
IEEE International Conference on Image Processing, Thessaloniki, Greece, October 2001.

SECURE SCALABLE STREAMING ENABLING TRANSCODING WITHOUT DECRYPTION

Susie J. Wee and John G. Apostolopoulos

Streaming Media Systems Group
Hewlett-Packard Laboratories, Palo Alto, CA USA

ABSTRACT

We present a method of secure scalable streaming (SSS) that
enables low-complexity and high-quality transcoding to be per-
formed at intermediate, possibly untrusted, network nodes with-
out compromising the end-to-end security of the system. SSS
encodes video into secure scalable packets using jointly designed
scalable coding and progressive encryption techniques. This com-
bination allows downstream transcoders to perform transcoding
operations such as bitrate reduction and spatial downsampling by
simply truncating or discarding packets, and without decrypting
the data. Secure scalable packets have unencrypted headers that
can provide hints such as optimal truncation points to downstream
transcoders. Using these hints, downstream transcoders can per-
form RD-optimal transcoding for fine-grain bitrate reduction. The
SSS transcoding operation has low complexity and is stateless, so
SSS transcoders can support many simultaneous transcoding ses-
sions. SSS works with existing scalable image and video com-
pression standards and systems including Motion JPEG-2000, 3D
subband coding, and MPEG-4 FGS.

1. INTRODUCTION

A successful video streaming system must be able to stream video
to heterogeneous clients over time-varying communication links
in a scalable, efficient, and secure manner. Scalability is needed
to enable streaming to a multitude of clients with different device
capabilities. Efficiency is needed to maximize the utility of avail-
able network and device resources. Security is important to protect
content from eavesdroppers. In order to achieve scalability and
efficiency in streaming media environments, one must be able to
easily adapt or transcode the compressed video stream at interme-
diate network nodes for particular client capabilities or network
conditions. Transcoders perform processing operations on com-
pressed bitstreams; useful network transcoding operations include
bitrate reduction, rate shaping, spatial downsampling, frame rate
reduction, and changing compression formats.

While network transcoding facilitates scalability and efficiency
in video streaming systems, it also presents a number of chal-
lenges. First, network transcoding poses a serious threat to the
security of the streaming system because transcoding encrypted
streams generally requires decrypting the stream, transcoding the
decrypted stream, and then re-encrypting the result as shown in
Figure 1. Since every transcoder must decrypt the stream, each
network transcoding node presents a possible breach to the se-
curity of the entire system. Furthermore, while computationally
efficient transcoding algorithms have been developed [1, 2, 3, 4],
even these improved algorithms are not well-suited for process-
ing multiple streams at intermediate network nodes. In addition to
the prohibitive computational requirements needed to hold parallel

Encode Packetize Encrypt

(a)

TranscodeDecrypt Encrypt

(b)

Fig. 1. Conventional (a) secure streaming and (b) transcoding.

transcoding sessions, network transcoders would have to maintain
state information for each transcoding session.

In this work, we present a framework for video streaming
that simultaneously achieves the three goals of scalability, effi-
ciency, and security despite these challenges. This is accomplished
with our proposed method of secure scalable streaming (SSS). SSS
encodes video into secure scalable packets that can be streamed
across networks to heterogeneous clients. These secure scalable
packets can be transcoded to lower bitrates and resolutions at inter-
mediate network nodes with very low-complexity processing and
without decryption. Thus, SSS enables low-complexity network
transcoding without compromising the end-to-end security of the
system.

This paper is outlined as follows. Section 2 describes the fun-
damental concepts behind SSS and presents a general SSS coder
and SSS transcoder. Section 3 discusses properties inherent to SSS
transcoding. Section 4 describes how a number of existing scalable
video coders and scalable image/video compression standards can
be used in an SSS framework.

2. SECURE SCALABLE STREAMING

Our proposed method of Secure Scalable Streaming (SSS) encodes
video into secure scalable packets that can be streamed across net-
works and transcoded at intermediate network nodes with low-
complexity processing and without decryption. SSS is based on
effectively combining scalable coding and progressive encryption
techniques.

2.1. Scalable Coding

Scalable video coding encodes a video sequence into a scalable
bitstream with prioritized importance such that the first segment
of the scalable bitstream can be used to decode baseline-quality
video, and progressively longer segments can be used to decode



progressively improved video. The scalability of the bitstream
can have varying degrees of granularity, as coarse as stream-by-
stream granularity where layers are placed in different streams,
and nearly as fine as bit-by-bit granularity where each additional
bit refines the video quality. The video quality can be layered by
one or more factors, such as spatial resolution (spatial scalabil-
ity), bit plane resolution (SNR scalability), or frame rate (temporal
scalability). Some image and video compression standards such as
JPEG-2000 and MPEG-4 incorporate various forms of scalability
and are discussed further in Section 4. Note that when video is
coded into a scalable bitstream, lower bitrate or lower resolution
bitstreams can be formed by appropriate truncation of the original
scalable bitstream.

2.2. Progressive Encryption

If an entire bitstream was encrypted with one long block code,
it would not be decryptable unless it was received in its entirety.
In order to allow smaller portions of the bitstream to be decrypt-
able, the bitstream could be divided into small blocks which are
encrypted independently. While independent block processing is
attractive, the use of small block sizes is not very secure. A large
degree of security can be added by encrypting small blocks se-
quentially, and feeding the encrypted data of earlier blocks into
the encryption of later blocks as shown in Figure 2. One well-
known encryption method that provides this property is called ci-
pher block chaining [5]. In cipher block chaining, a small block
of plaintext is first encrypted into ciphertext, this ciphertext is then
XORed with the next block of plaintext and the result is encrypted
into the next block of ciphertext. This is repeated for the remainder
of the plaintext data stream. The resulting decryption operation is
also sequential. The first small block of ciphertext is decrypted
into plaintext. Then, the second block of ciphertext is decrypted
and the result is XORed with the ciphertext from the previous
block. This is repeated until the entire message is decrypted. Note
that uniform or variable block sizes could be used. For example,
larger block sizes could be used at the beginning of the stream and
smaller block sizes could be used at the end.

Similar to cipher block chains, stream ciphers [5] also encrypt
and decrypt data sequentially. Stream ciphers encrypt plaintext
into ciphertext one bit at a time. They use a keystream generator
to calculate a stream of bits called a running key. This running key
is XORed with the plaintext to produce the ciphertext. Decryption
requires calculating the same running key and XORing it with the
ciphertext.

We refer to methods that encrypt and decrypt data sequentially
as progressive encryption methods. Note that when a data stream
is encrypted with progressive encryption, earlier portions of the
encrypted data can be decrypted even if later portions are not avail-
able.

EE EE EE EE

Cipher block chains

Stream
Cipher

Stream ciphers

Stream
Cipher

Stream ciphers

Fig. 2. Progressive encryption methods encrypt and decrypt data
sequentially.

2.3. Scalable Coding and Progressive Encryption Enabling Low-
Complexity Transcoding

Scalable coding can be used to prioritize or layer data by reso-
lution or SNR. In scalable coding, earlier portions of the scal-
able stream can be decoded without requiring later portions of the
stream. In progressive encryption, earlier segments of ciphertext
can be decrypted without requiring later segments of ciphertext.
These properties make scalable coding and progressive encryp-
tion a nice match for secure scalable streaming. Specifically, by
combining scalable coding and progressive encryption as shown
in Figure 3a, scalably encoded video may be transmitted across
a network in encrypted form; and, downstream transcoders may
perform transcoding operations such as bitrate reduction or spatial
downsampling by simply truncating the bitstream as shown in Fig-
ure 3b. Since the transcoding operation does not require decryp-
tion, it does not threaten the end-to-end security of the system.

Scalable
Coding

Scalable
Coding

Progressive
Encryption

Progressive
Encryption

Scalable
Data

Scalable
Data

Secure,
Scalable

Data

Secure,
Scalable

Data

Original
Data

Original
Data

(a)

TranscodingTranscoding

Secure,
Scalable

Data

Transcoded
Secure,
Scalable

Data

Transcoded
Secure,
Scalable

Data

(b)

Fig. 3. Appropriate combination of scalable coding and progres-
sive encryption enables transcoding to be performed by simple bit-
stream truncation.

2.4. SSS Coding and SSS Transcoding

In SSS coding, scalable coding, packetization, and progressive en-
cryption methods are combined to code video into secure scal-
able packets [6]. It is this combination that allows downstream
transcoders to lower the bitrate or spatial resolution of a stream by
simply truncating or discarding packets. Secure scalable packets
should have a number of characteristics. They must be scalable to
enable downstream transcoding with packet truncation, encrypted
to provide end-to-end security, and independently decodable to
provide resilience to errors such as packet loss.

A basic element of an SSS coder is a scalable coder that en-
codes video into scalable packets. If the video frame can be en-
coded into scalable data that fits within a single packet, then many
existing scalable image or video compression algorithms can be
used directly in an SSS coder. However, if the video frame is too
large or has too much activity, then the coded data will not fit into
a single packet, so modifications will have to be made.

An SSS coder is shown in Figure 4. First, the input video
frame is segmented into regions. Then, each region is coded into
scalable video data and header data is formed to convey informa-
tion to downstream transcoders and decoders. Next, the scalable
video data is encrypted with progressive encryption. Finally, se-



Segment
video frames
into regions

Code regions
into header

and scalable
data

Packetize
header and
encrypt data

SSS Coder

Truncate or
discard packet

Read packet
header

SSS Transcoder

Fig. 4. SSS coders encode video into secure scalable packets. SSS
transcoders transcode packets without decryption.

cure scalable packets are created by combining the unencrypted
header data with the progressively encrypted scalable video data.

The unencrypted header may describe the region that the packet
represents or other information needed for subsequent SSS transcod-
ing and decoding operations. Such information may include a se-
ries of recommended truncation points or hints to help downstream
transcoders perform transcoding operations such as bitrate or res-
olution reduction.

An SSS transcoder is shown in Figure 4. SSS transcoders
simply read the unencrypted header data at the beginning of each
packet, then use that information to discard packets or truncate
packets at the appropriate locations. SSS decoders then decrypt
and decode the received packets; the resolution and quality of the
reconstructed video will depend on the transcoding operation.

An SSS coder may use intraframe or interframe coding tech-
niques. The input of the SSS coder will contain pixel or residual
values depending on which is used. If interframe coding is used,
a potential issue that may arise is the drift that results if data that
was used in the encoder’s prediction loop is not available to the
decoder because of transcoding. This issue is discussed in [6].

3. SSS TRANSCODING PROPERTIES

3.1. Coarse- and Fine-Grain Transcoding

A straightforward approach to achieving some degree of secure
transcoding without decryption involves coding a video sequence
into base and enhancement layers, where each layer is coded into
separate independently decodable packets which are independently
encrypted. The base layer packets can be sent as higher priority
packets and the enhancement layer packets can be sent as lower
priority packets. An intermediate node may perform secure transcod-
ing by simply discarding the low priority enhancement data pack-
ets. This approach provides secure, coarse-grain transcoding ca-
pabilities since the stream can be transcoded to the two rates that
correspond to the low resolution and full resolution bitrates. How-
ever, it does not provide finer-grain transcoding capabilities to hit
target bitrates that are in between.

SSS allows downstream transcoders to perform bitrate reduc-
tion with very fine granularity while maintaining the end-to-end
security of the system. This is achieved by appropriately pack-
etizing and encrypting the scalable data. Examples of SSS sys-
tems that provide secure, fine-grain transcoding capabilities are

described in Section 4.

3.2. Secure RD-Optimal Transcoding

A highly desirable feature is the ability to transcode the compressed
stream to different rates, each of which is rate-distortion (RD) opti-
mal or near-RD optimal. An overview of RD-optimal coding tech-
niques is given in [7]. Achieving this property is rather straight-
foward if an entire frame is coded into a single embedded bitstream
that is sent within a single packet; in this case any truncation point
of the single packet (embedded bitstream) will be near-RD opti-
mal by design. However, it is much more difficult when a frame is
coded into multiple packets and when the packets are encrypted for
secure transmission because the transcoder can not see the com-
pressed bitstream.

SSS enables near-optimal transcoding across packets by plac-
ing the RD-optimal cutoff points for a number of quality levels in
the unencrypted headers of each packet [6]. Then, transcoders can
truncate each packet at the appropriate cutoff point for that partic-
ular packet; thus, the resulting truncated packets will each contain
the optimal number of bits for the new total target bitrate.

3.3. Stateless Transcoding

It should be noted that SSS transcoding is stateless and has low
complexity. Since transcoding is simply a packet truncation pro-
cess, downstream transcoders do not have to perform computa-
tionally expensive decryption or encryption operations. In addi-
tion, they do not have to maintain session state information from
packet to packet. For example, a conventional transcoder may
need to buffer at least a frame’s worth of packets and store ses-
sion state information from frame to frame. Since SSS transcod-
ing only requires packet truncation, it is stateless; thus, a single
SSS transcoder can perform many more simultaneous transcod-
ing sessions. In addition, it allows a video stream’s packets to be
transcoded at any node and does not require all packets to be pro-
cessed or routed through a single node. Finally, it should be noted
that since the transcoding operation is so simple, packets can be
transcoded on very short time scales, so transcoders can quickly
react to local network conditions.

4. SSS SYSTEMS

Many types of scalable coders can be used in an SSS system.
These coders can use intraframe or interframe coding. They can
also use various types of scalability with different levels of gran-
ularity. This section describes how a number of existing scalable
coders can be used in an SSS framework.

4.1. Motion JPEG-2000 and EBCOT

JPEG-2000 can be used in the proposed SSS framework because it
was originally designed with the concepts of tiling (to enable ran-
dom access) and scalability in mind. JPEG-2000 segments each
image into tiles, then codes each tile using SNR or spatially scal-
able techniques. Secure scalable packets are formed by progres-
sively encrypting the scalable data resulting from each tile and
adding the appropriate unencrypted header information.

The JPEG-2000 standard evolved from EBCOT [8] which uses
a concept of Post-Compression Rate Distortion (PCRD) optimiza-
tion to optimally code an image into a bitstream with a desired tar-
get bitrate. This is done by gathering RD curve characteristics for



different codeblocks, and coding each codeblock into an embed-
ded bitstream. Specific target bitrates are achieved by extracting
the appropriate RD-optimal portions of data from each codeblock
and reorganizing these into the final embedded bitstream.

In JPEG-2000 and EBCOT, the codeblock RD information is
used to optimally code an image into a desired target bitrate. In
SSS, this information is used to calculate truncation points that
can be included in unencrypted packet headers to provide hints to
downstream transcoders for bitrate reduction. By using this header
information, transcoders can perform secure RD-optimal transcod-
ing across packets.

4.2. 3D Subband Coding

3D subband coding can be easily extended into an SSS frame-
work. For example, [9] uses a 3D subband coder to code video
into packets such that each packet is independently decodable, of
approximately equal importance, and embedded or bitstream scal-
able. An SSS coder can encrypt the contents of each packet using
progressive encryption and thereby enable an intermediate node
to perform transcoding by either truncating or discarding packets.
Furthermore, recommended trunction points may be placed in the
unencrypted header of each packet to enable RD-optimal transcod-
ing across packets.

4.3. MPEG-4 Fine-Grain Scalability (FGS)

MPEG-4 FGS [10, 11] naturally maps into an SSS framework in a
number of ways. In FGS, the video is first coded into a base layer
with conventional predictive techniques using I, P, and possibly B
frames. Note that temporal scalability is inherently provided by
using B frames. An enhancement layer is formed by the difference
between each coded base-layer frame and the original video frame.
This enhancement layer is coded into an embedded FGS bitstream
using bitplane coding techniques. The resulting FGS bitstream for
each frame can be truncated at any point for bitrate reduction.

An SSS system should encode and encrypt the base and en-
hancement layers into high priority and low priority packets. The
base- and enhancement-layer packets should include unencrypted
header information that describes the priority of the packets as
hints to downstream transcoders. These downstream transcoders
could keep or discard packets based on priority to achieve a coarse
level of bitrate scalability.

A note should be made about different methods for packetiz-
ing FGS enhancement data. If the FGS enhancement data can be
transmitted in a single packet, progressive encryption techniques
should be used to encrypt the data so that it can be truncated at any
point for fine-grain bitrate reduction by downstream transcoders.
If the FGS enhancement data does not fit into a single packet, a
number of packetization options are available.

First, the enhancement frame could be coded into one long
embedded bitstream, which is then segmented into packets. In this
case, packets containing earlier portions of the bitstream are trans-
mitted with higher priority than those containing later portions. Bi-
trate reduction is then achieved by retaining higher priority packets
and discarding lower priority packets to approximately obtain the
desired target bitrate. Furthermore, an even finer level of bitrate
matching can be achieved by appropriately truncating the packet
that straddles the desired target bitrate.

Second, the enhancement data could be partitioned into spatial
regions, each of which are scalably coded into separate packets

with progressive encryption techniques as shown in Figure 4. In
this case, each packet corresponds to a region of the video frame,
and can be transcoded by packet truncation. Thus, network-node
transcoders can perform fine-grain bitrate adjustment by truncating
each secure FGS packet that passes by. The unencrypted header
can provide downstream transcoders with near-optimal truncation
points for the desired target bitrate.

5. SUMMARY

Secure scalable streaming (SSS) enables downstream transcoding
without decryption. SSS uses scalable coding and progressive en-
cryption techniques to encode and encrypt video into secure scal-
able packets that are streamed across the network. These pack-
ets can be transcoded at intermediate, possibly untrusted, network
nodes by simply truncating or discarding packets without com-
promising the end-to-end security of the system. Secure scalable
packets have unencrypted headers that can provide hints such as
optimal truncation points to downstream transcoders. Using these
hints, downstream transcoders can perform RD-optimal transcod-
ing for fine-grain bitrate reduction. Key features of SSS include
stateless, low-complexity transcoding; fine-grain bitrate reduction;
secure RD-optimal transcoding; and transcoding without decryp-
tion. SSS can be used with existing scalable image and video cod-
ing standards and systems, including Motion JPEG-2000, 3D sub-
band coding, and MPEG-4 FGS.

6. REFERENCES

[1] H. Sun, W.K. Kwok, and J.W. Zdepski, “Architectures for MPEG
compressed bitstream scaling,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, no. 2, April 1996.

[2] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman,
“Transcoding MPEG bitstreams,” Signal Processing: Image Com-
munication, vol. 8, no. 6, September 1996.

[3] N. Bjork and C. Christopoulos, “Transcoder architectures for video
coding,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing, Seattle, WA, May 1998.

[4] S.J. Wee, J.G. Apostolopoulos, and N. Feamster, “Field-to-frame
transcoding with spatial and temporal downsampling,” in IEEE In-
ternational Conference on Image Processing, Kobe, Japan, October
1999.

[5] B. Schneier, Applied Cryptography, John Wiley & Sons, Inc., 2
edition, 1995.

[6] S.J. Wee and J.G. Apostolopoulos, “Secure scalable video streaming
for wireless networks,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, Salt Lake
City, UT, May 2001.

[7] A. Ortega and K. Ramchandran, “Rate-distortion techniques in im-
age and video compression,” IEEE Signal Processing Magazine, vol.
15, no. 6, November 1998.

[8] D.S. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158–1170, July 2000.

[9] W. Tan and A. Zakhor, “Real-time internet video using error resilient
scalable compression and TCP-friendly transport protocol,” IEEE
Trans. Multimedia, pp. 172–186, June 1999.

[10] W. Li, “Overview of fine granularity scalability in MPEG-4 video
standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 11, no. 3, pp. 301–317, March 2001.

[11] H.M. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-
grained scalable video coding method for multimedia streaming over
IP,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 11, no. 3, pp. 53–68, March 2001.


