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ABSTRACT 
 
Multiple description (MD) video coding can be used to reduce 
the detrimental effects caused by transmission over lossy packet 
networks. Each approach to MD coding consists of a tradeoff 
between compression efficiency and error resilience. How 
effectively each method achieves this tradeoff depends on the 
network conditions as well as on the characteristics of the video 
itself. This paper proposes an adaptive MD coding approach 
which adjusts to these conditions through the use of adaptive 
MD mode selection. The encoder in this system is able to 
accurately estimate the expected end-to-end distortion, 
accounting for both coding and packet-loss-induced distortions, 
as well as for the bursty nature of channel losses and the 
effective use of multiple transmission paths. With this model of 
end-to-end expected distortion, the encoder selects between MD 
coding modes in a rate-distortion optimized manner to most 
effectively trade-off compression efficiency for error resilience. 
We show how this approach adapts to the local characteristics of 
the video as well as to current network conditions and 
demonstrate the resulting gains in performance. 
 

1. INTRODUCTION 
 
Streaming video applications often require error resilient coding 
methods able to adapt to current network conditions and to 
withstand transmission losses. Best-effort networks like the 
Internet are characterized by variable bandwidths, packet losses, 
and delays. Applications must be able to withstand these harsh 
conditions or they can suffer severe performance degradations.  

Multiple description (MD) video coding is one approach that 
can be used to reduce the detrimental effects caused by packet 
loss on best-effort networks. In a multiple description system, a 
video sequence is coded into two or more complementary 
streams in such a way that each stream is independently 
decodable. The quality of the received video improves with each 
received description, but the loss of any one of these descriptions 
does not cause complete failure. If a portion of one of the 
streams is lost or delivered late, the video playback can continue 
with only a slight reduction in overall quality. For an in-depth 
review of MD coding for video communications see [1]. 

Previous MD video coding approaches applied a single MD 
technique to an entire sequence. However, the optimal MD 
coding method depends on many factors including the amount of 
motion in the scene, the amount of spatial detail, desired bitrates, 
error recovery capability of each technique, current network 
conditions, etc. This paper examines the adaptive use of multiple 
MD coding modes within a single sequence. Specifically, this 
paper proposes an adaptive MD coder which selects among MD 

coding modes in an end-to-end rate-distortion (R-D) optimized 
manner as a function of local video characteristics and network 
conditions. The addition of end-to-end R-D optimization is an 
extension of the adaptive system proposed in [2]. 

This paper continues in Sections 2 and 3 with an overview of 
how end-to-end optimized mode selection can be achieved in 
MD systems. The details of the proposed system are provided in 
Section 4, and experimental results are given in Section 5. 

 
2. OPTIMAL MD MODE SELECTION 

 
Each approach to MD coding trades off some amount of 
compression efficiency for an increase in error resilience. How 
efficiently each method achieves this tradeoff depends on the 
quality of video desired, the current network conditions, and the 
characteristics of the video itself. Most prior work in MD coding 
apply a single MD method to the entire sequence; this approach 
is taken so as to evaluate the performance of each MD method. 
However, it would be more efficient to adaptively select the best 
MD method based on the situation at hand. Since the encoder in 
this system has access to the original source, it is possible to 
calculate the rate-distortion statistics for each coding mode and 
select between them in an R-D optimized manner.  

Lagrangian optimization techniques can be used to minimize 
distortion subject to a bitrate constraint [3]. However, this 
approach assumes the encoder has full knowledge of the end-to-
end distortion experienced by the decoder. In a lossy channel, 
the end-to-end distortion consists of (1) known distortion from 
quantization and (2) unknown distortion from random packet 
loss which can only be determined in expectation due to the 
random nature of losses. Modifying the Lagrangian cost function 
to account for the total end-to-end distortion gives the following. 
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Here iR  is the total number of bits necessary to code region , 

 is the distortion due to quantization, and is a random 
variable representing the distortion due to packet losses. Thus, 
the expected distortion experienced by the decoder can be 
minimized by coding each region with all available modes and 
choosing the mode which minimizes the Lagrangian cost.  
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Calculating the expected end-to-end distortion is not a 
straightforward task due to spatial and temporal error 
propagation. However, in [4] the authors show how to estimate 
expected distortion in a pixel-accurate recursive manner for SD 
and Bernoulli losses. In the next section we discuss this approach 
and the extensions necessary to apply it to the current problem of 
MD coding over multiple paths with Gilbert (bursty) losses. 



3. MODELING EXPECTED DISTORTION IN 
MULTIPLE DESCRIPTION STREAMS 

 
As discussed in Section 2, random packet losses force the 
encoder to model the network channel and estimate expected 
end-to-end distortion. With an accurate model of expected 
distortion the encoder can make optimized decisions to improve 
the quality of the decoded video stream. A number of approaches 
have been suggested in the past to model expected distortion. In 
[4] the authors suggest a recursive optimal per-pixel estimate 
(ROPE) for optimal intra/inter mode selection. In [5] the ROPE 
model is extended to a two-stream multiple description system 
by recognizing the four possible loss scenarios: both descriptions 
are received, either description is lost, or both descriptions are 
lost. The conditional expectations of each of these four possible 
results are multiplied by the probability of each occurring to 
calculate the total expectation.  

Previous models have used a Bernoulli independent packet 
loss model, but the idea can be modified for a channel with 
bursty packet losses as well. Recent work has identified the 
importance of burst length in characterizing error resilience 
schemes. In fact burst length has been shown to be an important 
feature for comparing the relative merits of different error 
resilient coding schemes [6][7][8].  

For this system we have extended the MD ROPE approach to 
account for bursty packet loss. Here we use a 2-state Gilbert loss 
model, but the same approach could be used for any multi-state 
model including those with fixed burst lengths. In the Gilbert 
loss model, packet losses become more likely if the previous 
packet has been lost. The total expectation can be calculated with 
multi-state packet loss models by computing the expectation 
conditioned on being in each state and multiplying by the 
probability of transitioning from one state to another. We have 
further modified this approach in order to apply it to H.264 with 
quarter pixel motion vector accuracy and more sophisticated 
error concealment methods by using the techniques proposed in 
[9] for estimation of cross-correlation terms. 

 
4. SYSTEM IMPLEMENTATION 

 
The system described in this paper has been implemented based 
on the H.264 video coding standard using quarter pixel motion 
vector accuracy and all available intra- and inter-prediction 
modes [10]. We have used reference software version 8.6 for 
these experiments with modifications to support adaptive mode 
selection. Constant bitrate encoding is used to keep the number 
of bits per frame approximately constant. To accomplish this, the 
quantizer for each macroblock is adjusted using the reference 
software rate-control implementation. The in-loop deblocking 
filter used in H.264 has been turned off to simplify the problem. 

The adaptive mode selection is performed on a macroblock 
basis using the Lagrangian techniques discussed in Section 2 
with the expected distortion model from Section 3. Note that this 
optimization is performed simultaneously for both traditional 
coding decisions (e.g. inter versus intra coding) as well as for 
selecting one of the possible MD modes.  

The current system uses a combination of four possible MD 
modes: single description coding (SD), temporal splitting (TS), 
spatial splitting (SS), and repetition coding (RC). SD coding 
represents the typical coding approach where frames are 
predicted from the previous frame in an attempt to remove as 

much redundancy as possible. In temporal splitting mode, even 
frames are predicted from even frames and odd frames from odd 
frames. Similarly, in spatial splitting, even lines are predicted 
from even lines and odd from odd (it was necessary to modify 
the H.264 codec to support macroblock-level interlaced coding 
for this approach). Finally, repetition coding is the same as the 
SD approach except the data is transmitted once in each 
description.  

Note that when coded in a non-adaptive fashion, each 
method (SD, TS, SS, RC) is still performed in an R-D optimized 
manner as mentioned above. All of the remaining coding 
decisions, including inter versus intra coding, are made to 
minimize the end-to-end distortion. For instance, the RC mode is 
not simply a straightforward replica of the SD mode. The system 
recognizes the reliability of the RC mode and elects to use far 
less intra-coding allowing more intelligent allocation of the 
available bits. 

The packetization of data differs slightly for each mode (see 
Fig 1). In both the SD or TS approaches, all data for a frame is 
placed into a single packet. The even frames are then sent along 
one stream and the odd frames along the other. While in the SS 
and RC approaches, data from a single frame is coded into 
packets placed into both streams. Even lines are sent in one 
stream and odd lines sent in the other with SS, while all data is 
repeated for RC. Therefore, for SD and TS each frame is coded 
into one large packet which is sent in alternating streams, while 
for SS and RC each frame is coded into two smaller packets and 
one small packet is sent in each stream. Since the adaptive 
approach (ADAPT) is some combination of each of these four 
methods, there is typically one slightly larger packet and one 
smaller packet and these alternate streams between frames. 

If a frame is lost in either the TS or SD method, no data 
exists in the opposite stream at the same time instant, so missing 
data is directly copied from the previous frame. In the SS 
method, if only one description is lost the decoder reconstructs 
missing lines using linear interpolation, and if both are lost it 
copies the previous frame. Similarly for RC, if only one 
description is lost the decoder can use the data in the opposite 
stream, while if both are lost it copies the previous frame. 
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Fig 1: Packetization of data in MD modes.  a.) SD/TS: Data sent 
along one path alternating between frames. b.) SS/RC: Data 
spread across both streams. c.) ADAPT: Combination of the two 
resulting in one slightly larger packet and one slightly smaller. 
 

5. EXPERIMENTAL RESULTS 
 

These results have been obtained using our modified H.264 JM 
8.6 codec (described above) and the Foreman video sequence, 
which contains 400 frames at 30 frames per second at QCIF 
resolution. 

To measure the actual distortion experienced at the decoder, 
we have simulated a Gilbert packet loss model with packet loss 
rates and expected burst lengths as specified in each section 



below. For each of the experiments, we have run the simulation 
with 300 different packet loss traces and averaged the resulting 
squared-error distortion. The same packet loss traces were used 
throughout a single experiment to allow for meaningful 
comparisons across the different MD coding methods.  

Each path in the system is assumed to carry 30 packets per 
second where the packet losses on each path are modeled as a 
Gilbert process. For wired networks, the probability of packet 
loss is generally independent of packet size so the variation in 
sizes should not generally affect the results or the fairness of this 
comparison. When the two paths are balanced or symmetric the 
optimization automatically sends half the total bitrate across 
each path. For unbalanced paths the adaptive system results in a 
slight redistribution of bandwidth as discussed below.  

We first evaluate the system’s ability to adapt to the 
characteristics of the video source. The channel in this 
experiment was simulated with two balanced paths each having 
5% average packet loss rate and expected burst length of 3 
packets. The video was coded at approximately 0.4 bits per pixel 
(bpp). Fig 2 demonstrates the resulting distortion in each frame 
averaged over the 300 packet loss traces for the adaptive MD 
method and each of its non-adaptive MD counterparts. 
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Fig 2: Average distortion in each frame for ADAPT versus each 
non-adaptive approach. Coded at 0.4 bpp with balanced paths 
and 5% average packet loss rate and expected burst length of 3. 

 
The Foreman sequence contains a significant amount of 

motion from frames 250 to 350 and is fairly stationary from 
frame 350 to 399. Notice how the SS/RC methods work better 
during periods of significant motion while the SD/TS methods 
work better as the video becomes stationary. The adaptive 
method intelligently switches between the two, maintaining at 
least the best performance of any non-adaptive approach. Since 
the adaptive approach adapts on a macroblock level, it is often 
able to do even better than the best non-adaptive case by 
selecting different MD modes within a frame as well. 

Also shown on Fig 2 are the results from a typical video 
coding approach which we will refer to as standard video coding 
(STD). Here R-D optimization is only performed with respect to 
quantization distortion, not the end-to-end R-D optimization 
used in the other approaches. Instead of making inter/intra 
coding decisions in an end-to-end R-D optimized manner as 
performed by SD, it periodically intra updates one line of 
macroblocks in every other frame to combat error propagation 
(this update rate was chosen as the optimal intra refresh rate [11] 
is often approximately , where  is the packet loss rate).   1/ p p

By making intelligent decisions through end-to-end R-D 
optimization, the SD method is able to outperform the STD 
method by as much as 4 or 5 dB. The adaptive MD approach is 
further able to outperform SD coding by up to 2 dB depending 
on the amount of motion present at the time. 

Fig 3 shows the percentage of macroblocks using a particular 
MD mode in each frame. From the distribution of MD modes, 
one can roughly segment the sequence into three distinct regions: 
almost exclusively SD/TS in the last 50 frames, mostly SS/RC in 
the middle, and a combination of the two at the beginning. This 
matches up with the characteristics of the video which contains 
some amount of motion at the beginning, a fast camera scan in 
the middle, and is nearly stationary at the end. 
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Fig 3: Distribution of MD modes used in adaptive method for 
each frame. 5% average packet loss rate, expected burst length 3. 

 
In our second experiment we examine how the system adapts 

to the conditions of the network. Here we have compared the 
previous experiment with one in which the average packet loss 
rate is increased to 10%. Table 1 shows the distribution of MD 
mode in each of these cases. As the loss rate increases to 10% 
the system responds by switching from lower redundancy 
methods (SD/TS) to higher redundancy methods (SS/RC) in an 
attempt to provide more protection against losses.  

Fig 4 shows the end-to-end R-D performance curves of each 
method. To generate each point on these curves, the resulting 
distortion was averaged across all 300 packet loss simulations, as 
well as across all 400 frames of the sequence. The same 
calculation was then conducted at various bitrates to generate 
each R-D curve. By switching between MD methods, ADAPT is 
able to outperform optimized SD coding by 0.2-1.2 dB and STD 
coding by as much as 4.9 dB. ADAPT is able to outperform TS, 
which performs second best overall, by as much as 0.6 dB.  
 
Table 1: Distribution of MD modes in the adaptive approach 
comparing 5% and 10% average packet loss rates. 

MD Mode Low Loss High Loss
SD 51.9% 43.9%
TS 19.4% 17.5%
SS 15.4% 16.8%
RC 13.4% 21.9%  
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Fig 4: End-to-end R-D performance of ADAPT and non-
adaptive methods. 5% packet loss rate, expected burst length 3. 
 
Table 2: Percentage of macroblocks using each MD mode in the 
adaptive approach when sent along unbalanced paths. 

MD Mode Even Frames
More Reliable Path

Odd Frames
Less Reliable Path

SD 55.6% 48.8%
TS 25.2% 14.5%
SS 10.7% 18.6%
RC 8.4% 18.1%  

 
Table 3: Percentage of total bandwidth in each stream for 
balanced and unbalanced paths. 

Balanced Paths Unbalanced Paths
Stream 1 49.9% 56.2%
Stream 2 50.1% 43.8%  

 
One interesting side result here is how well RC performs at 

higher bitrates. Keep in mind that this is an R-D optimized RC 
approach, not simply the half-bitrate SD method repeated twice. 
The amount of intra coding used in RC is significantly reduced 
relative to SD coding as the encoder recognizes the increased 
resilience of the RC method and chooses to allocate more bits for 
improving quality. 

In our final experiment, we analyze the performance of the 
adaptive method when used with unbalanced paths where one 
path is more reliable than the other. The channel consisted of one 
path with 3% average packet loss rate and another with 7%, both 
with an expected burst length of 3 packets. The video in this 
experiment was coded at approximately 0.4 bpp. Table 2 shows 
the distribution of MD modes in even frames of the sequence 
versus odd frames. The even frames are those where the larger 
packet (see Fig 1) is sent along the more reliable path and the 
smaller packet is sent along the less reliable path. The opposite is 
true for the odd frames.  

As shown in Table 2, the system uses more SS and RC in the 
less reliable odd frames. These more redundant methods allow 
the system to provide additional protection for those frames 
which are more likely to be lost. By doing so, the adaptive 
system is effectively moving data from the less reliable path into 
the more reliable path. Table 3 shows the bit rate sent along each 
path in the balanced versus unbalanced case. In this situation, the 
system is shifting about 6% of its total rate into the more reliable 
stream to compensate for conditions on the network. Since the 

non-adaptive methods are forced to send approximately half 
their total rate along each path, it is difficult to make a fair 
comparison across methods in this unbalanced situation. We are 
considering ways to compensate for this. However, it is quite 
interesting that the end-to-end R-D optimization is able to adjust 
to this situation in such a manner. 
 

6. CONCLUSIONS 
 
This paper proposed an end-to-end R-D optimized adaptive 
mode selection system for multiple description coding. The 
system makes use of multiple MD coding modes within a given 
sequence, making optimal decisions using a model of expected 
end-to-end distortion. We have demonstrated how the system is 
able to adapt to local characteristics of the video and to network 
conditions on multiple paths and have shown the potential for 
this adaptive approach, which selects among a small number of 
simple complementary MD modes, to significantly improve 
video quality. The effectiveness of this adaptive scheme depends 
on the video source and knowledge of the network. Even so, the 
results are quite promising, and it is apparent that the adaptive 
MD mode selection can provide significant benefits. 
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