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Optical Flow Estimation Using Temporally Oversampled Video
SukHwan Lim, Member, IEEE, John G. Apostolopoulos, Member, IEEE, and Abbas El Gamal, Fellow, IEEE

Abstract— Recent advances in imaging sensor technology make
high frame rate video capture practical. As demonstrated in
previous work, this capability can be used to enhance the
performance of many image and video processing applications.
The idea is to use the high frame rate capability to temporally
oversample the scene and thus to obtain more accurate infor-
mation about scene motion and illumination. This information
is then used to improve the performance of image and standard
frame-rate video applications. The paper investigates the use of
temporal oversampling to improve the accuracy of optical flow
estimation (OFE). A method for obtaining high accuracy optical
flow estimates at a conventional standard frame rate, e.g. 30
frames/s, by first capturing and processing a high frame rate
version of the video is presented. The method uses the Lucas-
Kanade algorithm to obtain optical flow estimates at a high frame
rate, which are then accumulated and refined to estimate the
optical flow at the desired standard frame rate. The method
demonstrates significant improvements in optical flow estimation
accuracy both on synthetically generated video sequences and
on a real video sequence captured using an experimental high-
speed imaging system. It is then shown that a key benefit of
using temporal oversampling to estimate optical flow is the
reduction in motion aliasing. Using sinusoidal input sequences,
the reduction in motion aliasing is identified and the desired
minimum sampling rate as a function of the velocity and spatial
bandwidth of the scene is determined. Using both synthetic and
real video sequences it is shown that temporal oversampling
improves OFE accuracy by reducing motion aliasing not only
for areas with large displacements but also for areas with small
displacements and high spatial frequencies. The use of other OFE
algorithms with temporally oversampled video is then discussed.
In particular the Haussecker algorithm is extended to work
with high frame rate sequences. This extension demonstrates yet
another important benefit of temporal oversampling, which is
improving OFE accuracy when brightness varies with time.

Index Terms— Optical flow estimation, Motion estimation,
High speed imaging, CMOS image sensor, Temporal oversam-
pling

I. INTRODUCTION

AKey problem in the processing of video sequences is es-
timating the motion between video frames, often referred

to as optical flow estimation (OFE). Once estimated, optical
flow can be used in performing a wide variety of tasks such
as video compression, 3-D surface structure estimation, super-
resolution, motion-based segmentation and image registration.
Optical flow estimation based on standard frame rate video se-
quences, such as 30 frames/s, has been extensively researched
with several classes of methods developed including gradient-
based, region-based matching, energy-based, Bayesian, and
phase-based [1], [2], [3]. Many of these methods require a
large number of operations to achieve acceptable estimation
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accuracy and perform poorly for large displacements [4],
[5], [6], [7], [8]. Moreover, certain applications require more
accurate and dense velocity measurements of optical flow than
can be achieved by these methods.

Oversampling has been previously applied in many 1D
signal processing applications such as analog-to-digital con-
version, audio processing, and communications. Oversampling
has also been applied to still imaging applications such as
extending dynamic range by capturing multiple images [9],
[10]. However, until recent advances in the design of CMOS
image sensors and digital signal processors, it was considered
too costly to capture sequences at a high frame rate and use
them in standard rate video processing applications. On the
capture side, several researchers have recently demonstrated
implementations of high frame rate capture up to several
thousand frames per second [11], [12], [13]. Krymski et
al. [11] describe a 1024 × 1024 Active Pixel Sensor (APS)
with column level ADC achieving frame rate of 500 frames/s.
Stevanovic et al. [12] describe 256 × 256 APS with 4 analog
outputs achieving frame rate of 1000 frames/s. Kleinfelder et
al. [13] describe a 352× 288 Digital Pixel Sensor (DPS) with
per pixel bit parallel ADC achieving 10,000 frames/s or 1
Giga-pixels/s.

There are several benefits of using high frame rate sequences
for OFE. First, the brightness constancy assumption [1], [2],
[3] made implicitly or explicitly in most OFE algorithms
becomes more valid as frame rate increases. Thus it is expected
that using high frame rate sequences can enhance the estima-
tion accuracy of these algorithms. Another important benefit is
that as frame rate is increased the captured sequence exhibits
less motion aliasing. Indeed large errors due to motion aliasing
can occur even when using the best optical flow estimators.
For example, when motion aliasing occurs a wagon wheel
might appear to rotate backwards even to a human observer.
This specific example is discussed in more detail in Section
III. There are many instances when the standard frame rate of
30 frames/s is not sufficient to avoid motion aliasing and thus
incorrect optical flow estimates [8], [14]. Note that motion
aliasing not only depends on the velocities but also on the
spatial bandwidths. Thus, capturing sequences at a high frame
rate not only helps when velocities are large but also for com-
plex images with low velocities but high spatial bandwidths.
In [15], [16], Handoko describes a method using high frame
rate video sequence for block-based motion vector estimation
at standard frame rate, commonly used in video compression
standards such as MPEG. Their paper proposed an iterative
block matching algorithm utilizing a high frame rate sequence
to generate motion vectors at 30 frames/s. The main focus was
to reduce computational complexity and hence reduce power
consumption. The reduction in computational complexity was
achieved by utilizing high frame rate sequences to effectively
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reduce the search area between two consecutive frames.
In [17], [18] a method for obtaining accurate optical flow

estimates at standard frame rate from a high frame rate
sequence was described. This paper presents a more detailed
and complete study of the initial work reported in [17], [18].
In Section II we present a method based on the well-known
Lucas-Kanade algorithm for computing accurate optical flow
estimates at a standard frame rate using a temporally over-
sampled (high frame rate) version of the video sequence.
Using synthetic input sequences generated by warping of a still
image, we show that the proposed method provides significant
improvements in accuracy. In addition, using real sequences
captured from a high-speed camera, we demonstrate that the
proposed method provides motion fields that more accurately
represent the motion that occurred in the video. In Section III
we briefly review 3-D spatio-temporal sampling theory, and
analyze the effects of temporal sampling rate and motion
aliasing on OFE accuracy. We present simulation results using
sinusoidal input sequences showing that the minimum frame
rate needed to achieve high accuracy is largely determined by
the minimum frame rate necessary to avoid motion aliasing
(which may be produced by large displacements, or small
displacements with high spatial bandwidths). In Section IV
we discuss how the proposed method can be used with OFE
algorithms other than the Lucas-Kanade algorithm. In particu-
lar, we extend the Haussecker algorithm [19] to work with high
frame rate sequences. Furthermore, with this extension we
show that another important benefit of temporal oversampling
is improved optical flow estimation accuracy even when the
brightness varies with time.

II. OFE USING TEMPORALLY OVERSAMPLED VIDEO

SEQUENCES

A. Proposed Method

In this subsection we present a method for obtaining high
accuracy optical flow estimates at a standard frame rate by
capturing and processing a high frame rate version of the
video. The idea is to estimate optical flow at a high frame
rate and then carefully integrate it temporally to estimate the
optical flow between frames at the slower standard frame rate.
Temporal integration, however, must be performed without los-
ing the accuracy gained by using the high frame rate sequence.
Obviously, if the temporal integration does not preserve the
accuracy provided by the high frame rate sequence, then this
approach would lose many of its benefits.

The block diagram of our proposed method is shown in
Figure 1 for the case when the frame rate is 3 times the
standard frame rate. We define OV as the oversampling factor
(i.e., the ratio of the capture frame rate to the standard frame
rate) and thus OV = 3 in the block diagram. Consider the
sequence of high-speed frames beginning with a standard-
speed frame (shaded frame in the figure) and ending with the
following standard-speed frame. We first obtain high accuracy
optical flow estimates between consecutive high-speed frames.
These estimates are then used to obtain an accurate estimate
of the optical flow between the two standard-speed frames.

We first describe how optical flow at a high frame rate is es-
timated. Although virtually any OFE method can be employed
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Fig. 1. The block diagram of the proposed method (OV = 3).

for this stage, we decided to use a gradient-based method since
higher frame rate leads to reduced motion aliasing and better
estimation of temporal derivatives, which directly improve
the performance of such methods. In addition, because of
the smaller displacements between consecutive frames in a
high-speed sequence, smaller kernel sizes for smoothing and
computing gradients can be used, which reduces the memory
and computational requirements of the method.

Of the gradient-based methods, we chose the well known
Lucas-Kanade’s algorithm [20], which was shown to be among
the most accurate and computationally efficient methods for
optical flow estimation [1]. Each frame is first pre-filtered
using a spatio-temporal low pass filter to reduce aliasing
and systematic error in the gradient estimates. The gradients
ix, iy , and it are typically computed using a 5-tap filter [1].
Assuming the optical flow is constant for pixels in the
neighborhood, the displacement is calculated by computing
a least squares estimate of the brightness constraint equations
(ixdx + iydy + it = 0) for the pixels in the neighborhood.
Optionally, the brightness constraints near the center of the
neighborhood can be given higher weight than those farther
from the center. The weighted least-squares estimate of the
optical flow (dx(x, y), dy(x, y)) can be found by solving the
2 × 2 linear equation
[ ∑

u,v wi2x
∑

u,v wixiy∑
u,v wixiy

∑
u,v wi2y

] [
dx

dy

]
= −

[ ∑
u,v wixit∑
u,v wiyit

]
,

where w is the weighting function that assigns higher weight
to the center of the neighborhood and the summations are over
the neighborhood whose sizes are typically 5× 5 pixels. Note
that we have omitted the spatial parameters (u, v) in w(u, v)
and (x−u, y−v) in ix(x−u, y−v), iy(x−u, y−v) and it(x−
u, y − v) to simplify the notation. The smallest eigenvalue of
the 2 × 2 matrix in the equation can be used as a confidence
measure [1] such that we can discard the optical flow estimates
whose confidence measure is lower than a threshold.

After optical flow has been estimated at the high frame rate,
we use it to estimate the optical flow at the standard frame
rate. This is the third block of the block diagram in Figure 1.
The key in this stage is to integrate optical flow temporally
without losing the accuracy gained using the high frame rate
sequences. A straightforward approach would be to simply
accumulate the optical flow estimates between consecutive
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Fig. 2. The accumulation of error vectors when accumulating optical flow
without using refinement.

high-speed frames along the motion trajectories. The problem
with this approach is that errors can accumulate with the
accumulation of the optical flow estimates. To understand how
errors can accumulate for a pixel, consider the diagram in
Figure 2, where ek,l is the magnitude of the OFE error vector
between frames k and l. Assuming that θk, the angles between
the error vectors in the figure are random and uniformly
distributed and that the mean squared magnitude of the OFE
error between consecutive high-speed frames are equal, i.e.,
E[e2

j−1,j ] = E[e2
0,1] for j = 1, . . . , k, the total mean-squared

error is given by

E[e2
0,k] = E[e2

0,k−1 + e2
k−1,k − 2ek−1,ke0,k−1 cos θk]

=
k∑

j=1

E[e2
j−1,j ] − 2

k∑
j=1

E[ej−1,je0,j−1 cos θj ]

=
k∑

j=1

E[e2
j−1,j ] = kE[e2

0,1],

which grows linearly with k. On the other hand, if the optical
flow estimation errors are systematic, i.e., line up from one
frame to the next, and their magnitudes are temporally inde-
pendent, which yields E[ej−1,jel−1,l] = E[ej−1,j ]E[el−1,l],
then the total mean-squared error is given by

E[e2
0,k] = E[e2

0,k−1 + e2
k−1,k + 2ek−1,ke0,k]

= E[(e0,k−1 + ek−1,k)2]

= E[(
k∑

j=1

ej−1,j)2] = k2E[e2
0,1],

which grows quadratically with k. In practice, the optical flow
estimation error was shown to have a random component and
a non-zero systematic component by several researchers [5],
[7], [21], [22], and as a result, the mean-squared error E[e2

0,k]
is expected to grow faster than linear but slower than quadratic
in k.

To prevent this error accumulation, we add a refinement (or
correction) stage after each iteration (see Figure 4). We obtain
frame k̂ by warping frame 0 according to our accumulated
optical flow estimate d̃, and assume that frame k is obtained
by warping frame 0 according to the true motion between
the two frames, (which we do not know). By estimating the
displacement between frames k and k̂, we can estimate the
error between the true flow and the initial estimate d̃. In
the refinement stage, we estimate this error and add it to
the accumulated optical flow estimate. Although the estimate

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of frames accumulated

M
ag

ni
tu

de
 e

rr
or

 o
f o

pt
ic

al
 fl

ow
 e

st
im

at
io

n

Without refinement
With refinement

Fig. 3. The average magnitude of the OFE error with and without refinement.

of the error is not perfect, we found that it significantly
reduces error accumulation. Figure 3 illustrates this reduction
by comparing the average magnitude of the OFE error with
and without the refinement stage. This figure was generated by
performing OFE on the synthetic video sequence of scene 1 in
Table 1, but operating at different frame rates. The generation
of synthetic video sequences is described in more detail in
Section II-B.

Fig. 4. Accumulate and refine stage.

A description of the proposed method is given below.
Consider OV + 1 high-speed frames beginning with a
standard-speed output frame and ending with the following
one. Number the frames 0, 1, . . . , OV and let d̂k,l be the
estimated optical flow (displacement) from frame k to frame
l, where 0 ≤ k ≤ l ≤ OV . The end goal is to estimate the
optical flow between frames 0 and OV , i.e, d̂0,OV .
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Proposed method:

1) Capture a standard-speed frame, set k = 0.
2) Capture the next high-speed frame and set k = k + 1.
3) Estimate d̂k−1,k using Lucas-Kanade method.
4) d̃0,k = d̂0,k−1 + d̂k−1,k where addition of optical flow

estimates are along the motion trajectories.
5) Estimate ∆k, the displacement between frame k and k̂.
6) Set refined estimate d̂0,k = d̃0,k + ∆k.
7) Repeat steps 2 through 6 until k = OV
8) Output d̂0,OV the final estimate of optical flow at the

standard frame rate

The number of operations required to compute the optical
flow using our method is roughly 2OV times that required to
compute the optical flow using standard frame rate sequences.
It is obtained by assuming that the computational complexity
of 2)Warp and 3)Accumulate (in Figure 4) is much lower
than that of 1)LK and 4)Refine. For example, when OV = 4,
the computational complexity is increased by approximately
a factor of 8. Liu et. al. [4] discussed the trade off between
accuracy and complexity in some well-known OFE methods
and showed that the range of the computational complexity for
those methods span several orders of magnitude. By examining
Table 1 and Figure 2 in [4], our method with OV = 4
would be less compute intensive than methods such as Fleet &
Jepson, Horn & Schunk, Bober and Anandan’s method. This is
because the standard Lucas-Kanade method is one of the least
compute intensive OFE methods. Also, note that since our
method is iterative, its memory requirement is independent of
the frame rate. Furthermore, since the proposed method uses
2-tap temporal filter for smoothing and estimating temporal
gradients, its memory requirement is less than that of the
conventional Lucas-Kanade method, which typically uses a
5-tap temporal filter [1]. Thus, we believe that it is feasible to
implement the proposed method when OV is not prohibitively
large.

Although our method does not require real-time operation
to perform successful OFE, it may be beneficial to briefly
consider the feasibility of real-time operation. Liu et. al. [4]
and Bober et. al. [23] projected the number of years it
would take to perform real-time operation of certain OFE
algorithms. They used the execution time estimates of various
OFE methods and assumed that computational power doubles
each year [24]. Applying their approach, we project that it
should be possible to perform OFE with our method (OV = 4)
using a generic workstation in 2005. In addition, we believe
that it would be even more feasible to implement our method
in dedicated VLSI circuits since they typically have higher
computational capabilities than generic CPUs. One potential
problem in implementing our method in real-time is the high
data rate requirement associated with high frame rate. It may
be costly to implement our method in real-time because of the
high inter-chip data rate between the sensor, the memory and
processing chips. This problem can be alleviated by integrating
the memory and the processing with the CMOS image sensor
on the same chip. The idea is to (i) operate the sensor at a
higher frame rate than the standard frame rate, (ii) process the
high frame rate data on-chip, and (iii) only output the video

frames and associated optical flow estimates at the standard
frame rate [18], [25]. In this case, only the standard frame
rate video frames and associated optical flow estimates need
to be transferred off-chip because all the data transfers at high
frame rate would occur inside the chip. Note that intra-chip
data transfers can support much higher bandwidths and lower
power consumption as compared to off-chip transfers. Overall,
a single-chip solution would result in lower system cost and
power consumption [18], [25].

B. Simulation and Results

In this subsection, we describe the simulations we per-
formed using synthetically generated natural image sequences
to test our optical flow estimation method. To evaluate the
performance of the proposed method and compare with meth-
ods using standard frame rate sequences, we need to compute
the optical flow using both the standard and high frame
rate versions of the same sequence, and then compare the
estimated optical flow in each case to the true optical flow.
We use synthetically generated video sequences obtained by
warping of a natural image. The reason for using synthetic
sequences, instead of real video sequences, is that the amount
of displacement between consecutive frames can be controlled
and the true optical flow can be easily computed from the
warping parameters. Also, in addition to results obtained
from synthetic sequences, we provide experimental results
using real sequences captured from a high-speed camera. We
demonstrate that the proposed method provides motion fields
which more accurately represent the motion that occurred in
the video.

We use a realistic image sensor model [26] that incorporates
motion blur and noise in the generation of the synthetic se-
quences, since these effects can vary significantly as a function
of frame rate, and can thus affect the performance of optical
flow estimation. In particular, high frame rate sequences have
less motion blur but suffer from lower SNR, which adversely
affects the accuracy of optical flow estimation. The image
sensor in a digital camera comprises a 2-D array of pixels.
During capture, each pixel converts incident photon flux into
photocurrent. Since the photocurrent density j(x, y, t) A/cm2

is too small to measure directly, it is spatially and temporally
integrated onto a capacitor in each pixel and the charge
q(m,n) is read out at the end of exposure time T . Ignoring
dark current, the output charge from a pixel can be expressed
as

q(m,n) =
∫ T

0

∫ ny0+Y

ny0

∫ mx0+X

mx0

j(x, y, t)dxdydt+N(m,n),

(1)
where x0 and y0 are the pixel dimensions, X and Y are
the photodiode dimensions, (m,n) is the pixel index, and
N(m,n) is the noise charge. The noise is the sum of two
independent components, shot noise and readout noise. The
spatial and temporal integration results in low pass filtering
that can cause motion blur. Note that the pixel intensity i(m,n)
commonly used in image processing literature is directly
proportional to the charge q(m,n).

The steps of generating a synthetic sequence are as follows.
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1) Warp a high resolution (1312 × 2000) image using
perspective warping to create a high resolution sequence.

2) Spatially and temporally integrate (according to Equa-
tion (1)) and subsample the high resolution sequence
to obtain a low resolution sequence. In our example,
we subsampled by factors of 4 × 4 spatially and 10
temporally to obtain each high-speed frame.

3) Add readout noise and shot noise according to the
model.

4) Quantize the sequence to 8 bits/pixel.
Three different scenes derived from a natural image (Fig-

ure 5) were used to generate the synthetic sequences. For
each scene, two versions of each video, one captured at a
standard frame rate (OV = 1) and the other captured at four
times the standard frame rate (OV = 4), are generated as
described above. The maximum displacements were between
3 and 4 pixels/frame at the standard frame rate. We performed
optical flow estimation on the (OV = 1) sequences using the
standard Lucas-Kanade method as implemented by Barron et
al. [1] and on the (OV = 4) sequences using the proposed
method. Both methods generate optical flow estimates at a
standard frame rate of 30 frames/s. Note that the standard
Lucas-Kanade method was implemented using 5-tap temporal
filters for smoothing and estimating temporal gradients while
the proposed method used 2-tap temporal filters. The resulting
average angular errors between the true and the estimated
optical flows are given in Table I. The densities of all estimated
optical flows are close to 50%, where the density is defined as
the percentage of pixels that have confidence measures higher
than a set threshold. The average optical flow estimation error
was obtained by averaging over those pixels.

Fig. 5. (a) One frame of a test sequence and (b) its known optical flow.

Lucas-Kanade Proposed
(OV = 1) (OV = 4)Scene

Angular Magnitude Angular Magnitude
1 4.43◦ 0.24 3.43◦ 0.14
2 3.94◦ 0.24 2.91◦ 0.17
3 4.56◦ 0.32 2.67◦ 0.17

TABLE I

AVERAGE ANGULAR ERROR AND MAGNITUDE ERROR USING

LUCAS-KANADE METHOD WITH STANDARD FRAME RATE SEQUENCES

VERSUS THE PROPOSED METHOD USING HIGH FRAME RATE SEQUENCES.

The results demonstrate that using the proposed method in
conjunction with the high frame rate sequence can achieve

higher accuracy. Note that the displacements were kept rel-
atively small (as measured at the standard frame rate) to
make comparison between the two methods more fair. As
displacements increase, the accuracy of the standard Lucas-
Kanade method deteriorates rapidly and hierarchical methods
should be used in the comparison instead. On the other
hand, the proposed method is much more robust to large
displacements because of the higher sampling rate.

To investigate the gain in accuracy of the proposed method
for large displacements, we applied the Lucas-Kanade method,
our proposed method with OV = 10, and the hierarchical
matching-based method by Anandan [6] as implemented by
Barron [1] to a synthetic sequence. The maximum displace-
ment was 10 pixels/frame at the standard frame rate. The
average angular errors and magnitude errors of the estimated
optical flows are given in Table II. For comparison, we
calculated average errors for Anandan’s method at locations
where Lucas-Kanade method gave valid optical flow, although
Anandan’s method can provide 100% density. Thus, values in
the table were calculated where the densities of all estimated
optical flows are close to 50%.

Angular Magnitude
Lucas-Kanade 9.18◦ 1.49

Anandan’s 4.72◦ 0.53
Proposed (OV = 10) 1.82◦ 0.21

TABLE II

AVERAGE ANGULAR AND MAGNITUDE ERROR USING LUCAS-KANADE,

ANANDAN’S AND PROPOSED METHOD.

(a) Frame 9 (b) Frame 13

Fig. 6. Two frames from the real video sequence captured at 120 frames/s.

(a) Standard Lucas-Kanade (b) Proposed method

Fig. 7. Optical flow estimation results for a real video sequence.

We also applied our method to real video sequences cap-
tured using an experimental high speed imaging system [27].
The system is based on the DPS chip described in [13] and
can operate at frame rates of up to 1400 frames/s. Although
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we cannot measure the error quantitatively, we can make
qualitative comparisons. Figure 6 shows frames 9 and 13
of the real video sequence. It was captured at 120 frames/s
(OV = 4) when a person was moving horizontally from right
to left. The horizontal optical flow was near 2 pixels/frame
for standard frame rate (30 frames/s) sequences. We tried to
keep the horizontal velocity within the acceptable range for
the standard Lucas-Kanade method. To estimate the optical
flow between frame 9 and 13, our method used all the frames
between frames 9 and 13, while the standard Lucas-Kanade
method just used frames 9 and 13. The resulting optical flows
are shown in Figure 7. The effect of aliasing can be seen in
some areas in Figure 7 (a) where the optical flow estimates
point in the opposite direction of the true motion. Note that
this experiment with a real video sequence was performed in a
favorable situation for the standard Lucas-Kanade method. We
carried out similar experiments for larger displacements and
the difference in the performance is significantly larger than
what can be seen in Figure 7. The experiment also serves
the purpose of examining the effect of aliasing in optical
flow estimation when high spatial frequency is present with
moderate displacements. It shows that the standard frame rate
of, e.g., 30 frames/s is not sufficient to avoid motion aliasing
and thus incorrect optical flow estimates. Note that the shirt
has high spatial frequency although the displacements were
small enough to be within general acceptable range of the
standard Lucas-Kanade method. This illustrates that capturing
sequences at a high frame rate not only helps when velocities
are large but also for complex images with low velocities but
high spatial bandwidths. Another benefit that is illustrated in
Figure 7 is that the estimated motion field when using temporal
oversampling exhibits significant coherence (i.e. it is smoothly
varying) similar to the true motion of the object, and this
property is very useful for compression as well as many other
video signal processing applications that utilize motion fields.

III. EFFECT OF MOTION ALIASING ON OPTICAL FLOW

ESTIMATION

This section reviews 3-D spatio-temporal sampling theory
and investigates the effect of motion aliasing on the accuracy
of optical flow estimation. Readers familiar with 3-D spatio-
temporal sampling and motion aliasing may wish to skip the
review in III-A, and continue with III-B. Motion aliasing can
produce large errors even with the best optical flow estimators.
Perhaps the most well known example is that of the wagon
wheel in a Western movie (shot at 24 frames/s) which appears
to be moving in the opposite direction from what physically
makes sense given the wagon’s motion. This section briefly
reviews 3-D spatio-temporal sampling theory and describes
how motion aliasing occurs not only for large displacements
but also for small displacements with high spatial frequency.
Our experiments also demonstrate that the minimum frame
rate necessary to achieve good OFE performance is largely
determined by the minimum frame rate necessary to prevent
motion aliasing in the sequence.

A. Review of Spatio-temporal Sampling Theory

A simplified but insightful model of motion is that of global
motion with constant velocity in the image plane. The pixel
intensity, assuming this model, is given by

i(x, y, t) = i(x − vx, y − vy, 0)
= i0(x − vx, y − vy),

where i0(x, y) denotes the 2-D pixel intensity for t = 0 and
vx and vy are the global velocities in the x and y directions,
respectively. This model is commonly assumed either globally
or locally in many applications such as motion-compensated
standards conversion and video compression. After taking the
Fourier transform, we obtain

I(fx, fy, ft) = I0(fx, fy) · δ(fxvx + fyvy + ft),

where I0(fx, fy) is the 2-D Fourier transform of i0(x, y) and
δ(·) is the 1-D Dirac delta function. Thus, it is clear that
the energy of I(fx, fy, ft) is confined to a plane given by
fxvx+fyvy+ft = 0. If we assume that i0(x, y) is bandlimited
such that I(fx, fy) = 0 for |fx| > Bx and |fy| > By , then
i(x, y, t) is bandlimited temporally as well, i.e, I(fx, fy, ft) =
0 for |ft| > Bt where Bt = Bxvx + Byvy . Note that the
temporal bandwidth depends on both the spatial bandwidths
and the spatial velocities. To simplify our discussion, we
assume in the following that sampling is performed only
along the temporal direction and that the spatial variables
are taken as continuous variables (no sampling along the
spatial directions). This assumption simplifies the analysis, and
interestingly is not entirely unrealistic, since it is analogous to
the shooting of motion picture film, where each film frame
corresponds to a temporal sample of the video. Figure 8
shows the spatio-temporal spectrum of video when sampled
only in the temporal direction. For simplicity of illustration,
we consider its projection onto the (fx, ft)-plane, where the
support can be simplified to fxvx+ft = 0. Each line represents
the spatio-temporal support of the sampled video sequence.

Fig. 8. Spatio-temporal spectrum of a temporally sampled video.

Let us consider the problem of how fast we should sample
the original continuous video signal along the temporal dimen-
sion such that it can be perfectly recovered from its samples.
Assume that an ideal low-pass filter with rectangular support in
the 3-D frequency domain is used for reconstruction, although
in certain ideal cases, a sub-Nyquist sampled signal can also be
reconstructed by an ideal motion-compensated reconstruction
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filter assuming the replicated spectra do not overlap (see [3]
for details). To recover the original continuous spatio-temporal
video signal from its temporally sampled version, it is clear
from the figure that the temporal sampling frequency (or frame
rate) fs must be greater than 2Bt in order to avoid aliasing
in the temporal direction. If we assume global motion with
constant velocity vx and vy (in pixels per standard-speed
frame) and spatially bandlimited image with Bx and By as
the horizontal and vertical spatial bandwidths (in cycles per
pixel), the minimum temporal sampling frequency fs,Nyq to
avoid motion aliasing is given by

fs,Nyq = 2Bt = 2Bxvx + 2Byvy, (2)

where fs,Nyq is in cycles per standard-speed frame. (e.g. When
standard frame rate is 30 frames/s, the 60 frames/s correspond
to 2 cycles per standard-speed frame.) Note that the temporal
sampling frequency in cycles per standard-speed frame is
the oversampling factor OV . Moreover, since OV is an
integer in our framework to ensure that standard-speed frames
correspond to a captured high-speed frame (see Figure 1),
the minimum oversampling factor to avoid motion aliasing,
OVtheo, is

OVtheo = �fs,Nyq�
= �2Bxvx + 2Byvy�.

To illustrate this relationship consider the simple case of a
sequence with only global motion in the horizontal direction
(i.e., with vy = 0). Figure 9 plots OVtheo = �2Bxvx� versus
horizontal velocity and spatial bandwidth for this case.

Fig. 9. Minimum OV to avoid motion aliasing, as a function of horizontal
velocity vx and horizontal spatial bandwidth Bx.

Motion aliasing can produce large errors even with the
best optical flow estimators. The classic example is that of
the wagon wheel in a Western movie (shot at 24 frames/s)
which appears to be moving in the opposite direction from
what physically makes sense given the wagon’s motion (See
Figure 10). In this example the wagon wheel is rotating
counter-clockwise and we wish to estimate its motion from
two frames captured at times t = 0 and t = 1. The solid lines
represent positions of the wheel and spokes at t = 0 and the
dashed lines represent the positions at t = 1. Optical flow is
locally estimated for the two shaded regions of the image in
Figure 10. As can be seen, the optical flow estimates are in the

opposite direction of the true motion (as often experienced by
a human observer). The wheel is rotating counter-clockwise,
while the optical flow estimates from the local image regions
would suggest that it is rotating clockwise. This error is caused
by insufficient temporal sampling and the fact that optical flow
estimation (and the human visual system) implicitly assume
the smallest possible displacements (corresponding to a low-
pass filtering of the possible motions). This example shows
that motion aliasing can cause incorrect motion estimates for
any OFE algorithm. To overcome motion aliasing, one must
either sample sufficiently fast, or have a prior information
about the possible motions as in the case of the moving wagon
wheel, where the human observer makes use of the direction of
motion of the wagon itself to correct the misperception about
the rotation direction of the wheel.

Fig. 10. Wagon wheel rotating counter-clockwise illustrating motion aliasing
from insufficient temporal sampling: the local image regions (gray boxes)
appear to move clockwise.

Let us consider the spatio-temporal frequency content of the
local image regions in Figure 10. Since each shaded region has
a dominant spatial frequency component and the assumption
of global velocity for each small image region holds, its
spatio-temporal frequency diagram can be plotted as shown
in Figure 11 (A). The circles represent the frequency content
of a sinusoid and the dashed lines represent the plane where
most of the energy resides. Note that the slope of the plane
is inversely proportional to the negative of the velocity. The
spatio-temporal frequency content of the baseband signal after
reconstruction by the OFE algorithm is plotted in Figure 11
(B). As can be seen aliasing causes the slope at which most
of the energy resides to not only be different in magnitude,
but also to have a different sign, corresponding to motion in
the opposite direction.

Fig. 11. Spatio-temporal diagrams of, (A) the shaded region in Figure 10
and (B) its baseband signal.

Before continuing, it is useful to review other popular
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approaches for improving OFE performance by varying the
sampling rate. It is well known that motion aliasing or
temporal aliasing adversely affects the accuracy of OFE and
many researchers pointed out that large systematic errors arise
when displacements are large [5], [6], [7], [8]. Multi-resolution
algorithms applied spatially help overcome these problems as
the spatial subsampling in effect reduces the motion between
frames by the subsampling factor [6], [14]. Although temporal
aliasing can be caused by large displacements, it can also
be caused by high spatial frequencies with low-to-moderate
displacements. In this case, the spatial low-pass filtering used
as part of the coarse-to-fine estimation can partially overcome
the aliasing in the high spatial frequencies [7], [8], [14].
Note that these multi-resolution approaches adapt the spatial
sampling, but do not modify the temporal sampling: the frame
rate for processing is given by the frame rate of the desired
output OFE which is also equal to the frame rate of the video
acquisition.

B. Simulation and Results

In this subsection we discuss simulation results using sinu-
soidal test sequences and the synthetically generated natural
image sequence used in Subsection II-B. The reason for using
sinusoidal sequences is to assess the performance of the pro-
posed method as spatial frequency and velocity are varied in
a controlled manner. As discussed in the previous subsection,
motion aliasing depends on both the spatial frequency and
the velocity and can have a detrimental effect on optical flow
estimation. Using a natural sequence, it would be difficult to
understand the behavior of the proposed method with respect
to spatial frequency, since in such a sequence, each local region
is likely to have different spatial frequency content and the
Lucas-Kanade method estimates optical flow by performing
spatially local operations. In addition, typical figures of merit,
such as average angular error and average magnitude error,
would be averaged out across the frame. The use of sinusoidal
test sequences can overcome these problems and can enable us
to find the minimum OV needed to obtain a desired accuracy,
which can then be used to select the minimum high-speed
frame rate for a natural scene.

We considered a family of 2-D sinusoidal sequences with
equal horizontal and vertical frequencies fx = fy moving only
in the horizontal direction at speed vx (i.e., vy = 0). For
each fx and vx, we generated a sequence with OV = 1 and
performed optical flow estimation using the proposed method.
We then incremented OV by 1 and repeated the simulation.
We noticed that the average error drops rapidly beyond a
certain value of OV and that it remained relatively constant
for OV s higher than that value. Based on this observation we
defined the minimum oversampling ratio OVexp as the OV
value at which the magnitude error drops below a certain
threshold. In particular, we chose the threshold to be 0.1
pixels/frame. Once we found the minimum value of OV , we
repeated the experiment for different spatial frequencies and
velocities. The results are plotted in Figure 12.

Recall the discussion in the previous subsection (including
Figure 9) on the minimum oversampling factor as a function

Fig. 12. Minimum OV as a function of horizontal velocity vx and horizontal
spatial frequency fx.

of spatial bandwidth and velocity needed to avoid motion
aliasing. Note the similarity between the theoretical results
in Figure 9 and their experimental counterpart in Figure 12.
This is further illustrated by the plot of their difference
and its histogram in Figure 13. This similarity suggests that
reduction in motion aliasing is one of the most important
benefits of using high frame rate sequences. The difference
in Figure 13 can be further reduced by sampling at a higher
rate than �fs,Nyq� to better approximate brightness constancy
and improve the estimation of temporal gradients. It has been
shown that gradient estimators using a small number of taps
suffer from poor accuracy when high frequency content is
present [28], [29]. In our implementation, we used a 2-tap
temporal gradient estimator, which performs accurately for
temporal frequencies ft < 1

3 as suggested in [28]. Thus we
need to sample at a rate higher than 1.5 times the Nyquist
temporal sampling rate. Choosing an OV curve that is 1.55
times the Nyquist rate (i.e., �1.55fs,Nyq�), in Figure 14 we
plot the difference between the OVexp curve in Figure 12 and
the OV curve. Note the reduction in the difference achieved
by the increase in frame rate.

We also investigated the effect of varying OV and motion
aliasing on the accuracy using the synthetically generated
image sequences presented in Subsection II-B. Figure 15 plots
the average angular error of the optical flow estimates using the
proposed method for OV between 1 and 14. The synthetic test
sequence had a global displacement of 5 pixels/frame at OV =
1. As OV was increased, motion aliasing and the error due
to temporal gradient estimation decreased, leading to higher
accuracy. The accuracy gain resulting from increasing OV ,
however, levels off as OV is further increased. This is caused
by the decrease in sensor SNR due to the decrease in exposure
time and the levelling off of the reduction in motion aliasing.
For this example sequence, the minimum error is achieved
at OV = 6, where displacements between consecutive high-
speed frames are approximately 1 pixel/frame.

To investigate the effect of motion aliasing, we also esti-
mated the energy in the image that leads to motion aliasing.
Note that since the sequence has global motion with constant
velocity, the temporal bandwidth of the sequence can be
estimated as Bt = 5Bx + 5By by assuming the knowledge
of initial estimates of vx = vy = 5 pixels/frame. Thus, motion
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Fig. 13. Difference between empirical minimum OV for good optical flow estimation performance and OV corresponding to the Nyquist rate.

Fig. 14. Difference between empirical minimum OV for good optical flow estimation performance and OV corresponding to 1.55 times the Nyquist rate.
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Fig. 15. Average angular error versus oversampling factor (OV ).

aliasing occurs for spatial frequencies {fx, fy} that satisfy
the constraint fx + fy > OV/10. By using 2D-DFT of the
first frame and this constraint, we calculated the energy in the
sequence that is motion aliased for different OV s. Figure 16
plots the average angular error versus the energy that is motion
aliased. Each point corresponds to an OV value and it is
clear that the performance of the proposed OFE method is
largely influenced by the presence of motion aliasing. This
confirms that temporal oversampling leads to reduction of
motion aliasing and increased accuracy for a practical OFE

Fig. 16. Average angular error versus energy in the image that leads to
motion aliasing.

algorithm. Thus, a key advantage of high frame rate is the
reduction of motion aliasing. Also, this example shows that
with initial estimates of velocities, we can predict the amount
of energy in the image that will be aliased. This can be used
to identify the necessary frame rate to achieve high accuracy
optical flow estimation for a specific scene.

IV. EXTENSION TO HANDLE BRIGHTNESS VARIATION

In the previous sections we described and tested a method
for obtaining high accuracy optical flow at a standard frame
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rate using a high frame rate sequence. We used Lucas-Kanade
method to estimate optical flow at high frame rate and then
accumulated and refined the estimates to obtain optical flow
at standard frame rate. The Lucas-Kanade method assumes
brightness constancy, and although high frame rate makes this
assumption more valid, in this section we show that brightness
variations can be handled more effectively using other estima-
tion methods. Specifically, we show that by using an extension
of the Haussecker [19] method, temporal oversampling can
benefit optical flow estimation even when brightness constancy
assumption does not hold.

Several researchers have investigated the problem of how
to handle the case when the brightness constancy assumption
does not hold [19], [30], [31], [32], [33], [34], [35]. It has been
shown that a linear model with offset is sufficient to model
brightness variation in most cases [30], [31], [35]. For exam-
ple, Negahdaripour et al. developed an OFE algorithm based
on this assumption and demonstrated good performance [30],
[31]. Haussecker et al. developed models for several cases
of brightness variation and described a method for coping
with them [19]. We will use Haussecker’s framework with the
assumption of linear brightness variation for estimating optical
flow at high frame rate.

A. Review of Models for Brightness Variation

We begin with a brief summary of the framework described
in [19]. The brightness change is modelled as a parameterized
function h, i.e.,

i(x(t), t) = h(i0, t,a),

where x(t) denotes the path along which brightness varies,
i0 = i(x(0), 0) denotes the image at time 0, and a denotes
a Q-dimensional parameter vector for the brightness change
model. The total derivative of both sides of this equation yields

(∇i)T v + it = f(i0, t,a), (3)

where f is defined as

f(i0, t,a) =
d
dt

[h(i0, t,a)].

Note that when brightness is constant, f = 0 and Equation 3
simplifies to the conventional brightness constancy constraint.
The goal is to estimate the parameters of the optical flow field
v and the parameter vector a of the model f . Remembering
that h(i0, t,a = 0) = i0, we can expand h using the Taylor
series around a = 0 to obtain

h(i0, t,a) ≈ i0 +
Q∑

k=1

ak
∂h

∂ak
.

Thus, f can be written as a scalar product of the parameter
vector a and a vector containing the partial derivatives of f
with respect to the parameters ak, i.e.,

f(i0, t,a) =
Q∑

k=1

ak
∂f

∂ak
= (∇af)T a. (4)

Using Equation 4, Equation 3 can be expressed as

cT ph = 0,

where

c = [(∇af)T , (∇i)T , it]T

ph = [−aT ,vT , 1]T .

Here, the (Q+3)-dimensional vector ph contains the flow field
parameters and the brightness parameters of h. The vector c
combines the image derivative measurements and the gradient
of f with respect to a. To solve for ph, we assume that ph

remains constant within a local space-time neighborhood of N
pixels. The constraints from the N pixels in the neighborhood
can be expressed as

Gph = 0,

where G = [c1, ..., cN ]T . The estimate of ph can be obtained
by a total least squares (TLS) solution.

B. Using Haussecker Method with High Frame Rate

We assume a linear model with offset for brightness varia-
tion which yields f = a1 +a2i0. We use Haussecker’s method
to estimate vx, vy, a1 and a2 for every high-speed frame. We
then accumulate and refine vx, vy, a1 and a2 in a similar
manner to the method described in Section II to obtain optical
flow estimates at a standard frame rate.

The parameters vx and vy are accumulated and refined
exactly as before, and we now describe how to accumulate and
refine a1 and a2 along the motion trajectories. To accumulate
a1 and a2, we first define â1(k,l) and â2(k,l) to be the estimated
brightness variation parameters between frames k and l along
the motion trajectory. We estimate â1(k−1,k) and â2(k−1,k)

and assume that â1(0,k−1) and â2(0,k−1) are available from
the previous iteration. Since f = a1 + a2i0, we model the
brightness variation such that

ik−1 − i0 = â1(0,k−1) + â2(0,k−1)i0

ik − ik−1 = â1(k−1,k) + â2(k−1,k)ik−1,

for each pixel in frame 0, where ik is the intensity value for
frame k along the motion trajectory. By arranging the terms
and eliminating ik−1, we can express ik in terms of i0 such
that

ik = â1(k−1,k)+(1+â2(k−1,k))(â1(0,k−1)+(1+â2(0,k−1))i0).
(5)

Let ã1(0,k) and ã2(0,k) denote the accumulated brightness
variation parameters between frames 0 and k along the motion
trajectory. Therefore, by definition, ik = ã1(0,k) + (1 +
ã2(0,k))i0 and by comparing this equation with Equation 5,
accumulated brightness variation parameters are obtained by

ã1(0,k) = â1(k−1,k) + (1 + â2(k−1,k))â1(0,k−1)

ã2(0,k) = â2(k−1,k) + (1 + â2(k−1,k))â2(0,k−1).

Frame k̂ is obtained by warping frame 0 according to our
initial estimate of optical flow between frames 0 and k and
changing the brightness according to ã1(0,k) and ã2(0,k), i.e.,

Frame k̂ = (1 + ã2(0,k))ik(x − ṽx(0,k), y − ṽy(0,k)) + ã1(0,k),

where ṽx(0,k) and ṽy(0,k) are the accumulated optical flow
estimates between frames 0 and k. By estimating the optical
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flow and brightness variation parameters between original
frame k and motion-compensated frame k̂, we can estimate the
error between the true values and the initial estimates obtained
by accumulating. For the optical flow, we estimate the error
and add it to our initial estimate, whereas for the brightness
variation parameters, we perform the refinement as

â1(0,k) = a1∆ + (1 + a2∆)ã1(0,k)

â2(0,k) = a2∆ + (1 + a2∆)ã2(0,k),

where a1∆ and a2∆ are the brightness variation parameters
between frames k and k̂. The accumulation and refinement
stage is repeated until we have the parameters between frames
0 and OV .

We tested this method using the sequences described in
Subsection II-B but with global brightness variations. In
these sequences, however, the global brightness changed with
a1(0,OV ) = 5 and a2(0,OV ) = 0.1. We performed optical flow
estimation on the OV = 1 sequences using the Haussecker’s
method and on the OV = 4 sequences using our extended
method. The resulting average angular errors and magnitude
errors between the true and the estimated optical flows are
given in Table III.

Haussecker (OV = 1) Proposed (OV = 4)Scene
Angular Magnitude Angular Magnitude

1 5.12◦ 0.25 3.33◦ 0.15
2 6.10◦ 0.32 2.99◦ 0.18
3 7.72◦ 0.54 2.82◦ 0.18

TABLE III

AVERAGE ANGULAR ERROR AND MAGNITUDE ERROR USING

HAUSSECKER’S METHOD WITH OV = 1 SEQUENCES VERSUS PROPOSED

EXTENDED METHOD WITH OV = 4 SEQUENCES.

These results demonstrate that using high frame rate, high
accuracy optical flow estimates can be obtained even when
brightness varies with time, i.e., when brightness constancy
assumption does not hold. Furthermore, with this extension,
we have also demonstrated that our proposed method can
be used with OFE algorithms other than the Lucas-Kanade
algorithm.

V. SUMMARY

In this paper, we proposed a method for providing improved
optical flow estimation accuracy for video at a conventional
standard frame rate, by initially capturing and processing
the video at a higher frame rate. The method begins by
estimating the optical flow between frames at the high frame
rate, and then accumulates and refines these estimates to
produce accurate estimates of the optical flow at the desired
standard frame rate. The method was tested on synthetically
generated video sequences and the results demonstrate sig-
nificant improvements in OFE accuracy. We also validated
our algorithm with real video sequences captured at high
frame rate by showing that the proposed method provides
motion fields which more accurately represent the motion that
occurred in the video. Also, with sinusoidal input sequences,
we showed that reduction of motion aliasing is an important

potential benefit of using high frame rate sequences. We also
described methods to estimate the required oversampling rate
to improve the optical flow accuracy, as a function of the
velocity and spatial bandwidth of the scene. The proposed
method can be used with other OFE algorithms besides the
Lucas-Kanade algorithm. For example, we began with the
Haussecker algorithm, designed specifically for optical flow
estimation when the brightness varies with time, and extended
it with the proposed method to work on high frame rate
sequences. Furthermore, we demonstrated that our extended
version provides improved accuracy in optical flow estimation
as compared to the original Haussecker algorithm operating
on video captured at the standard frame rate. Finally, we
believe that temporal oversampling of video is a promising and
soon-to-be-practical approach for enhancing the performance
of many image and video applications.
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