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Abstract—We present a technique for low-complexity rate-
distortion (R-D) optimized adaptive video streaming based on the
concept of rate-distortion hint track (RDHT). RDHTs store the
precomputed characteristics of a compressed media source that
are crucial for high performance online streaming but difficult
to compute in real time. This enables low-complexity adaptation
to variations in transport conditions such as available data rate
or packet loss. An RDHT-based streaming system has three
components: 1) information that summarizes the R-D attributes
of the media; 2) an algorithm for using the RDHT to predict the
distortion for a feasible packet schedule; and 3) a method for
determining the best packet schedule to adapt the streaming to the
communication channel. A family of distortion models, denoted
distortion chains, are presented which accurately predict the
distortion produced by arbitrary packet loss patterns. Two distor-
tion chain models are examined which lead to two RDHT-based
techniques. We evaluate the proposed techniques for two canonical
problems in streaming media, adaptation to available data rate
and to packet loss. Experimental results demonstrate that for
the difficult case of nonscalably coded H.264 video, the proposed
systems provide significant performance gains over conventional
low-complexity streaming systems, and achieve this gain with a
comparable level of complexity making them suitable for online
R-D optimized streaming.

Index Terms—Distortion modeling, hint track (HT), low-com-
plexity, multimedia streaming, rate-distortion (R-D), video adap-
tation, video coding.

I. INTRODUCTION

IDEO adaptation for streaming over data rate constrained

and lossy packet networks has been a practically important
and challenging problem for a number of years. Video streaming
typically involves pre-encoded and stored compressed media,
and the pre-encoded content makes it harder to adapt to the
available data rate and packet loss as compared to the case where
real-time encoding is performed. Video transcoding can be per-
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formed in this situation, however this requires significant com-
plexity and computation. Scalable coding can also be used to
address this situation, since it provides an inherent prioritiza-
tion among the compressed data which in turn provides a nat-
ural method for selecting which portions of the compressed data
to deliver while meeting the transmission rate constraints, how-
ever scalable video coding typically is afflicted by a significant
penalty in compression efficiency.

A variety of techniques have recently been proposed to ad-
dress the problem of adaptive and error-resilient video streaming,
including intra/intermode switching [1], [2], dynamic control
of prediction dependencies, forward error correction [3] and
multiple description coding. One important recent advance in
streaming technology is the emergence of rate-distortion op-
timized (RaDiO) streaming techniques that take into account
packet importance and knowledge about the channel using a
Lagrangian R-D cost function J = D 4 AR. In this approach,
packet transmission schedules are computed such that a con-
straint on the average transmission rate is met while minimizing
at the same time the average end-to-end distortion. The perfor-
mance improvements of the RaDiO techniques reported to date
relative to non-Lagrangian heuristics are very encouraging.

A framework for RaDiO sender-driven streaming of pack-
etized media has been proposed in [4]. The flexibility of the
framework has allowed its application to a number of streaming
scenarios. Still, there were some important limitations of the
initial framework that were overcome by an advanced frame-
work for RaDiO video streaming proposed in [5]. Using this
framework, advanced streaming scenarios such as streaming
over multiple network paths [5], distributed streaming from
multiple servers, streaming from an intermediate network
proxy, and most recently streaming with rich acknowledgments
and rich requests have been addressed. In general, however,
the performance improvements due to the RaDiO streaming
come at the price of increased computational complexity due
to the optimization framework employed for computing the
optimal schedules. This effect is exacerbated by the fact that
optimal packet schedules need to be recomputed at every packet
transmission opportunity. Therefore, conventional RaDiO tech-
niques appear quite inappropriate for online optimized video
streaming.

To address this issue in the present paper we propose a method
for designing and operating media streaming systems that can
perform optimized streaming while still being low complexity.
Specifically, during encoding of a video sequence, a rate-dis-
tortion hint track (RDHT) is generated that contains side infor-
mation that is often difficult to compute on a realtime basis,
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but is useful to a general optimized streaming algorithm. The
RDHT is a “track” because it is stored in the same file as the
compressed media data but can be easily demultiplexed. It is a
“hint track” in the sense that it provides “hints” for performing
high quality streaming. Example information in the RDHT in-
cludes the importance of each packet in an R-D sense. The com-
putation of hints at encoding time relieves the burden of opti-
mized streaming servers, which can simply read the hints from
the RDHT rather than estimating them on a realtime basis.

The term “hint track” has been used in the popular MPEG-4
File Format (MP4) [6], and in related streaming systems. An
MP4 hint track contains information about media type, packet
framing and timing information. With an MP4 hint track, media
streaming is greatly simplified, both in terms of complexity and
computation. This is because the streaming server no longer
needs to 1) understand the compressed media syntax and 2) an-
alyze the media data in realtime to generate packet framing and
timing information.

The RDHT is also designed to reduce the complexity of
streaming, but unlike the conventional hint tracks which sim-
plify packet framing and timing, in our case the goal is to
enable low-complexity RaDiO streaming. Specifically, the
R-D attributes of the media are computed and summarized in
the RDHT to enable low-complexity RaDiO streaming. MP4
hint track already has syntax to optionally associate a single
priority value for each packet, providing a limited basis for
optimization. The notion of RDHT is independent of MPEG-4
file format, even though RDHT can be potentially implemented
using MPEG-4 file format.

Related work on low-complexity and RaDiO streaming is [7],
where R-D information is placed in each packet header, thereby
enabling efficient RaDiO streaming and adaptation at the sender,
or at a mid-network node or proxy, for scalable media content.
In addition, [8] proposed a framework for scalable media de-
livery, with similar attributes to the online optimization algo-
rithms of, e.g., [4], but with a fast greedy search algorithm (and
computationally simpler distortion metric) for determining the
transmission schedule with significantly lower complexity.

In this paper we design a technique for low-complexity
RaDiO streaming that employs RDHT information. The tech-
nique computes optimal packet schedules in a Lagrangian
setting with a dramatically reduced complexity as compared
to conventional RaDiO streaming, e.g., [4], [5]. We examine
two instances of the proposed technique depending on the
employed RDHT information. Each one of them can be applied
toward solving two canonical problems in media streaming:
data rate adaptation and packet loss adaptation. In addition to
examining the conventional problem of RaDiO video streaming
where the goal is to minimize the distortion subject to a bit-rate
constraint, we also show how the proposed framework can
be applied to minimize the distortion subject to a packet-rate
constraint. While the packet-rate constraint problem is signif-
icantly different from R-D theory, it is an important problem
for practical video streaming systems. Our work has been
presented in part in [9]-[11]. The present paper extends our
prior work by examining higher order distortion models, by
evaluating performance in practical scenarios with packet loss
and variable delay on both forward and backward channels
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leading to delayed and imperfect knowledge of packet loss,
and by providing examples of the RDHT information for two
distortion models.

The rest of the paper is structured as follows. We continue in
Section II by presenting an overview of the general technique
of RDHT-based media streaming. The RDHT-based technique
is composed of three components, where the first two involve
a method for predicting the reconstructed video quality at the
receiver as a function of the received packets, and the third
component is a search for the best packet transmission schedule
to maximize the quality. To address the first two components
of RDHT-based systems, Section III presents a mathematical
framework, denoted distortion chains, which is designed to
predict the distortion caused by an arbitrary packet loss pattern
based on a small number of measurements involving lost video
packets. In Section IV we present two instances of the proposed
RDHT-based technique for low-complexity RaDiO streaming,
which are based on two distortion chain models. The perfor-
mance of these proposed approaches is evaluated in Section V
through simulation experiments involving H.264 encoded
packetized video. First, the accuracy of the distortion chains
framework for predicting the distortion for different packet loss
patterns is examined. Then, we examine the performance of the
proposed RDHT-based techniques for streaming the packetized
video content while adapting to variations in transport condi-
tions such as available data rate or packet loss. In addition, we
explore the performance gains that the technique provides over
conventional non-RaDiO systems and the performance loss
of this technique relative to conventional (high-complexity)
RaDiO streaming systems. Finally, concluding remarks are
provided in Section VL.

II. RDHT-BASED VIDEO STREAMING

The central issue of optimized streaming is to determine the
best packet schedule that maximizes the reconstructed quality at
the receiver, subject to transmission constraints such as available
data rate or packet loss. A system that employs RDHT achieves
this goal using the following three components:

1) obtain information that summarizes the R-D attributes of
the media, i.e., calculate the RDHT;

2) amethod to use the RDHT information to predict the dis-
tortion for a feasible packet schedule, e.g., for a specific
subset of received packets;

3) determine the best packet schedule for the channel.

There are a number of tradeoffs in the design of RDHT. Pro-

viding high performance requires calculating an “informative”
RDHT, accurately modeling the distortion of different feasible
packet schedules, and performing a comprehensive search for
the best schedule. On the other hand, it is desirable to use rel-
atively little storage and computation. This limits the amount
of information represented by the RDHT. It also constrains the
methods used for predicting the distortion of various packet
schedules and searching for the best packet schedule for the
channel.

Section III presents a family of models, referred to as distor-

tion chain models, for predicting the mean square error (MSE)
distortion in the reconstructed video at the receiver for different
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subsets of received packets. These models provide examples of
the first two components of an RDHT-based streaming system
listed above. In Section IV we investigate two instantiations of
the proposed RDHT-based technique based on two different dis-
tortion chain models. We then examine this technique for two
canonical problems in streaming media: 1) adapting to avail-
able data rate and 2) adapting to packet loss. Each one of these
problems includes important subproblems. For example, in the
context of adapting to available data rate, if the data rate con-
straint is measured in number of packets (ignoring packet size)
that can be transmitted then the problem is simpler than if the
data rate constraint is measured in bits, in which case there may
be many more different subsets of different numbers of packets
that must be examined for potential transmission. To adapt to
the available data rate we must solve the problem of what is the
best subset of packets to drop to meet a transmission rate con-
straint, which in turn can be given either in number of packets
or in number of bits that we are allowed to transmit at present.
To adapt to potential loss of previously transmitted packets we
must solve the problem of what is the best schedule for trans-
mitting new packets and retransmitting previous potentially lost
packets to meet a transmission rate constraint.

III. DISTORTION CHAINS

Prior work on modeling the effect of packet loss on the re-
construction distortion of a video sequence at the receiver gen-
erally models the total distortion afflicting the video sequence
as being proportional to the number of lost packets that occur
[2], [12]. For example, a model is proposed in [2] for the total
distortion associated with a single (isolated) packet loss which
accounts for the effects of error propagation, intra refresh, and
spatial loop filtering. Then, using this model the total distortion
for multiple losses is defined as being proportional to the total
number of losses. Specifically, with this stationary linear model,
the expected total distortion (Dyinear) 1S computed as

L
Drinear = #£Losses - Z D(l) (1

=1

= =

where D(1) is the total distortion that is associated with the loss
of packet [ (assuming that all other packets are correctly re-
ceived), L is the total number of packets in the video sequence,
and (1/L) Zlel D(l) is the average single packet loss total dis-
tortion. The quantity D(l) is defined precisely later on in this
section. Finally, given that the total number of losses is linearly
(hence the name of the model) related to the average packet loss
rate (PLR), i.e., #Losses = PLR - L (for PLR < 1) we can
write (1) as

L
DLinear =PLR- Z D(l) (2)
=1

The linear model above is accurate for isolated losses that
are sufficiently far apart, and for burst losses that do not re-
sult in the loss of more than one video frame. For example,
this model is accurate for low-bit-rate video, where each coded
video frame fits within a single packet, when single losses occur
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that are spaced sufficiently far apart with respect to the intra-re-
fresh period,! e.g., when the loss rate is low and the losses are
not bursty. This model is also accurate for burst losses, in the
case of high-bit-rate video where each video frame fits within
multiple packets, as observed in [13] for example, and only if
the length of the burst loss is less than the number of packets
required to send a single frame. That is, this linear model is ac-
curate as long as the burst loss does not lead to the loss of more
than a single frame in a row.

However, in many important applications, for example low-
bit-rate video communication (where each coded frame may
fit within a single packet) over the Internet or over a wireless
link, there may be burst losses that result in the loss of mul-
tiple frames. In [14], it was recognized that the length of a burst
loss has an important effect on the resulting distortion, where
longer burst lengths generally led to larger distortions. This was
extended in [15] where a simple model was proposed that dis-
tinguishes loss events based on the length of the burst loss and
explicitly accounts for the different distortions that result for
different burst lengths. In [16], a model is proposed that builds
upon the prior work by capturing the correlation between the
error frames associated with single (isolated) packet losses in
order to describe more accurately the distortion resulting from
a burst loss pattern.

In the following, we propose a model, which we refer to as
the distortion chains model, for predicting the MSE distortion
at the receiver in the event of packet loss. This model provides
a simple, causal approach for predicting the distortion in the
reconstructed video for general packet loss patterns.

A. Distortion Produced by Packet Loss

We first introduce some necessary notation and background.
We analyze the case where a video sequence starts with an
I-frame, followed by P-frames that have a certain number of
macroblocks periodically Intra updated for increased error-re-
silience. For simplicity, we assume that each frame is coded
into a single packet, so that the loss of a packet corresponds to
the loss of an entire frame. This corresponds to the practically
important case of low bit rate video communication over lossy
packet networks, e.g., a 30 f/s QCIF video clip at 120 kb/s yields
an average packet size of 500 bytes, which can be transported as
a single packet in many networks. However, the results in this
paper can also be extended to the case when each frame is coded
into multiple packets.

To simplify notation, the two-dimensional (2-D) array of
Mp = Mp; X Mpy pixels in each frame k are sorted in the
one-dimensional (1-D) vector f[k] (of length Mp) in line-scan
order. We use the 1-D vector f[k] to represent an original video
frame, f [k] to denote the loss-free reconstruction of the frame,
and g[k] to denote the reconstruction at the decoder after loss
concealment. The error frame at frame k introduced by one or
more packet losses that occurred earlier is defined as

clk] = glk] - fIk]

IThe intrarefresh period is the number of frames between successive intra-
coded (I) frames plus one when I-frames are used, or the number of frames
until all of the macroblocks in a frame have been intra coded, when partial intra
coding is used.
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Fig. 1. (a) Loss of single frame k induces distortion in later frames. D(k)
is the total distortion summed over all affected frames. (b) D(k1, k) is total
distortion summed over all frames caused by losing frames k; and k..

which is also a 1-D vector. We assume previous frame loss con-
cealment, however please note that the proposed RDHT frame-
work can handle any specific concealment strategy that is known
a priori. Therefore, if frame £ is the first occurrence of packet
loss then g[k] = f[k—1]. Since our primary concern is the effect
of channel loss, quantization error is not included in our study.
Finally, the MSE associated with error frame e[k] is given by
o?[k] = (e"[k] - e[k])/Mp.

The MSE above quantifies the error power introduced
in a single frame due to previous packet losses. Now, let
L be the length of a video sequence in frames and let
k = (ki,ko,...,kn) denote a loss pattern of length N,
i.e., N frames are lost during transmission where k; < k;, for
1 < j, are indexes of lost frames. Then, the total distortion,
denoted by D(k), due to the loss pattern is the sum of the
MSE’s over all the frames affected by the loss pattern k, i.e.,

D) =>"o’[l1=") o’[l]. 3)

For example, Fig. 1(a) illustrates the distortion D(k) that af-
flicts a video sequence caused by the loss of frame k. It can be
seen that the MSE per frame ramps up at frame k, which is ex-
pected since the missing frame & is replaced with frame k£ — 1
and there are no prior losses. Due to error propagation, which in
turn is caused by the predictive nature of the encoding process
as explained earlier, the MSE associated with subsequent frames
also exhibits a nonzero value, as shown in Fig. 1. However, due
to the effects of spatial filtering and intra refresh [2], its ampli-
tude gradually decreases over successive frames, till it finally
becomes zero at frame j > k sufficiently apart from k.

Similarly, Fig. 1(b) illustrates the total distortion D(ky, k2)
introduced in the video sequence by losing frames k; and ko,
for k1 < ko. As shown in [16], the MSE o?[j] for frames
7 = ko ko + 1,..., of a video sequence, when frame k; is
already lost prior to k2, can be smaller, equal, or larger than
the corresponding MSE for the case when there are no packet
losses prior to ke, depending on the particular video sequence
in question, its encoding parameters and the distance in number
of frames between k7 and k». We will elaborate more on this in
Section IV-B.
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B. Distortion Chain Model for Predicting Distortion

We define D(kn1]k) to be the additional increase in dis-
tortion due to losing frame kxy1 > ky given that frames
ki,..., kN are already lost, i.e.,

D(knyilk) = D(k1, ..., kny1) = D(k1,.. . ky). (D)

The distortion chain model of order N uses the last N losses
to predict the distortion for the current packet; hence, is com-
prised of the distortion quantities D(k) for every loss pattern k
of length N satisfying k; < kj, for ¢ < j, and of D(kn41|k)
for every loss pattern (k,kyy1) of length N + 1 satisfying
kn < kn41. These quantities can be generated at the encoder
by simulating the corresponding loss events, decoding the video
sequence, and then computing the resulting distortions. We next
examine how D (k) and D(ky1|k) can be used to predict the
total distortion for loss patterns of lengths greater than N.

Let DCN denote our distortion chain of order N for a given
video sequence. DC'V can be used to estimate the total distor-
tion for an arbitrary packet loss pattern k = (k1,...,kp) with
P losses, where N < P < L and L is once again the length
of the video sequence in frames. Then, let D(k) denote the es-
timate of the total distortion due to the loss pattern k obtained
from DC™ as follows:

P-1
D(k) = D(ky,....kn) + Y D(kiza|(ki—ng1,- - ki)
i=N

(&)

This general formulation suggests that we need the distor-
tions (conditional and unconditional) associated with any loss
pattern of length N in order to predict the distortion for an ar-
bitrary packet loss pattern of length P > N. While this may be
impractical for large IV, in our work we have found that even
small values of N, still provide good prediction results. More-
over, when packet losses are spaced far apart (further than the
intra refresh period of an encoded video sequence), they become
decoupled since their effects are independent, as discussed ear-
lier. This reduces the complexity of the algorithm associated
with generating the distortion chain DC™, as explained next.

For example, for the distortion chain DC'! we need to store
the distortion values D(k) associated with losing frame k =
1,..., L, illustrated in Fig. 1. In addition, we also need to store
the quantities D(j|k) from (4), which represent the additional
increase in distortion when frame j is lost, given that frame k is
already lost, for 1 < k < j < L. Note that storing D(j|k)
is equivalent to storing D(k,j) as apparent from (4), where
D(k, j) is the total distortion associated with losing frames &
and 7, illustrated in Fig. 1(b). Now, if D(k, j) was stored for
every possible pair (k, j), then the total storage cost would be
quadratic in L since there are L isolated losses contributing to
D(k) and L(L—1)/2 distinct D(k1, k) values. However, since
the distortion coupling between dropped packets decreases as
the distance between the packets increases, one practical sim-
plification is to assume D(k,j) = D(k) + D(j) for |j — k| >
M + 1, where M depends on the compression. For example,
for a video encoding with a group of pictures (GOP) size of 15
frames, M is at most the number of packets in the GOP, i.e.,
15. This approximation reduces the required storage and com-
putation for DC'! to being linear in L, precisely (L — M —
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x10° QCIF Carphone I-P-P-...., 350 frames
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Fig.2. Example of RDHT using DC® for Foreman and Carphone video sequences. Each sample point in the graphs identifies the total distortion D (k) associated

with the loss of a single frame k.

1)(M + 1) + M(M — 1)/2. Furthermore, the storage cost of a
zeroth-order distortion chain DC? is even smaller. This model
assumes no memory (N = 0) and its storage cost is simply
equal to L, since there are L possible single packet losses whose
total distortion values D(k) need to be recorded.

The accuracy of the distortion chain framework for predicting
the distortion for arbitrary packet loss patterns is examined in
Section V-A, where DC?, DC?, and DC? models are eval-
uated. The Section IV examines RDHT-based systems using
DC® and DC' models, which provide a good tradeoff between
storage and performance.

IV. Low-COMPLEXITY RADIO STREAMING USING RDHT

This section presents two low-complexity RDHT-based
streaming techniques which employ two different distortion
chain models. In particular, we discuss how these instantiations
of RDHT-based streaming can address the two canonical media
streaming problems under consideration for both types of trans-
mission rate constraints: number of packets or number of bits.
The performance of these techniques is evaluated in Section V.

A. Linear Size RDHT Using DC°

For the first RDHT-based technique, we employ DCY to
model the distortion associated with a packet loss pattern k.
This results in a linear storage cost of L numbers, as discussed
in Section III-B, where L is the size of the video sequence
in frames. Specifically, we simply store the total distortion
in MSE D(k) afflicting the video presentation caused by the
loss of frame k, assuming no other frames have been lost.
Fig. 2 illustrates an example RDHT using DC? for the video
sequences Foreman and Carphone. Notice the huge variability
in total distortion that results from losing different frames in the
sequence. In Fig. 2 only the first 300 frames, out of a 350-frame
video sequence, are considered as possible candidates to be lost
in order to properly account for the error propagation effect.

This variability is quantified in Table I where we see that there
exists significant variation in the total distortion produced by the
loss of different P-frames.

TABLE 1
MEAN OF THE TOTAL MSE DISTORTION D (k) AND MEAN-NORMALIZED
VERSIONS, RESPECTIVELY, OF THE MINIMUM, MEDIAN, 95-PERCENTILE,
AND MAXIMUM VALUES OF D(k) FOR RDHT USING DC® FOR
DIFFERENT SEQUENCES

Sequence Mean Min | Median | 95% | Max
Foreman 5615.88 | 0.04 0.49 3.18 | 16.64
Mother & Daughter | 247.77 | 0.06 0.61 371 | 6.92
Carphone 2254.80 | 0.10 0.60 333 | 11.19
Salesman 284.38 | 0.06 0.61 335 | 5.86

When N frames k = (k1, ko, ... ky) are lost, the predicted
total distortion obtained by DC? is simply given by

N
D(k) =Y D(ki). ©)
i=1

Recall that the above model assumes additivity of the distor-
tions associated with the individual packet losses, ignoring any
interdependencies between their effects on the distortion, which
does not necessarily hold true when individual packet losses are
not spaced sufficiently far apart with respect to the intrarefresh
period, as recognized in [14]-[16]. Still, due to its simplicity and
convenience for mathematical manipulations the additive model
has found a number of applications in streaming and modeling
of packetized media, such as [9], [10], and [17].

As mentioned earlier, we need to find the best transmission
schedule for the packets of a video stream subject to a trans-
mission data rate constraint. This problem can be formalized as
follows. Let W be a window of packets considered for trans-
mission and let R* be the data rate constraint, measured either
in bits or number of packets. We need to decide on the subset of
packets k € WV that should not be transmitted in order to satisfy
the data rate constraint. Let R(W\ k) be the rate associated with
the packets from WV that will be transmitted, where “\”” denotes
the operator “set difference”. Thus, we are interested in finding
the subset k such that the total distortion due to dropping k is
minimized, while meeting the data rate constraint, i.e.,

k= D(k). (7)

arg min
kew:ROw\k)<Rr*
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Now, consider first solving (7) in the case when the transmis-
sion data rate R* is expressed in number of packets. Assume
that R* = m, i.e., we need to drop m packets from V. Then k™
is easily found by sorting the distortions D(j) for every packet
J € W in increasing order, and selecting the first m packets
from the rank ordering (those with the m smallest associated
distortions). In addition, if the problem changes to determine the
best m + 1 packets to drop, the solution then directly builds on
the prior solution. Specifically, the selection of the best subset
of m packets to drop is contained in the best subset of m + 1
packets to drop. In contrast, an approach that does not provide
this property would have to perform a completely new search
for every m. The optimal schedule can, therefore, be obtained
with very little computation.

Next, consider the case when R* is measured in bits. This
problem is more difficult than the packet-data rate constraint
case. We denote R(j) as the number of bits for packet j. We
can compute an approximate solution by casting (7) as a non-
constrained optimization using a Lagrangian multiplier (A > 0)

k* = arg min D(k) + AROWV \ k). (8)
kew

It can be shown that the solution to (8) reduces to dropping every
single packet j € W such that \; = D(j)/R(j) < A, where
A; can be thought of as the utility associated to packet j, mea-
sured in terms of distortion per bit. Therefore, once again k*
can be determined by sorting the packets in W in increasing
order, but now based on their utility A;, and selecting to drop
all the packets from the start of the rank ordering for which the
above inequality is true. In this manner, once again we have an
embedded search strategy with the associated low complexity
benefits. Adjusting the Lagrange multiplier A according to the
rate constraint R* is usually done in an iterative fashion using
fast convex search techniques such as the bisection search tech-
nique [18].

B. A (Slightly Larger) Linear Size RDHT Using DC"*

Here, we employ DC'! to model the distortion associated with
a packet loss pattern k. As described in Section III-B this still
results in a linear (in L) storage and computation cost for DC'*,
though somewhat larger than the corresponding one for DC?.
In particular, in addition to the total distortion D(k) associated
with all possible isolated losses k, we also need to store the
conditional increase in distortion D(j|k) associated with losing
frame 7 given that frame k is lost, for £ < j. Fig. 3 illustrates
an RDHT example using DC'.

Notice that there are some values of D(j|k) which are
negative. This is an interesting phenomenon and to the best
of our knowledge has not been reported earlier in works on
distortion modeling, except for the study of burst losses in
[16] where negative correlation was identified to sometimes
exist in neighboring lost frames. Having negative conditional
distortions leads to the surprising result that sometimes it is
better to drop two frames instead of dropping only one frame.
For example, sometimes it is better to drop the two frames k
and j together, instead of only dropping the single frame £,
since the total distortion for dropping both frames %k and 7 is
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Fig. 3. Example of RDHT information using DC* for the Foreman video

sequence. Each sample point in the graph is D(j|k) which corresponds to the
increase in total distortion due to the loss of frame j given that frame k& < j is
already lost. Notice that there are a number of D(j|k) which are negative, for
example D(290|279). In these cases, instead of only dropping one frame (e.g.,
279), it is better to drop two frames (e.g., 279 and 290) since that will produce
a smaller total distortion.

less than that for dropping frame & only. Having this knowledge
can be very useful for adaptive video streaming.

When N frames k = (kq, ks, ... kn) are lost, the predicted
total distortion obtained by DC? is given by

N-1
D(k) = D(ky) + Z D(kit1ki). ©)

i=1

Searching for the optimal packet schedule [solving (7) ex-
actly] in this scenario is computationally more expensive than
in Section IV-A due to the interdependencies between the lost
packets in k imposed by the underlying distortion model. There-
fore, we employ an iterative descent algorithm in which we min-
imize the objective function D(k) one variable at a time while
keeping the other variables constant, until convergence. In par-
ticular, consider first the case when R* is expressed in number
of packets and assume that R* = m. Then, at iteration n, for
n = 1,2, ..., we compute the individual entries of the optimal
drop pattern k = (k1,. .., k,,) using

kj(»n) = arg min D(k), forj=1,....m (10)
Ejew!™

J

where the sets W;-") = {k](-i)l +1,..., kf-::l) — 1¢. There-
fore, starting with a reasonable initial solution for k, at each it-
eration we perturb the subset of selected packets k in order to
find a subset that produces reduced distortion. At each iteration
a subset with less or equal distortion is found, therefore, the al-
gorithm is guaranteed to converge, though not necessarily to the

global optimum.
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We solve the case when R* is measured in bits using La-
grangian optimization, as we did for RDHT based on DC?.
First, for a Lagrangian multiplier A > 0, using the gradient de-
scent algorithm from above we find the drop pattern k € W of
length m that is the solution to (8). Then, we repeat this pro-
cedure for different values of m, e.g., m = 1,..., M, where
here M denotes the maximum number of packets considered
for dropping from V. Finally, we select the drop pattern k with
the smallest minimum Lagrangian J(k) = D(k) + ARV \ k)

over all m.

C. Proposed Framework When Using B-Frames

We note that the proposed framework is generic and accounts
straightforwardly for B-frames as well as frames coded with
other more sophisticated types of prediction dependencies. This
is because the proposed framework does not differentiate be-
tween frames based on their coding type, but rather based on
their importance (in terms of the total distortion that would be
produced if they were missing). Therefore, B-frames are han-
dled in the same way as any other frame (e.g., I- or P)—they
are treated based on their importance. Typically this results in
B-frames being discarded before P-frames before I-frames, but
this is not always the case. A B-frame can also be thought of as
a P-frame with zero error propagation.

While the theoretical framework remains unchanged with the
use of B-frames, the distortion chain implementation becomes
simpler when B-frames are used since no frames depend on the
B-frames and, therefore, there is no error propagation for their
loss. While this is true for DCY, it is of even more importance
for higher order distortion chains, e.g., DC 1 since the use of
B-frames requires fewer computations to examine the possible
distortions that may occur and also less storage to store the as-
sociated results.

V. EXPERIMENTAL RESULTS

In this section, we examine the performance of the proposed
RDHT-based streaming technique for low-complexity RaDiO
video streaming. The video sequences used in the experiments
are coded using JM 2.1 of the JVT/H.264 video compression
standard [19], using coding tools of the Main profile. Two stan-
dard test sequences in QCIF format are used, Foreman and Car-
phone. Each has at least 300 frames at 30 f/s, and is coded with
a constant quantization level at an average luminance (Y) peak
signal-to-noise ratio (PSNR) of about 36 dB. The first frame of
each sequence is intracoded, followed by all P-frames. Every
4 frames a slice is intra updated to improve error-resilience by
reducing error propagation (as recommended in JM 2.1), cor-
responding to an intraframe update period of M = 4 x 9 =
36 frames. This section continues by examining the prediction
accuracy of the distortion chain models. After that the perfor-
mance of two RDHT-based streaming systems is evaluated.

A. Distortion Prediction

We study the performance of the distortion chains framework
by simulating different packet loss patterns on the test video se-
quences. We compare the measured total distortion for each pat-
tern with that predicted by distortion chain models of different
order N = 0,1,2.

1263

Foreman: Average Y- PSNR performance

30
o9t ...... ...... ...... —o Actual
: : : —w— Linear
A28_ ...... _ ...... _._DCO
527 ....... e RN - e e —8— DC;
nz: ¥ —— DC
(026 ...........................................
=
®25 ....... ....................................
o :
524 ....... ...................................
4 :
< .
23 ....... .......................................
22 ....... ............................
21 3 '
4

5 6 7 8
Packet Loss Rate (%)

Fig. 4. PSNR of the actual and predicted total MSE distortions for Foreman.

In the first set of experiments, conducted using the Foreman
sequence, the prediction performance is examined across the
range of PLRs 3%—-10%. Note that for lower PLRs the distortion
chain framework can often perfectly predict the distortion since
it can typically exactly account for the lost packets at the low
PLRs. For each packet loss rate we generate a corresponding
set of 50000 random packet loss patterns. For each loss pat-
tern k = (ki, ks, ...) we decode the video and record the re-
sulting total MSE distortion D (k) of the luminance component
of the video. At the same time, we generate predictions of D (k)
using, respectively the Linear model [as defined in (2) in Sec-
tion IIT] and the proposed distortion chains DC°, DC*, and
DC?. The predicted distortion values are denoted D(k) as in
Section III-B. Finally, we compute the PSNR of these quanti-
ties using 10logy (255%/(D/Np)), where D is either D(k) or
D(k) and Ny is the number of frames in the video sequence.

In Fig. 4, we show these PSNR values, averaged over all
50000 loss patterns that correspond to a particular loss rate, as
a function of the PLR. There are a few observations that follow
from Fig. 4. First, all of the distortion chains provide better
predictions of the expected distortion than the Linear model.
Second, on average DC' and DC? underestimate the Y-PSNR
as computed above, while DC' 0 overestimates it, i.e., on average
DC?! and DC? overestimate the actual distortion, while DC°
underestimates it.

Note that the performance difference between Linear and the
distortion chain models is larger for low PLRs and it gradu-
ally decreases as the packet loss rate increases. Specifically,
at PLR = 3% the distortion chain models provide a perfor-
mance gain of roughly 3.5 dB, while at PLR = 10% the gain
is practically negligible. In essence, this is due to the large vari-
ability in total distortion produced as a function of the specific
packet which is lost (see Fig. 2). For example, let us assume
that we lose only one packet in the sequence. Then, based on
the specific lost packet [, for some [ the total distortion will
be much larger than the average single packet loss total dis-
tortion, (1/L) Zle D(l), while for other [ the total distortion
will be much less than the average. Hence, our models allow
us to explicitly capture the variability as a function of /, while
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Fig. 5. The cdf of AD(k) for PLR = 3% (left) and PLR = 8% (right).

the Linear model does not provide that. On the other hand, as
the number of losses increases (assuming for simplicity that the
loss effects are independent) the resulting total distortion will
approach #Losses - (1/L) ZzL:1 D(l), since more averaging
(over the lost packets) occurs and, therefore, the penalty that
the Linear model pays decreases. B

Next, we define AD(k) = |D(k) — D(k)|/D(k) to be the
relative error of a predicted distortion D(k) for a packet loss
pattern k. In essence, the relative error informs us how big the
prediction error of D(k) is relative to the actual value D (k) for
a given loss pattern k. We next examine the distribution of the
relative error A D(k) over the 50 000 packet loss patterns k that
correspond to a given PLR. Fig. 5 shows the cumulative den-
sity functions (cdfs) of the relative errors for all four distortion
models considered here, for both PLR=3% and 8%. The first
observation is that all of the distortion chain models perform sig-
nificantly better than the linear model. In addition, for PLR=3%
we see that DC?, DC!, and DC? provide estimates that are
within a 10% error bound 40%, 75%, and 95% of the time, re-
spectively, while the linear model achieves this less than 10%
of the time. Similarly, DC°, DC*, and DC? provide estimates
that are within a 20% error bound 74%, 93%, and 99% of the
time, respectively, while the linear model does that only 5% of
the time.

Fig. 5 (right) also shows that the distortion chain models pro-
vide improved accuracy as compared to the linear model at 8%
PLR, though the improvement is lower due to the reduced accu-
racy as a result of the higher packet loss rate.

B. Adaptive Streaming

This section examines the end-to-end performance of the
two RDHT-based streaming techniques proposed in Section IV.
Performance is measured in terms of the average Y-PSNR
in decibels of the decoded video frames at the receiver as a
function of different channel parameters, namely, available
transmission data rate and packet loss rate. Three scenarios
are considered. In the first one, the network is lossless, but
there is insufficient transmission data rate to send all video
packets across the channel. Therefore, the sender needs to
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decide which packets to send and which packets to drop. In
the second scenario, there is sufficient data rate to transmit
every packet of the video once, however the network is lossy
and some of the transmitted packets are lost. Hence, the sender
needs to decide at each transmission opportunity whether (1)
to retransmit a previous lost packet, or (2) to transmit a new
packet which has not been transmitted before. Finally, the third
scenario under consideration represents a combination of the
first two with the addition that transmitted packets here that are
not lost experience a random delay in the network. Specifically,
in this scenario we examine streaming performance when
simultaneously the transmission data rate can be variable and
the network exhibits random packet loss and delay.

In addition to the RDHT-based systems using DC° and
DC?, we also study the performance of a streaming system
referred to as Oblivious since it does not consider the distortion
that results from dropping a frame. In particular, when making
transmission decisions, Oblivious does not distinguish between
two packets that contain two different P-frames, except for the
size of the packets. Oblivious randomly chooses between two
P-frame packets of the same size, for example, when it needs to
reduce the number of transmitted packets. Similarly, transmis-
sions of new packets and retransmissions of old lost packets are
also performed in a random order. In all three systems, packets
are considered for transmission in nonoverlapping windows
of size W = 100. That is, at every transmission instance the
sender considers 100 new packets for transmission. No retrans-
missions occur after the packets from the last transmission
window are sent.

Adapting to Available Data Rate: Fig. 6 shows the perfor-
mances of RDHT using DC?, RDHT using DC?, and Obliv-
ious for streaming Foreman and Carphone as a function of the
available packet rate measured in percent. For example, packet
rate of 99% means that 99% of the packets in a transmission
window can be transmitted. It can be seen that both RDHT using
DC? and RDHT using DC? outperform Oblivious with quite
a significant margin over the whole range of values considered
for the available packet rate. This is due to the fact that RDHTSs
DCV and DC" exploit the knowledge about the effect of loss
of individual video packets on the reconstructed video quality.
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Therefore, both RDHT DC° and RDHT DC* drop the video
packets that will have the least impact on the quality of the re-
constructed video. As seen in Fig. 6 the performance gains reach
up to 8 dB for Foreman and 7 dB for Carphone for packet rates of
86-96%. In addition, even outside this range the gains in perfor-
mance are still impressive and do not drop below 5 dB, except
of course when we can send all the packets. Finally, note that
in this scenario the difference in performance between RDHT
DC? and RDHT DC" is quite small.

Fig. 7 examines the performances of RDHT DC°, RDHT
DC? and Oblivious for streaming when the transmission con-
straint is in kilobits per second (kbps), rather than packets as
in the prior experiment. Again, both RDHT DC° and RDHT
DC" provide substantial performance gains over Oblivious over
the whole range of available transmission rates. The gains in
performance remain steadily around 5-6 dB almost over the
whole range of transmission rates under consideration, for both
Foreman and Carphone. Note that in this case the performance
difference between the low-complexity RDHT techniques and
Oblivious is not as large as in the previous case. Having a trans-
mission constraint expressed in bits makes predicting the re-
sulting distortion at the receiver due to a packet drop pattern
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more difficult for the distortion chain based systems, as the
number of dropped packets may need to vary over different
transmission windows. Finally, we observe that the performance
difference between the RDHT DC® and RDHT DC" is some-
what larger in this case.

Adapting to Packet Loss: Reactive Adaptation: The per-
formance of the three streaming systems is now examined in
the second scenario where we have packet loss. In contrast
to the first scenario, here there is sufficient channel data rate
to transmit once every packet of the video. However, there is
random packet loss on the forward channel and the sender needs
to decide whether it should retransmit previous lost packets or
instead transmit new packets which have not been transmitted
yet. In other words, in addition to the W packets from the
current transmission window, the sender also considers for the
present transmission past packets from previous transmission
windows that have been lost during transmission. Note that this
leads to a slight increase in complexity as now the number of
packets to be considered for transmission at each transmission
opportunity increases from W to W plus the number of pre-
vious lost packets. These experiments assume the following:
1) the forward channel exhibits no packet delay, but only loss;
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2) the sender is immediately notified of each lost packet (an
ideal feedback channel); and 3) successive packet losses are
independent and identically distributed.

It can be seen from Fig. § that the performances of the three
streaming systems for this scenario are equivalent to those
shown in Fig. 6, which is expected. Therefore, we do not
discuss these results in detail. Instead, we just note that as in the
scenario associated with Fig. 6, also here the two RDHT-based
systems provide substantial performance improvement over
Oblivious.

Adapting to Packet Loss: Active Adaptation: This section in-
vestigates the end-to-end performance for the scenario where
the available transmission rate can be varied and the network
exhibits random packet loss and delay on both forward and
backward channels. Four standard test video sequences in QCIF
format are used in these experiments: Foreman, Mother and
Daughter (MthrDhtr), Carphone, and Coastguard. Two sets of
experiments are performed. In the first set of experiments, each
sequence is coded at 10 f/s, resulting in 130 coded frames, with
a constant quantization level for an average Y-PSNR of about
36 dB, and a GOP size of 20 frames, where each GOP consists
of an I-frame followed by 19 consecutive P-frames. The second
set of experiments are similiar to the first, however B-frames are
used with a GOP structure of IBBBP (three B-frames between
each pair of reference frames). Three sender-driven streaming
systems are employed in the experiments. RDHT and Oblivious
are streaming systems that were introduced earlier. Specifically,
RDHT is the RDHT-based system using DC®. Conv. RaDiO is a
streaming system that employs a conventional RaDiO technique
for packet scheduling such as the one from [5]. The Lagrange
multiplier A is fixed for the entire presentation according to
the available transmission rate for the two RaDiO systems, i.e.,
Conv. RaDiO and RDHT. The playout delay is 600 ms, and the
time interval between transmission opportunities 7" = 100ms.

In all three systems, packets are considered for transmission
in overlapping windows of variable size as in [4]. In all three
systems, for every arriving packet on the forward channel the
receiver returns immediately to the sender an acknowledgment
packet on the backward channel. At each transmission opportu-
nity RDHT and Oblivious consider for retransmission only those
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packets from the transmission window whose last transmission
has not been acknowledged within yr + 30r seconds from the
current transmission opportunity, where ;g and o are, respec-
tively, the mean and the standard deviation of the round-trip
time. This time-out value is frequently used in ARQ systems,
e.g., TCP [20].

The forward and the backward channel on the network path
between the sender and the receiver are modeled as follows.
Packets transmitted on these channels are dropped at random,
with a drop rate ez = eg = ¢ = 10%. Those packets that
are not dropped receive a random delay, where the forward and
backward delay densities pr and pp are modeled as identical
shifted Gamma distributions with parameters (n, ) and right
shift «, where n = 2 nodes, 1/a = 25 ms, and £ = 50 ms
for a mean delay of x 4+ n/a = 100 ms and standard deviation
Vn/a = 35 ms.

For comparison purposes, in the following figures we also
show the performance of an “ideal” R-D optimal sender-driven
system denoted as “RD bound”. Specifically, the performance
of “RD bound” is computed using the R-D characteristics of the
video sequence and the characteristics of the channel in the fol-
lowing manner. The communication channel between the sender
and the receiver acts as a packet erasure channel with a drop
probability of €. Then, if the sender transmits at a data rate Ry,
the data rate observed at the receiver is R, = (1 — ep) R (as-
suming independence between packet losses and packet size).
Then, for every data rate R; at which a sender can transmit
the distortion performance of “RD bound” is computed as the
smallest possible distortion for R, using an optimal pruning al-
gorithm [18] and the R-D characteristics of the video sequence.

We first examine the performance of the three systems for
streaming Foreman and Coastguard using only I and P-frames
in Fig. 9. For Foreman, Conv. RaDiO outperforms RDHT over
the whole range of transmission rates, with a margin of roughly
1-2 dB at the high end of transmission rates and increasing to
5-6 dB at the low end of transmission rates. However for Coast-
guard the performance is much closer with less than 0.5 dB
difference in performance at the high end of the transmission
rate. RDHT outperforms Oblivious for Foreman with a signifi-
cant margin over the whole range of transmission rates, with a
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Different schemes for streaming QCIF Coastguard with IP frames
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Fig. 9. R-D performance for streaming Foreman and Coastguard (coded using I- and P-frames).
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Fig. 10. R-D performance for streaming Foreman and Coastguard (coded using

gain of at least 6 dB for rates of 65-90 kb/s, and a maximum
gain of about 8 dB at 80 kb/s. RDHT also provides similar gains
over Oblivious for the Coastguard sequence. Finally, the perfor-
mance loss of Conv. RaDiO with respect to “RD bound” is on
the order of 1-2 dB and is due to the late loss, i.e., packets ar-
riving at the receiver after their delivery deadline. Note that sim-
ilar performance characteristics are also achieved for MthrDhtr
and Carphone sequences, however these results are not shown
because of the limited space.

We next examine the performance of the three systems for
streaming Foreman and Coastguard using I, P, and B-frames
in Fig. 10, where we have three B-frames between each pair
of reference frames. In these experiments Oblivious discards
B-frames before P-frames before I-frames. This simple heuristic
is a natural approach to exploit the different importance of I,
P, and B-frames and it provides significant gain. Furthermore,
when B-frames are used the performance curves for all three
techniques (Conv. RaDiO, RDHT, and Oblivious) are much
closer together. Specificially, Conv. RaDiO provides only about
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I-, P-, and B-frames).

1.0-dB gain over RDHT which provides only about 0.25-dB
gain over Oblivious. Therefore, the performance benefit pro-
vided by either RaDiO technique (Conv. RaDiO or RDHT)
significantly decreases when B-frames are used. An interesting
note is that RDHT occasionally decides to drop a P-frame
instead of dropping a B-frame—a decision which is never made
by the Oblivious technique. To summarize the results from the
experiments using I, P, and B-frames, the proposed approach
does provide a gain in performance when B-frames are used,
however the performance gain is much lower than in the case
when only I and P-frames are used. Specifically, the heuristic of
dropping B-frames before dropping P-frames generally works
quite well.

Several important observations follow from these experi-
ments. Conv. RaDiO outperforms the other two streaming sys-
tems with a margin that is usually substantial. This is expected,
since Conv. RaDiO assumes accurate statistical knowledge of the
channel and employs an optimization framework for computing
its transmission schedules that is far more sophisticated and ac-
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curate than the streaming techniques employed by the other two
systems. For example, Conv. RaDiO uses models for the forward
and the backward channel and given these models it computes
the optimal transmission schedule that minimizes the expected
distortion. However, this optimization procedure requires amuch
higher computational complexity which presently is unaccept-
able for online streaming. Furthermore, the performance of Conv.
RaDiO is dependent on accurate and timely knowledge of the
state of the forward and backward channels, which sometimes
may be difficult to achieve in today’s highly dynamic networks.
Therefore, it is encouraging to see that RDHT provides a signifi-
cant fraction of the performance provided by Conv. RaDiO while
requiring significantly less complexity and without requiring
channel knowledge. Moreover, the appeal of RDHT becomes
even stronger when we note the substantial performance gains,
reaching up to 8 dB, that it offers over systems such as Oblivious,
which can be thought of as a representative example of streaming
systems used in practice today. In particular, RDHT provides
this significant performance gain with a complexity that is of
the same order as that of Oblivious. Note that the performance
improvement of RDHT over Oblivious is only minor for the case
of streaming with I, P, and B-frames, as seen in the last set of
results. However, it should be mentioned that in this scenario
the Oblivious system is not so “oblivious” to the importance
of the packets’ content, as it performs prioritized (re)transmis-
sions based on the associated video frame type of the packets.
This in essence contributes to having both systems, RDHT and
Oblivious, performing the same transmission decisions almost
all of the time, which in turn means that also the latter system is
“almost” RaDiO. In addition, we expect that the performance
difference between RDHT and Oblivious will increase and will
become more similar to what we observed in the earlier results
as a larger fraction of coded frames are used as references for
predicting other frames, i.e., the proportion of non-B-frames is
increased.

This section concludes by briefly describing the computa-
tional requirements of Conv. RaDiO and RDHT for steady-state
operation, and specifically provides upper bounds on the
number of operations per video packet. The complexity of
Conv. RaDiO is on the order of N;|W| (C|N.| + 2VM), where
N;; is the number of iterations that the optimization algorithm
[4], [5] performs until convergence (typically on the order
of 2-3) and |W)] is the size of the transmission window W
during which a data unit is considered for transmission. The
multiplicative factor N;|W| is needed because the optimal
schedule for a data unit is computed at every iteration of the
optimization algorithm and as long as the data unit is in the
transmission window V. However, this is an upper bound as
once the reception of the data unit is acknowledged, there is
no further computing cost associated with it although the data
unit may continue to be present in the transmission window
W. In addition, |[N\,| is the size of the concealment set for a
data unit and it signifies the number of concealment events
that are considered when the optimal schedule for a data unit
is computed. C' is a constant that can be very large and that
depends on the sizes of the ancestor and descendant sets for the
data units that are involved in the concealment events in N,.
Note that the ancestor set for data unit [ represents the set of
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data units that must be received on time in order to decode that
data unit; similarly, the descendant set for data unit [ represents
the set of data units for which data unit [ must be received on
time in order to decode them (further details in [4], [5]). Finally,
N is the number of transmission opportunities over which the
optimal schedule is computed for a data unit. The complexity
of RDHT is substantially smaller as this technique requires at
most [W| computing operations (on average (1/2)|W|) to find
the appropriate location for a video packet j (based on its utility
per bit );) in the sorted list of packets that are already in the
transmission window W. Note that this operation is performed
once per packet, when it first enters the transmission window.

VI. CONCLUSION

This paper proposed RDHT-based systems for performing
low-complexity RaDiO adaptive streaming. Specifically, the
RDHT-based streaming systems enable low-complexity on-
line adaptive algorithms which adapt to the available data rate,
packet loss, and the R-D characteristics of the video source.
Experimental results demonstrate that for the difficult case
of nonscalably coded H.264 video (one I-frame followed by
all P-frames), the proposed RaDiO adaptive system provides
several decibel gain over the conventional non-RD-optimized
oblivious streaming system. Furthermore, the proposed system
provides a significant fraction of the gain provided by the
high-complexity RaDiO system, without requiring neither 1) ac-
curate information about the forward and the backward channel
statistical characteristics, nor 2) the computationally expensive
optimization, that conventional RaDiO requires. We believe
that these properties make the proposed RDHT-based systems
quite promising for practical, high-quality adaptive streaming
over real-world networks, and in particular can be implemented
within the context of the popular MPEG-4 File Format (MP4).
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