of the source coding rate is given by

if
otherwise.

(32)

Thus, the minimum average distortion is

(33)

We say that this system operates in the quality-limited
regime if

(34)

in which case, the average distortion behaves essentially as
. If

(35)

the system operates in the outage-limited regime, in which case
the average distortion behaves essentially as .

C. Optimal Channel Coding Diversity

Combining an SD source coder with optimal parallel channel
coding over the component channels, the average distortion, as
a function of the source coding rate , is given by (36) at the
bottom of the page. For parallel channel coding, the two channel
codewords are independent, and the system is able to sum the
mutual informations of the component channels. This leads to
the upper bound of in the second case

if
if
otherwise.

(36)



LANEMAN et al.: SOURCE–CHANNEL DIVERSITY FOR PARALLEL CHANNELS 3525

Fig. 7. Outage region boundaries for optimal parallel channel coding. The
symbols correspond to the sample mutual information pairs (0; 0), (0; ln(1 +
SNR=2)), (ln(1+SNR=2); 0), and (ln(1+SNR=2); ln(1+SNR=2)). The
solid line corresponds to the first case of (36), in which a low rate is selected
to take advantage of diversity gain. The dashed line corresponds to the second
case of (36), in which a higher rate is selected to take advantage of multiplexing
gain. Outage regions are below and to the left of these diagonals.

of (36). If we instead utilized repetition coding, so that the
two channel codewords were identical, the upper bound in the
second case would instead be .

In contrast to the case of no diversity, the performance of op-
timal channel coding diversity exhibits a discontinuity as a func-
tion of . Fig. 7 illustrates that, because of the discrete proba-
bility distribution on the channel states, a discontinuity arises in
the outage probability about the point

Clearly, each case in (36) is minimized by utilizing the largest
possible rate for that case. Then the minimum average distortion
becomes

(37)

As Fig. 8 illustrates, the two terms in (37) have their own
quality- and outage-limited regimes, which, when combined
by the minimum operation, leads to four trends in the overall
system performance.

Comparing the two terms in (37), we see that the different
choices of rate lead to different costs and benefits. Using the
lower transmission rate (cf. the first
term in (37)), results in better outage-limited performance, but
worse quality-limited performance. This approach exploits the
diversity gain of the underlying parallel channel. On the other
hand, using the higher transmission rate
(cf. the second term in (37)), results in worse outage-limited
performance, but better quality-limited performance. This ap-

proach exploits the multiplexing gain of the underlying parallel
channel. We note that the diversity and multiplexing termi-
nology is inspired by the inherent tradeoff between the two
for multiple-input multiple-output (MIMO) wireless systems
operating over fading channels [48].

Note that the two terms in (37) are equal when

(38)

For small (such that ), we
exploit the multiplexing mode of operation and pass through its
quality- and outage-limited regimes as we increase until
(38) is satisfied. As we will see, passing through the outage-
limited regime of the multiplexing mode is the key limitation of
optimal channel coding diversity for on–off channels. For higher

(such that ), we exploit
the diversity mode of operation and pass through its quality- and
outage-limited regimes as we increase .

D. Source Coding Diversity

In this section, we determine the minimum average distortion
for an MD system with independent channel coding. The anal-
ysis of this system is slightly more involved than those of pre-
vious sections because the rate-distortion region for MD coding
is more complex, and independent channel coding over on–off
component channels involves a pair of outage events.

Analogously to Fig. 7, Fig. 9 displays outage region bound-
aries for independent channel coding. It is straightforward to
see that the source coder should employ rates no greater than

on each of the component channels; otherwise,
one of the channels exhibits outage with probability one, and
the system can perform no better than the case of no diversity
with half the signal-to-noise ratio. As a result, our analysis only
considers the case . Moreover, due to
the symmetry of the component channels, one can expect sym-
metric rates, i.e., , to be optimal; thus, we focus
on this case. With these simplifications, we observe that, in con-
trast to the triangular outage regions for optimal parallel channel
coding in Fig. 7, the rectangular outage regions for independent
channel coding in Fig. 9 are well matched to the on–off channel
realizations.

Optimizing average distortion for the MD system requires a
tradeoff between the distortion achieved when only
one description is received and the joint distortion achieved
when both descriptions are received. Although this tradeoff is
available in (30), we refactor it for our purposes here. Consider a
unit-variance, i.i.d. Gaussian source. The rate-distortion region
for MD coding using two descriptions is given in [16], [44]. For
the symmetric case in which and

, the set of achievable rates (in nats per channel use) and
mean-square distortions are the points satisfying

(39)

(40)

where is the rate in bits per channel use for an individual
channel, and

otherwise.
(41)
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Fig. 8. Average distortion performance with � = 10 for the first (solid line) and second (dashed line) terms in the minimization of (37).

Fig. 9. Outage region boundaries for MD source coding with independent
channel coding. The symbols correspond to the sample mutual information
pairs (0; 0), (0; ln(1 + SNR=2)), (ln(1 + SNR=2); 0), and (ln(1 +
SNR=2); ln(1 + SNR=2)). The solid line corresponds to the outage region
boundary for the first channel, and the dashed line corresponds to the outage
region boundary for the second channel. The outage region for channel one
(resp., channel two) is to the left (resp., below) the boundary.

In this section, we set

(42)

Substituting (42) into (40) yields

(43)

The average distortion for source coding diversity as a func-
tion of is shown in (44) at the bottom of the page. For ,
source coding diversity performance reduces to that of channel
coding diversity; for , source coding diversity perfor-
mance reduces to that of no diversity with half the signal-to-
noise ratio. Because optimization over does not lend much
insight, we delay discussion of source coding diversity quality-
and outage-limited regimes to the next section, where we also
compare with the other approaches.

E. Comparison

Fig. 10 compares average distortion performance of source
and channel coding diversity by displaying the minimum av-
erage distortions (33), (37), and (44) minimized over
as functions of the component channel quality, , in the
on state, for different values of the probability of a compo-
nent channel’s being off . The results in Fig. 10 are clearly
consistent with our intuitive discussion of source and channel
coding diversity performance in Section I-A. For moderate

, depending upon , both systems exhibit transitions from
behavior to behavior; however, the transition

is generally less drastic for source coding diversity, especially
for smaller . The difference between the two systems is appar-
ently the outage-limited behavior of the multiplexing mode for
optimal channel coding diversity, for which the outage regions
are not well matched to the channel realizations. By contrast,
the transition between the two quality-limited trends for source
coding diversity is much less drastic, and this graceful degra-
dation property of source coding diversity leads to its better
performance over on–off channels. However, it is important to
note that there is negligible difference between optimal channel

(44)



LANEMAN et al.: SOURCE–CHANNEL DIVERSITY FOR PARALLEL CHANNELS 3527

Fig. 10. Average distortion performance over on–off channels. The plots show average distortion as a function of SNR; successively lower curves correspond
to no diversity (dotted lines), optimal channel coding diversity (dashed lines), and source coding diversity (solid lines), respectively. Each plot corresponds to a
different value for the probability � of a component channel being off, and all are for processing gain � = 1.

coding diversity and source coding diversity at both low and
high .

IV. CONTINUOUS-STATE CHANNELS

In cases where we are concerned with time- or frequency-se-
lective multipath fading in a mobile radio channel or a range
of possible interference levels in a cellular network, we can
model the channel state as taking on a continuum of values.
For example, multiplicative fading is commonly modeled as a
Rayleigh or Nakagami random variable in such scenarios. In
the following section, we study the average mean square dis-
tortion in the limit of high signal-to-noise ratio for such contin-
uous channels when the channel state is known to the receiver
but not the transmitter. Since the distortion generally behaves
as for such channels, we are mainly interested in com-
puting the distortion exponent defined as

(45)

Note that there is an important difference between the av-
erage or transmit signal-to-noise ratio which is deterministic and
known by both transmitter and receiver and the instantaneous or
block signal-to-noise ratio which is random and known only at
the receiver. Throughout the rest of the paper, we always use

to refer to the former and consider the random, instanta-
neous signal-to-noise ratio as a random variable.

In Section IV-G, we plot the distortion exponents as well as
the numerically computed average distortions for a Gaussian
source transmitted over a complex Rayleigh-fading AWGN
channel. Hence, the reader may find it useful to refer to Figs. 11
and 12 as a concrete example for comparing the following
results for the performance of each system.

A. Continuous-Channel Model

For continuous-state channels, the distribution of the mutual
information random variable is generally difficult to compute
exactly. For complex, AWGN channels with multiplicative
fading, however, the mutual information random variable is

, where corresponds to the multi-
plicative fading which is normalized so that so
that is the transmit power or, equivalently, the average
received power. For , we have

and so is close to .5 Thus, for additive Gaussian
noise channels with multiplicative fading, we can develop
asymptotic results by considering the first terms in the Taylor
series expansion of the distribution of near zero. More

5A similar expression can also be obtained for additive noise channels with
non-Gaussian noise (e.g., using techniques from [53], [54]).
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generally, we can focus on the high- limit by considering
the Taylor series expansion of the distribution for the mutual
information random variable for each channel.

Specifically, let and represent the probability den-
sity function (pdf) and cumulative distribution function (cdf) for
the mutual information, and let and represent the
pdf and cdf for .6 We consider the case where there exists
a parameter called such that

with (46)

and consequently, can be approximated via

(47)

Intuitively, represents the transmit signal-to-noise ratio or
the average signal-to-noise ratio, and is the probability
that the instantaneous signal-to-noise ratio is below . As intro-
duced in Section II-E1, the notion of approximation we use is
that if
and .

Returning to the example of AWGN channels with multi-
plicative fading, the channel model takes the form

(48)

where represents the fading and represents the additive
noise. A common approach is to obtain robustness by coding
over two separate frequency bands or time slots in which case
the channel model becomes

If we are interested in Rayleigh fading, then each has an
exponential distribution and at high signal-to-noise ratio, the cu-
mulative distribution function for is approximated
by and hence the parameters and in (45) are both
unity (e.g., see [55], [56] for a discussion of such high ex-
pansions).

B. No Diversity

Perhaps the simplest case to consider is when there is only a
single channel and no diversity is present. For such a scenario,
a natural approach is cascading an SD source encoder/decoder

/ with a single channel encoder/de-
coder / . In terms of our general joint

6 Recall that we assume the mutual information optimizing input distribution
is independent of the channel state. Hence, it makes sense to speak of the mutual
information distribution as given instead of a parameter controlled by the system
designer.

source–channel coding notation, such a system has the encoder
and decoder

(49a)

otherwise.
(49b)

Theorem 1: The distortion exponent for a system with no
diversity described by (49) is

(50)

where is the processing gain defined in Section II-D1 and is
the diversity order of the channel approximation in (47).

Proof: The average distortion is

(51)

(52)

(53)

(54)

Differentiating and setting equal to yields the minimizing dis-
tortion

Substituting this into (54) yields

(55)

where represents a term independent of . Thus,
the distortion exponent is .

C. Selection Channel Coding Diversity

Perhaps the simplest approach to using two independent
channels is to use SD source coding with repetition channel
coding and selection combining. In this scheme, the encoder
quantizes the source to , adds channel coding to produce ,
and repeats the result on both channels. The receiver decodes
the higher quality channel and ignores the other. Formally, the
encoder and decoder are given by (56a) and (56b) at the bottom
of the page, where correspond to
the SD source encoder/decoder and
correspond to the single channel encoder/decoder. Thus, the
quantized source signal will be recovered provided either

(56a)

and
otherwise (56b)
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channel is good. While such a scheme is suboptimal in terms
of resource use, it is simplest to understand and easiest to
implement. The following theorem (proved in Appendix I)
characterizes asymptotic performance.

Theorem 2: The distortion exponent for a system with selec-
tion channel coding diversity described by (56) is

(57)

where is the processing gain defined in Section II-D1 and is
the diversity order of the channel approximation in (47).

D. Multiplexed Channel Coding Diversity

A key drawback of repetition coding with selection com-
bining is that it wastes the potential bandwidth of one channel
in order to provide diversity. When the channel is usually good,
such a scheme can be significantly suboptimal. Hence, a com-
plementary approach is channel multiplexing where the source
is quantized using SD coding and this message is split over both
channels. We define a channel multiplexing system as one with
encoder and decoder given by (58a) and (58b) at the bottom of
the page, where , , corre-
spond to single channel encoders/decoders and ,

, correspond to the first and second half of the output of
a SD source encoder with decoder . If both chan-
nels are good enough to support successful decoding, then this
scheme can transmit roughly twice the rate of a repetition coding
system. The drawback is since either channel’s being bad can
cause decoding failure, the system is less robust. The following
theorem (proved in Appendix II) characterizes asymptotic per-
formance.

Theorem 3: The distortion exponent for a system with mul-
tiplexed channel coding diversity described by (58) is

(59)

where is the processing gain defined in Section II-D1 and is
the diversity order of the channel approximation in (47).

Intuitively, we expect that when bandwidth is plentiful and
outage is the dominating concern, the diversity provided by rep-
etition coding is more important than the extra rate provided by
channel multiplexing. When bandwidth is scarce, we expect the
reverse to be true. We can verify this intuition by examining the
distortion exponents in these two limits to obtain

(60)

(61)

The distortion exponents are equal if .

E. Optimal Channel Coding Diversity

Each of the previous schemes used SD source coding with
some form of independent channel coding and hence was subop-
timal. With SD source coding, the optimal strategy is to use par-
allel channel coding. In this scheme, the two component chan-
nels are treated as a single parallel channel with channel en-
coding and decoding performed jointly over both. Specifically,
we define optimal channel coding diversity as

(62a)

otherwise
(62b)

where / correspond to the SD source
encoder/decoder and / corre-
spond to the parallel channel encoder/decoder. Since parallel
channel coding optimally uses the channel resources, it dom-
inates both repetition coding with selection combining and
channel multiplexing as characterized by the following theorem
(proved in Appendix III).

Theorem 4: The distortion exponent for a system with op-
timal channel coding diversity described by (62) is

(63)

where is the processing gain defined in Section II-D1 and is
the diversity order of the channel approximation in (47).

F. Source Coding Diversity

Next, we consider the case where the source is trans-
mitted over a pair of independent channels using MD source
coding. Specifically, we consider a system (see (64a) and (64b)
at the bottom of the following page) where
and represent the two quantizations of the
source produced by the MD source coder,
represent the possible source decoders described, and

correspond to single channel
encoders/decoders. The performance of such a system is char-
acterized by Theorem 5 (proved in Appendix IV).

Theorem 5: The distortion exponent for source coding diver-
sity as described by (64) is

(65)

where is the processing gain defined in Section II-D1 and is
the diversity order of the channel approximation in (47).

When , MD source coding achieves diversity in the
sense that if either channel is bad but the other is good a coarse-

(58a)

0
otherwise (58b)
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TABLE I
DISTORTION EXPONENTS FOR AWGN CHANNELS WITH RAYLEIGH FADING

grained description of the source can be reconstructed while if
both channels are good, a fine-grained description can be re-
constructed. Therefore, in this regime, source coding diversity
dominates suboptimal channel coding diversity because it takes
advantage of the redundancy between descriptions at the source
coding layer.

When , however, the in (65) selects the second
term. In this regime, it is more important to maximizes the trans-
mitted rate than protect against fading. Thus, source coding di-
versity degenerates into multiplex channel coding diversity as
analyzed in Section IV-D.

In both regimes, optimal channel coding diversity dominates
source coding diversity.

G. Rayleigh-Fading AWGN Example

In this section, we evaluate the various distortion exponents
on a complex Rayleigh-fading AWGN channel. The high
approximation for the mutual information on each Rayleigh-
fading AWGN channel is , i.e., in
(47) (e.g., see [55], [56] for a discussion of such high ex-
pansions).

The resulting distortion exponents are summarized7 in Table I
and plotted in Fig. 11. When the processing gain is small (i.e.,

), multiplex and optimal channel coding diversity as
well as source coding diversity all approach a distortion ex-
ponent of , while selection channel coding diversity and no
diversity both approach distortion exponents of . Intuitively,
this occurs because bandwidth is scarce, and an efficient sys-
tems should try to maximize the information communicated
by sending different information on each channel. Multiplex
coding does this by sending different information on each
channel using the same code, optimal channel coding does this
by using a different code for each channel, and MD coding does

7 The distortion exponents in this paper are slightly different than in [49] due
to different definitions of the processing gain as described in Section II-D1.

Fig. 11. Distortion exponents for AWGN channels with Rayleigh fading as a
function of processing gain � in decibels. From top to bottom on the right-hand
side the curves correspond to optimal channel coding diversity (Section IV-E),
source coding diversity (Section IV-F), selection channel coding diversity
(Section IV-C), multiplexed channel coding diversity (Section IV-D), and no
diversity (Section IV-B).

this by sending different source descriptions on each channel.
Since neither selection diversity nor systems without diversity
provide any multiplexing gain (in the sense of [48]), both of
these systems achieve the same suboptimal distortion exponent.

When the processing gain is large (i.e., ), selection
and optimal channel coding diversity as well as source coding
diversity all approach a distortion exponent of , while systems
with multiplex channel coding diversity or no diversity achieve a
smaller distortion exponent of . Intuitively, this occurs because
bandwidth is plentiful, and even one good channel provides
plenty of rate to send a satisfactory description of the source.

(64a)
and

and

and

and
(64b)
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Fig. 12. Average distortion performance on a complex Rayleigh-fading
AWGN channel with processing gain � = 1. From top to bottom on
the right-hand side the curves correspond to no diversity (Section IV-B),
multiplexed channel coding diversity (Section IV-D), selection channel coding
diversity (Section IV-C), source coding diversity (Section IV-F), and optimal
channel coding diversity (Section IV-E).

Thus, efficient systems should try to maximize robustness by
being able to decode even if one channel fails completely.

At both extremes of processing gain, the best distortion expo-
nent can be achieved either by exploiting diversity at the phys-
ical layer via parallel channel coding or at the application layer
via MD coding. In some sense, this suggests that both physical-
layer and application-layer systems are flexible enough to incor-
porate the main principles of diversity for continuous channels.
Other suboptimal schemes such as selection channel coding di-
versity are less flexible in that they only incorporate a subset
of the important principles of diversity and thus approach the
best distortion exponent in at most one extreme of processing
gain. For all processing gains, however, the distortion exponent
of optimal channel coding diversity is superior to that of source
coding diversity, suggesting that the application-layer system is
missing something. In Section V, we show that the loss of source
coding diversity is essentially caused by separating the process
of channel decoding from source decoding.

Fig. 12 shows the exact average distortion for various sys-
tems transmitting over complex Rayleigh-fading AWGN chan-
nels with , where the parameters in the rate optimiza-
tions have been numerically computed for each system using
the high approximations. As the plot indicates, the dif-
ference in performance suggested by the asymptotic results in
Table I becomes evident even at reasonable . Indeed, as the
figure shows, optimal channel coding diversity is always supe-
rior to source diversity and achieves an advantage of a few deci-
belsat moderate . Source diversity is superior to selection
diversity by a similar margin. In contrast, Fig. 10 shows that
for on–off channels, source diversity is always better than op-
timal channel coding diversity for on–off channels. Evidently,

Fig. 13. Conceptual diagram of an MD quantizer. The source is mapped to
the quantizer bins labeled m = ENC ( ) and m = ENC ( ).
Since only overlapping pairs of indices are valid quantization values, if a
receiver accurately decodesm from the channel output , then there are only
two possible values for m in decoding a second channel output .

none of the systems considered so far are universally optimal
and the best way to achieve diversity depends on the qualitative
features of the channel. In the next section, we consider a joint
source–channel coding system which we show achieves the ben-
efits of source diversity for on–off channels and the benefits of
optimal channel diversity for continuous state channels.

V. SOURCE CODING DIVERSITY WITH JOINT DECODING

In this section, we consider source coding diversity with a
joint decoder that uses the redundancy in both the source code
and channel code to decode the received signal. Specifically,
we define source coding diversity with joint decoding to have
encoder and decoder

(66a)

(66b)

where / are single channel en-
coders (with potentially, but not necessarily, different codes),

/ are MD source encoders, and
is a joint source–channel decoder to be de-

scribed in the sequel.
The motivation for joint source–channel decoding is illus-

trated by considering the conceptual diagram of an MD quan-
tizer in Fig. 13. Since the two quantization indices
and are correlated, the channel decoder should
take this correlation into account. For example, if one channel
is good and is accurately decoded to
this decreases the number of possible values for and makes
decoding easier.

We show that a joint decoder that exploits this correlation
can enlarge the region where both and are successfully
decoded. Specifically, with separate decoding, both descriptions
are decoded when both and exceed some rate
threshold , which is denoted as region III in Fig. 3. A joint
decoder, however, also recovers both descriptions in region II
of Fig. 3 yielding the decoding regions shown in Fig. 14. With
these enlarged decoding regions, we show that source coding
diversity with joint source–channel decoding achieves the same
performance as optimal channel coding diversity for continuous
channels in addition to providing the benefits of source coding
diversity for on–off channels.
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Fig. 14. Decoding regions for a joint source–channel decoder.

A. System Description

Next we describe one way to implement the architecture in
(66) using an information-theoretic formulation and random
coding arguments.

1) Source Encoding: Choose a test-channel distribution
with the marginal distributions

for

(67)
Create a pair of rate (in nats per source sample) random source
codebooks, and by randomly generating se-
quences of length according to the i.i.d. test-channel distri-
butions . To encode a source, find a pair of codewords

, , such that the triple is strongly
typical. According to [28], encoding will succeed with proba-
bility approaching one if8

(68a)

(68b)

(68c)

2) Channel Encoding: For each channel, generate a rate
random codebook , by randomly selecting

sequences (or, equivalently, sequences) of length
according to the i.i.d. distribution . Encode the source

codeword in the th row of by mapping it to the th channel
codeword in .

3) Joint Decoding: Denote the output of channel as for
. To decode, create the lists , by finding

all channel codewords , such that the pair
is typical with respect to the distribution . Next
search for a unique pair of codewords with
and such that the corresponding source codewords

are typical with respect to the distribution .
If a unique pair is found, output the resulting source reconstruc-
tions. Otherwise, declare a decoding error.

4) Probability of Error: The following theorem provides an
achievable rate for source coding diversity with joint decoding.

8 Note that [28] also includes a term ^ which can be ignored (i.e., ^ can be
set to null or set to a constant such as 0) for our purposes.

Theorem 6: Joint decoding will succeed with probability ap-
proaching one if

(69)

Proof: Decoding can fail if either the correct pair of source
codewords are not typical or if an incorrect pair of source code-
words are typical. According to the law of large numbers, the
probability of the former event tends to zero as the block length
increases. Therefore, the union bound implies that if the prob-
ability of the latter tends to zero, then the total probability of a
decoding error also tends to zero.

The probability that an incorrect channel codewords is typical
according to is roughly . Since
there are possible codewords for each channel, the ex-
pected list sizes are

(70)

where the “ ” corresponds to the correct channel codeword and
denotes a quantity which goes to . Using standard arguments

it is possible to show that the actual list sizes will be close to the
expected list size with probability approaching one.

The probability that an incorrect pair of source codewords
corresponding to the channel codeword pair

with is typical is roughly . Multi-
plying this probability by the number of incorrect pairs yields
the expected number of incorrect codewords which are nonethe-
less typical

(71)

Therefore, after dividing through by and recalling that the
processing gain is defined as , we conclude that
decoding succeeds provided that (69) holds.

B. Performance

In order to analyze performance, we must first choose a dis-
tribution for the source and channel codebooks. Naturally, we
choose the mutual information optimizing input distribution for
each channel codebook . For the source codebook distribu-
tion, we use a simpler form of the additive noise test channel in
[28]

(72)

where is a pair of zero-mean, variance , Gaussian
random variables independent of and each other. For this dis-
tribution, the distortion when using only description is

. When both descriptions are received, they can be averaged
to yield distortion .

1) Performance on Continuous Channels: To derive the per-
formance on continuous channels, we must choose as a func-
tion of the channel parameters. The choice of determines the
rate and hence also the probability of outage and the distortion
exponent. Our goal is to show that source coding diversity with
joint decoding achieves the same distortion exponent as optimal
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channel coding diversity. Hence, instead of solving an optimiza-
tion problem to determine , we make an educated guess in-
spired by (104) to choose9

(73)

Theorem 7: The distortion exponent for source coding di-
versity with joint decoding is at least as good as that for optimal
channel coding diversity

(74)

Note that to achieve the distortion exponent in the previous
theorem, the MD source redundancy is used in two qualitatively
different ways. First, the redundancy between and is used
to recover the two source descriptions. In this sense, the source
coding redundancy acts like channel coding redundancy in pro-
viding robustness to noise.

Second, the redundancy between and is used to pro-
duce a better source reconstruction by combining the two de-
scriptions. For example, [7] describes a system where the quan-
tization noise for each description is independent of the source
and so by averaging the two descriptions, the quantization noise
power can be halved. Regardless of how the two descriptions
are combined into a higher resolution description, however, the
key benefit of joint source–channel decoding is that it can gain
the maximum benefit of the redundancy required by multiple
description coding both at the channel decoding stage and the
source decoding stage.

VI. CONCLUDING REMARKS

We considered various architectures to minimize the average
distortion in transmitting a source over independent parallel
channels. Conceptually, we view the overall channel quality
encountered by a system as a two-dimensional random variable
where the two axes correspond to the Shannon mutual infor-
mation for each channel. As illustrated in Fig. 3, the different
architectures considered essentially correspond to systems that
perform well when the channel quality is in a certain part of
this two-dimensional mutual information plane. Thus, mini-
mizing the distortion for a given channel model corresponds
to choosing an architecture matched to the shape of the overall
channel mutual information distribution.

For on–off channel models, where a channel either fails com-
pletely or functions normally, the overall channel mutual infor-
mation takes values on the Cartesian product of a finite set. This
shape is well matched to source coding diversity, i.e., MD source
coding and independent channel coding, that exploits diversity
at the application layer. Specifically, in the high signal-to-noise
ratio regime, it is essential that both channels carry redundant
information so that if one channel fails the signal can still be de-
coded from the surviving channel. This forces channel coding
diversity to use complete redundancy, and so the distortion when
both channels are on is the same as when only one channel is

9 Technically, it would be better to choose � to be proportional to the right-
hand side of (73) with a complicated proportionality constant. Since distortion
exponent analysis essentially ignores constant factors, however, we ignore this
refinement to simplify the exposition.

on. In contrast, source coding diversity can use only partial re-
dundancy by sending slightly different signals on each channel.
When both channels are on, the differences in the two received
descriptions lead to a higher resolution reconstruction and lower
distortion. Therefore, source coding diversity achieves substan-
tially better performance than channel coding diversity as illus-
trated in Fig. 10.

In contrast, for fading, shadowing, and similar effects, the
overall channel mutual information takes on a continuous range
of values. This shape is better suited to optimal channel coding
diversity that exploits diversity at the physical layer. Specifi-
cally, in the high signal-to-noise ratio regime, optimal channel
coding diversity takes advantage of redundancy between the in-
formation transmitted across each channel while source coding
diversity with separate decoding cannot. As one of our main re-
sults, we showed that for such channels the average distortion
asymptotically behaves as . In particular, we calculated
the distortion exponent for various architectures and showed
that the distortion exponent for optimal channel coding diversity
is strictly better than for source coding diversity.

Finally, we demonstrated that there is no inherent flaw in
source coding diversity on continuous channels. Instead, the
inferior distortion exponent of source coding diversity is due to
the suboptimality of separate source and channel decoding. If
joint source–channel decoding is allowed, source coding diver-
sity achieves the same distortion exponent as optimal channel
coding diversity. Thus, for the nonergodic channels considered
in this paper, Shannon’s source–channel separation theorem
fails,10 and the best overall performance among schemes we
consider is achieved by a joint source–channel architecture
using multiple description coding.

Although this paper explores a variety of architectures, many
aspects of the detailed design, analysis, and implementation
of such systems remain to be addressed. On the information
theory side, determining the best possible average distortion,
or at least lower bounds to the best distortion, would be a
valuable step. Similarly, determining the performance for
architectures using broadcast channel codes combined with
successive refinement source codes, hybrid digital–analog
codes, or other joint source–channel architectures would be in-
teresting. Also, determining second-order performance metrics
beyond the distortion exponent would be useful in designing
practical systems. Some issues of interest in signal processing
and communication theory include developing practical codes
achieving the theoretical advantages of joint source–channel
decoding, generalizing the results in this paper to sources with

10 We believe that the main value of Shannon’s original source–channel sepa-
ration theorem was in showing that the source coder could be designed without
regard for the channel noise, while the channel coder could be designed without
regard for the semantics of the source. Specifically, Shannon’s separation the-
orem showed that it was sufficient for the source coder and channel coder to
simply exchange bits describing a single discrete message representing hard
decisions. Thus, even though the system in Section V has separate encoding
and only the decoding is performed jointly, we say that the separation theorem
breaks down. Specifically, such a joint decoding system would need to pass lists,
log-likelihood ratios, or similar information from the channel coding layer to the
source coding layer and back again. Even though such information could be rep-
resented using bits (e.g., by quantizing log-likelihood ratios), the source coder
must incorporate soft information from the channel and the channel coder must
incorporate soft information from the source coder.
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memory or correlated channels (e.g., as found in multiple-an-
tenna systems), and studying the effect of imperfect channel
state information at the receiver. Finally, a wide array of similar
questions arise in a variety of network problems such as relay
channels, multihop channels, and interference channels. For
network scenarios, both the number of possible architectures as
well as the advantages of sophisticated systems will be larger.

APPENDIX I
DISTORTION EXPONENT FOR SELECTION

CHANNEL CODING DIVERSITY

Proof of Theorem 2

The minimum expected distortion for such a scheme is com-
puted as follows:

(75)

(76)

(77)

(78)

Differentiating and setting equal to zero yields

(79)

and thus,

(80)

where is a constant independent of .

APPENDIX II
DISTORTION EXPONENT FOR MULTIPLEXED CHANNEL

CODING DIVERSITY

Proof of Theorem 3

The minimum expected distortion for such a scheme is com-
puted as

(81)

(82)

(83)

(84)

Differentiating and setting equal to zero yields the optimizing
distortion

(85)

and thus

(86)

where is a constant independent of .

APPENDIX III
DISTORTION EXPONENT FOR OPTIMAL CHANNEL

CODING DIVERSITY

Before proving Theorem 4 we require the following lemma
characterizing the mutual information for the parallel channel
in terms of probability distribution for each sub-channel.

Lemma 1: Let

be the mutual information for the total channel and assume that
the density and distribution for each subchannel is given by (46)
and (47). If we define the cdf for as then

(87)

in the sense that the ratio of these quantities goes to as
.

Proof: Note that for any random variable with density
, we have

and (88)

Therefore, we can obtain the desired result by computing the
pdf , via convolution, and applying (88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

where (91) follows from the high approximation in (46),
(96) follows from substituting(93) into (95) and noting that since

is positive then is nonzero only for , and
the final line follows from noting that the last parenthesized term
in (97) is negligible at high .
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(99)

(100)

(101)

(102)

Proof of Theorem 4: To compute the minimum average
distortion we have (99)–(102) at the top of the page. By noting
that the parenthesized term in (102) is between and

when , we obtain

(103)
Differentiating the lower bound and setting equal to zero yields
the optimizing distortion

(104)

Substituting (104) into (103) yields

(105)

where and are terms independent of . Hence, we
conclude that the distortion exponent is

(106)

APPENDIX IV
DISTORTION EXPONENT FOR SOURCE CODING DIVERSITY

Proof of Theorem 5

For small and , the average distortion is shown in
(107)–(110) at the bottom of the page. Substituting the bounds
from (30) into (110) yields (111a) and (111b), also at the bottom
of the page, where (111b) requires and (111a) also re-
quires .

When then (111) increases as becomes small.
Hence, in this regime the optimal choice for approaches a
constant bounded away from zero. If the low-distortion formula
for the lower bound is used, then the optimal choice for ap-
proaches one. Technically, however, for , the rate re-
quired is given by (26b) not (26a), so there is no excess rate
in MD coding [16], [28] and the optimal for ap-
proaches using (26b). In any case, regardless of whether

or or some other intermediate value, when
, average distortion is minimized by choosing to be

large. Thus, for , the optimal MD system essentially
degenerates into the channel multiplexing scheme analyzed in
Section IV-D and achieves the same distortion exponent (al-
though with a slightly different constant factor term).

(107)

(108)

(109)

(110)

(111a)

(111b)
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When , we can find the optimal value for by differ-
entiating the lower bound with respect to and setting equal
to to obtain

(112)
For the case when , substituting (112) into (111b) yields

for (113)

where is a constant independent of and . Differen-
tiating with respect to and setting the result equal to zero
yields the optimal value for

(114)

from which we conclude

(115)

where the occurs since MD coding essentially degenerates
into channel multiplexing with a better constant factor when

.

APPENDIX V
DISTORTION EXPONENT FOR SOURCE CODING DIVERSITY

WITH JOINT DECODING

Computing the exact rates required to guarantee successful
encoding in (68) is generally difficult, thus, we focus on the
high-resolution limit in the following lemma.

Lemma 2: Let be a source with finite variance and finite
entropy power. Then in the high-resolution limit, choosing

(116)

asymptotically satisfies (68) and guarantees successful en-
coding.

Proof: Proving the claim requires showing that

for

(117)
and

(118)

The former follows from the fact that the Shannon lower
bound is asymptotically tight [50]. In the interest of complete-
ness, however, we define as left- hand side of (117) and
summarize the argument showing that it goes to zero

(119)

(120)

(121)

(122)

(123)

Equations (120) and (121) follow from the choice of the condi-
tional distribution where is independent of . The
key step in going from (122) to (123) is the “continuity” prop-
erty of differential entropy [50, Theorem 1] which is the main
tool in obtaining many high-resolution source coding results.

A similar chain of equalities establishes (118). Specifically,
if we define the right-hand side of (118) as then we obtain
(124)–(128) at the bottom of the page, where (127) follows by
noting that (126) is simply twice (119), and hence, (128) follows
from (123).

In the sequel, we require the following lemma which states
that, in the high resolution limit, the two descriptions, and

, only differ in half a bit per sample. This close relationship
between the two descriptions enables the joint decoder to ap-
proach the performance of parallel channel coding with a single
description.

Lemma 3: If the rate is chosen according to (116), specifi-
cally, if the difference between the two sides is , then

(129)

Proof: We have the following chain of inequalities:

(130)

(131)

(132)

(124)

(125)

(126)

(127)

(128)
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(133)

(134)

(135)

(136)

(137)

(138)

Most of the arguments follow from well-known properties of
mutual information and entropy. Equation (138) follows from
Lemma 2.

Proof of Theorem 7: If we choose as in (73), the ex-
pected distortion is at most the distortion when both descriptions
are successfully decoded times the probability that both descrip-
tions are not decoded. Hence, applying Theorem 6 yields

(139)

where denotes the event that both descriptions can be decoded
as defined in (69) and is the complement of . Note that
since , the first term on the right-hand side of (139)
is proportional to by construction due to our
choice of in (73). Therefore, to prove the theorem, we need
to bound the second term .

If we let (with ) denote the event that the first
operation in returns the th argument while the second
operation in returns the th argument, then we can ex-

press the second term in (139) as

(140)

To prove the theorem, it is sufficient to show that for every ,
there exists a constant such that

for large enough .
Conditioned on , both and

, so both channels are good enough to
decode each description separately. Thus, , and
therefore, as well. This takes care of
the first term in (140).

Next we consider the second term of (140). Conditioned on
, only while and only

description can be decoded separately. Description can be
decoded jointly provided that .
By applying Lemma 3, this condition becomes

in the high-resolution limit, therefore,

(141)

(142)

(143)

(144)

(145)

(146)

where in going from (143) to (144) we replaced with
and recalled that we assumed

just after (23).
Thus, for some constant , and every , there

exists an large enough such that

(147)

and

(148)

A similar analysis works for the third term of (140).
Finally, we consider the last term in (140). Conditioned on

, both and , so neither
channel is good enough for separate decoding. Successful joint
decoding requires

(149)

and therefore,

(150)

(151)

(152)

(153)

(154)

(155)

where (151) follows since Lemma 3 implies

(156)

is a quantity which can be made arbitrarily small, and
is some constant independent of .

The above results combined with

proves the desired result.
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[16] V. K. Goyal and J. Kovačević, “Generalized multiple description coding
with correlating transforms,” IEEE Trans. Inf. Theory, vol. 47, no. 6, pp.
2199–2224, Sep. 2001.

[17] V. K. Goyal, “Multiple description coding: Compression meets the net-
work,” IEEE Signal Process. Mag., vol. 18, pp. 74–93, Sep. 2001.

[18] N. Kamaci, Y. Altunbasak, and R. M. Mersereau, “Multiple description
coding with multiple transmit and receive antennas for wireless chan-
nels: The case of digital modulation,” in Proc. IEEE Global Communi-
cation Conf. (GLOBECOM), vol. 6, San Antonio, TX, Nov. 2001, pp.
3272–3276.

[19] C.-S. Kim and S.-U. Lee, “Multiple description coding of motion
fields for robust video transmission,” IEEE Trans. Circuits Syst. Video
Technol., vol. 11, no. 9, pp. 999–1010, Sep. 2001.

[20] S. S. Pradhan, R. Puri, and K. Ramchandran, “n-Channel symmetric
multiple descriptions, Part I: (n; k) source-channel erasure codes,”
IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 47–61, Jan. 2004.

[21] R. Venkataramani, G. Kramer, and V. K. Goyal, “Bounds on the achive-
able rate region for certain multiple description coding problems,” in
Proc. IEEE Int. Symp. Information Theory, Washington, DC, Jun. 2001,
p. 148.

[22] Y. Wang, M. T. Orchard, V. Vaishampayan, and A. R. Reibman, “Mul-
tiple description coding using pairwise correlating transforms,” IEEE
Trans. Image Process., vol. 10, no. 3, pp. 351–366, Mar. 2001.

[23] R. Zamir, “Gaussian codes and Shannon bounds for multiple descrip-
tions,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2629–2635, Nov.
1999.

[24] Z. Zhang and T. Berger, “Multiple description source coding with no ex-
cess marginal rate,” IEEE Trans. Inf. Theory, vol. 41, no. 2, pp. 349–357,
Mar. 1995.

[25] V. A. Vaishampayan, “Design of multiple description scalar quantizers,”
IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 821–834, May 1993.

[26] Z. Zhang and T. Berger, “New results in binary multiple descriptions,”
IEEE Trans. Inf. Theory, vol. IT-33, no. 4, pp. 502–521, Jul. 1987.

[27] R. F. Ahlswede, “The rate-distortion region for multiple descriptions
without excess rate,” IEEE Trans. Inf. Theory, vol. IT-31, no. 6, pp.
721–726, Nov. 1985.

[28] A. A. El Gamal and T. M. Cover, “Achievable rates for multiple descrip-
tions,” IEEE Trans. Inf. Theory, vol. IT-28, no. 6, pp. 851–857, Nov.
1982.

[29] H. Witsenhausen and A. D. Wyner, “Source coding for multiple descrip-
tions II: A binary source,” Bell Labs, Tech. Rept. TM-80-1217, 1980.

[30] Q. Zhao and M. Effros, “Lossless and near-lossless source coding for
multiple access networks,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp.
112–128, Jan. 2003.

[31] G. Caire and S. Shamai (Shitz), “On achievable throughput of a multiple-
antenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49,
no. 7, pp. 1691–1706, Jul. 2003.

[32] L. Li and A. J. Goldsmith, “Capacity and optimal resource allocation for
fading broadcast channels—Part I: Ergodic capacity,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 1083–1102, Mar. 2001.

[33] , “Capacity and optimal resource allocation for fading broadcast
channels—Part II: Outage capacity,” IEEE Trans. Inf. Theory, vol. 47,
no. 3, pp. 1103–1127, Mar. 2001.

[34] S. Shamai (Shitz), “A broadcast strategy for the Gaussian slowly fading
channel,” in Proc. IEEE Int. Symp. Information Theory, Ulm, Germany,
Jun./Jul. 1997, p. 150.

[35] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2524–2530, Oct. 1998.

[36] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[37] S.-Y. Chung, “On the construction of some capacity approaching coding
schemes,” Ph.D. dissertation, MIT, Cambridge, MA, 2000.

[38] B. Chen and G. W. Wornell, “Efficient channel coding for analog sources
using chaotic systems,” in Proc. IEEE Global Communications Conf.
(GLOBECOM), vol. 1, London, U.K., Nov. 1996, pp. 131–135.

[39] , “Analog error-correcting codes based on chaotic dynamical sys-
tems,” IEEE Trans. Commun., vol. 46, no. 7, pp. 881–890, Jul. 1998.

[40] Z. Reznic, R. Zamir, and M. Feder, “Joint source-channel coding of a
Gaussian mixture source over the Gaussian broadcast channel,” IEEE
Trans. Inf. Theory, vol. 48, no. 3, pp. 776–781, Mar. 2002.

[41] U. Mittal and N. Phamdo, “Hybrid digital–analog (HDA) joint
source–channel codes for broadcasting and robust communications,”
IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1082–1102, May 2002.

[42] H. Witsenhausen, “On source networks with minimal breakdown degra-
dation,” Bell Syst. Tech. J., vol. 59, pp. 1083–1087, Jul./Aug. 1980.

[43] J. Wolf, A. Wyner, and J. Ziv, “Source coding for multiple descriptions,”
Bell Syst. Tech. J., vol. 59, pp. 1417–1426, Oct. 1980.

[44] L. Ozarow, “On a source coding problem with two channels and three
receivers,” Bell Syst. Tech. J., vol. 59, pp. 1909–1921, Dec. 1980.

[45] T. Berger and Z. Zhang, “Minimum breakdown degradation in binary
source encoding,” IEEE Trans. Inf. Theory, vol. IT-29, no. 6, pp.
807–814, Nov. 1983.

[46] B. Rimoldi, “Successive refinement of information: Characterization
of the achievable rates,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp.
253–259, Jan. 1994.

[47] L. H. Ozarow, S. Shamai (Shitz), and A. D. Wyner, “Information
theoretic considerations for cellular mobile radio,” IEEE Trans. Veh.
Technol., vol. 43, no. 3, pp. 359–378, May 1994.

[48] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49,
no. 5, pp. 1073–1096, May 2003.

[49] J. N. Laneman, E. Martinian, G. W. Wornell, J. G. Apostolopoulos, and
S. J. Wee, “Comparing application- and physical-layer approaches to di-
versity on wireless channels,” in Proc. IEEE Int. Communications Conf.,
vol. 4, Anchorage, AK, May 2003, pp. 2678–2682.

[50] T. Linder and R. Zamir, “On the asymptotic tightness of the Shannon
lower bound,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 2026–2031,
Nov. 1994.



LANEMAN et al.: SOURCE–CHANNEL DIVERSITY FOR PARALLEL CHANNELS 3539

[51] A. Lapidoth, “On the role of mismatch in rate distortion theory,” IEEE
Trans. Inf. Theory, vol. 43, no. 1, pp. 38–47, Jan. 1997.

[52] D. Sakrison, “Worst sources and robust codes for difference distortion
measures,” IEEE Trans. Inf. Theory, vol. IT-21, no. 3, pp. 301–309, May
1975.

[53] R. Zamir and U. Erez, “A Gaussian input is not too bad,” IEEE Trans.
Inf. Theory, vol. 50, no. 6, pp. 1362–1367, Jun. 2004.

[54] E. Martinian. Waterfilling Gains O(1=SNR) at High SNR. [Online].
Available: http://www.csua.berkeley.edu/~emin/research/wfill.pdf

[55] J. N. Laneman and G. W. Wornell, “Distributed space–time-coded pro-
tocols for exploiting cooperative diversity in wireless networks,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[56] Z. Wang and G. B. Giannakis, “What determines average and outage
performance in fading channels?,” in Proc. IEEE Global Communica-
tions Conf., Taipei, Taiwan, R.O.C., Nov. 2002.


	toc
	Source Channel Diversity for Parallel Channels
	J. Nicholas Laneman, Member, IEEE, Emin Martinian, Member, IEEE,
	I. I NTRODUCTION

	Fig. 1. Conceptual illustration of the parallel diversity coding
	Fig. 2. Transmitter and channel block diagrams for (a) channel c
	Fig. 3. Conceptual illustration of successful decoding regions f
	A. Related Research
	B. Outline
	II. S YSTEM M ODEL
	A. Notation
	B. Source Model
	C. (Parallel) Channel Model
	D. Architectural Options
	1) Joint Source Channel Diversity: In the most general setup, jo



	Fig. 4. Channel coding diversity.
	Fig. 5. Source coding diversity system model described more prec
	2) Channel Coding Diversity: From one perspective, a natural way
	3) Source Coding Diversity: Instead of exploiting diversity thro
	4) Source Coding Diversity With Joint Decoding: Finally, we also

	Fig. 6. Source coding diversity with joint source channel decodi
	E. High-Resolution Approximations for Source Coding
	1) SD Source Coding: In SD source coding, or classical rate-dist
	2) MD Source Coding: In contrast to SD coding, MD source coding 

	III. O N O FF C OMPONENT C HANNELS
	A. Component Channel Model
	B. No Diversity
	C. Optimal Channel Coding Diversity
	Fig. 7. Outage region boundaries for optimal parallel channel co

	D. Source Coding Diversity


	Fig. 8. Average distortion performance with $\epsilon =10^{-2}$ 
	Fig. 9. Outage region boundaries for MD source coding with indep
	E. Comparison

	Fig. 10. Average distortion performance over on off channels. Th
	IV. C ONTINUOUS -S TATE C HANNELS
	A. Continuous-Channel Model
	B. No Diversity
	Theorem 1: The distortion exponent for a system with no diversit
	Proof: The average distortion is $$\eqalignno{E[ {\ssi D}] = &\,


	C. Selection Channel Coding Diversity
	Theorem 2: The distortion exponent for a system with selection c

	D. Multiplexed Channel Coding Diversity
	Theorem 3: The distortion exponent for a system with multiplexed

	E. Optimal Channel Coding Diversity
	Theorem 4: The distortion exponent for a system with optimal cha

	F. Source Coding Diversity
	Theorem 5: The distortion exponent for source coding diversity a



	TABLE I D ISTORTION E XPONENTS FOR AWGN C HANNELS W ITH R AYLEIG
	G. Rayleigh-Fading AWGN Example

	Fig. 11. Distortion exponents for AWGN channels with Rayleigh fa
	Fig. 12. Average distortion performance on a complex Rayleigh-fa
	Fig. 13. Conceptual diagram of an MD quantizer. The source $ {\s
	V. S OURCE C ODING D IVERSITY W ITH J OINT D ECODING
	Fig. 14. Decoding regions for a joint source channel decoder.
	A. System Description
	1) Source Encoding: Choose a test-channel distribution $p_{ {\ss
	2) Channel Encoding: For each channel, generate a rate $ R$ rand
	3) Joint Decoding: Denote the output of channel $j$ as $ {\bf {\
	4) Probability of Error: The following theorem provides an achie
	Theorem 6: Joint decoding will succeed with probability approach
	Proof: Decoding can fail if either the correct pair of source co


	B. Performance
	1) Performance on Continuous Channels: To derive the performance
	Theorem 7: The distortion exponent for source coding diversity w


	VI. C ONCLUDING R EMARKS
	D ISTORTION E XPONENT FOR S ELECTION C HANNEL C ODING D IVERSITY
	Proof of Theorem 2

	D ISTORTION E XPONENT FOR M ULTIPLEXED C HANNEL C ODING D IVERSI
	Proof of Theorem 3

	D ISTORTION E XPONENT FOR O PTIMAL C HANNEL C ODING D IVERSITY
	Lemma 1: Let $${\ssi I}( {\bf {\ssb x}}; {\bf {\ssb y}}) = {\ssi
	Proof: Note that for any random variable $ {\ssi a}$ with densit
	Proof of Theorem 4: To compute the minimum average distortion we


	D ISTORTION E XPONENT FOR S OURCE C ODING D IVERSITY
	Proof of Theorem 5

	D ISTORTION E XPONENT FOR S OURCE C ODING D IVERSITY W ITH J OIN
	Lemma 2: Let $ {\ssi s}$ be a source with finite variance and fi
	Proof: Proving the claim requires showing that $$\lim _{D_{j} \r

	Lemma 3: If the rate is chosen according to (116), specifically,
	Proof: We have the following chain of inequalities: $$\eqalignno
	Proof of Theorem 7: If we choose $\sigma ^{2}$ as in (73), the e


	W. H. R. Equitz and T. M. Cover, Successive refinement of inform
	S. S. Pradhan, R. Puri, and K. Ramchandran, $n$ -Channel symmetr
	R. Venkataramani, G. Kramer, and V. Goyal, Multiple description 
	J. G. Apostolopoulos, W.-T. Tan, S. J. Wee, and G. W. Wornell, M
	J. Barros, J. Hagenauer, and N. Görtz, Turbo cross decoding of m
	H. Coward, R. Knopp, and S. Servetto . On the performance of a n
	Y. Frank-Dayan and R. Zamir, Dithered lattice-based quantizers f
	A. R. Reibman, H. Jafarkhani, Y. Wang, M. T. Orchard, and R. Pur
	X. Tang and A. Zakhor, Matching pursuits multiple description co
	Y. Wang and S. Lin, Error-resilient video coding using multiple 
	M. Alasti, K. Sayrafian-Pour, A. Ephremides, and N. Farvardin, M
	J. G. Apostolopoulos and S. J. Wee, Unbalanced multiple descript
	J. G. Apostolopoulos, Reliable video compression over lossy pack
	N. At and Y. Altunbasak, Multiple description coding for wireles
	H. Coward, R. Knopp, and S. D. Servetto, On the performance of m
	V. K. Goyal and J. Kova evi, Generalized multiple description co
	V. K. Goyal, Multiple description coding: Compression meets the 
	N. Kamaci, Y. Altunbasak, and R. M. Mersereau, Multiple descript
	C.-S. Kim and S.-U. Lee, Multiple description coding of motion f
	S. S. Pradhan, R. Puri, and K. Ramchandran, $n$ -Channel symmetr
	R. Venkataramani, G. Kramer, and V. K. Goyal, Bounds on the achi
	Y. Wang, M. T. Orchard, V. Vaishampayan, and A. R. Reibman, Mult
	R. Zamir, Gaussian codes and Shannon bounds for multiple descrip
	Z. Zhang and T. Berger, Multiple description source coding with 
	V. A. Vaishampayan, Design of multiple description scalar quanti
	Z. Zhang and T. Berger, New results in binary multiple descripti
	R. F. Ahlswede, The rate-distortion region for multiple descript
	A. A. El Gamal and T. M. Cover, Achievable rates for multiple de
	H. Witsenhausen and A. D. Wyner, Source coding for multiple desc
	Q. Zhao and M. Effros, Lossless and near-lossless source coding 
	G. Caire and S. Shamai (Shitz), On achievable throughput of a mu
	L. Li and A. J. Goldsmith, Capacity and optimal resource allocat
	S. Shamai (Shitz), A broadcast strategy for the Gaussian slowly 
	T. M. Cover, Comments on broadcast channels, IEEE Trans. Inf. Th
	T. M. Cover and J. A. Thomas, Elements of Information Theory . N
	S.-Y. Chung, On the construction of some capacity approaching co
	B. Chen and G. W. Wornell, Efficient channel coding for analog s
	Z. Reznic, R. Zamir, and M. Feder, Joint source-channel coding o
	U. Mittal and N. Phamdo, Hybrid digital analog (HDA) joint sourc
	H. Witsenhausen, On source networks with minimal breakdown degra
	J. Wolf, A. Wyner, and J. Ziv, Source coding for multiple descri
	L. Ozarow, On a source coding problem with two channels and thre
	T. Berger and Z. Zhang, Minimum breakdown degradation in binary 
	B. Rimoldi, Successive refinement of information: Characterizati
	L. H. Ozarow, S. Shamai (Shitz), and A. D. Wyner, Information th
	L. Zheng and D. N. C. Tse, Diversity and multiplexing: A fundame
	J. N. Laneman, E. Martinian, G. W. Wornell, J. G. Apostolopoulos
	T. Linder and R. Zamir, On the asymptotic tightness of the Shann
	A. Lapidoth, On the role of mismatch in rate distortion theory, 
	D. Sakrison, Worst sources and robust codes for difference disto
	R. Zamir and U. Erez, A Gaussian input is not too bad, IEEE Tran
	E. Martinian . Waterfilling Gains $O(1/{\rm {SNR}})$ at High SNR
	J. N. Laneman and G. W. Wornell, Distributed space time-coded pr
	Z. Wang and G. B. Giannakis, What determines average and outage 



