
Invited paper in “Network-Aware Multimedia Processing and Communications” special session at IEEE ICIP 2006.

ARCHITECTURAL PRINCIPLES FOR SECURE STREAMING & SECURE ADAPTATION
IN THE DEVELOPING SCALABLE VIDEO CODING (SVC) STANDARD

John G. Apostolopoulos

Streaming Media Systems Group, Hewlett-Packard Labs, Palo Alto, CA, U.S.A.

ABSTRACT

Scalable video coding has long been known to provide important
functionalities such as low-complexity adaptation for diverse clients
with different resources and for delivery over heterogeneous net-
works with time-varying available bandwidths. Recent advance-
ments in scalable video coding have significantly improved the achiev-
able compression performance, and the Scalable Video Coding (SVC)
standard is currently under intense development. An additional capa-
bility of scalable coding, which we believe has received less attention
than it deserves, is the possibility with careful cross-layer design to
support secure adaptive streaming at an untrustworthy sender and se-
cure adaptation at an untrustworthy mid-network node. Building on
the Secure Scalable Streaming framework for video, and its realiza-
tion within the JPEG-2000 Security (JPSEC) standard, we describe
the architectural principles and design details necessary so that SVC
can also enable secure adaptive streaming at a sender and secure R-D
optimized adaptation at an untrustworthy mid-network node.

Index Terms— Secure streaming, secure adaptation, scalable
video coding, SVC, secure transcoding, secure scalable streaming

1. INTRODUCTION

Scalable video coding provides many valuable capabilities, includ-
ing the ability to adapt the coded media for delivery over networks
with different or time-varying available bandwidth and/or to diverse
clients with different resources such as display sizes, etc. An ad-
ditional capability which may be provided by scalable coding, and
which we believe may be receiving less attention than it deserves,
is the ability to perform secure adaptive streaming at a sender and
secure adaptation (transcoding) at a mid-network node. We believe
these functionalities may be practically very useful in the future.

Recent advancements in scalable video coding have led to sig-
nificant improvements in compression [1], and the Scalable Video
Coding (SVC) standardization effort is currently under intense de-
velopment [2, 3]. SVC is expected to provide excellent compression
and a rich set of scalabilities (including spatial, temporal, and qual-
ity) and freedom to adapt across these dimensions. These valuable
scalability capabilities can be straightforwardly used in many prac-
tical applications — where security is not required. However, by
incorporating security considerations within the SVC design, it is
possible to preserve and provide SVC’s scalability capabilities even
in secure settings. These settings are identified in Section 2.

Security and flexible handling of media, including adaptation,
are traditionally conflicting goals, and security is often incorporated
in a media distribution system in a media-unaware manner. For
example, the media is typically encrypted as a block of data and
then stored as an encrypted file or delivered using a reliable deliv-
ery mechanism. This approach protects the media, but also prevents
many valuable capabilities. Important recent techniques such as Se-
cure RTP [4] combine media-aware application-level framing with

security, but they do not address the challenges of secure adaptation.
This paper examines how SVC can be designed so that media-

aware protection can be used to simultaneously achieve end-to-end
security and flexible secure adaptive streaming and secure mid-network
adaptation (transcoding) of the protected content. We focus on the
security services of confidentiality and authentication, and describe
the techniques that make this possible. This paper draws from the
Secure Scalable Streaming (SSS) framework which provided end-to-
end security and mid-network secure transcoding for scalably coded
video [5, 6], and the recent JPEG-2000 Security (JPSEC) standard
which is the first standard to apply these techniques to media [7].

For a review of the current status of the rapidly evolving SVC
standard see [2, 3]. Note that the proposed functionalities are pos-
sible to achieve by abstracting various features of SVC. For exam-
ple, the proposed techniques do not depend on the details of how
intra-coding is performed, or the context of the arithmetic coder, or
specific details of the scalable coding. While these issues are critical
for a successful SVC, they do not directly effect this work. Our
approach draws parallels to application-layer framing which uses
media-aware transport to achieve improved error resilience to packet
losses, for which H.264/MPEG-4 AVC developed the network ab-
straction layer (NAL) and associated NAL units. The proposed de-
sign may be thought of as a security abstraction layer (SAL).

This paper continues by describing the desired SVC function-
alities in a secure setting. Section 3 describes the framework from
SSS and JPSEC that is applicable to provide the desired SVC func-
tionalities, including the concepts of progressive encryption, secure
scalable packets, and secure R-D optimized adaptation. Sections 4
and 5 discuss encryption and authentication for SVC, respectively.

2. DESIRED MEDIA-SECURITY FUNCTIONALITIES

This section highlights some basic functionalities and attributes that
are desirable for SVC to provide in a secure context.

Secure Streaming: The primary goal of secure streaming is to
protect the media content from eavesdroppers, thereby necessitating
the use of end-to-end encryption where the media is encrypted at
the sender and decrypted only at the receiver. It can also be bene-
ficial to have creation-to-consumption security, where the content is
encrypted by the content creator and decrypted at the content con-
sumer, everywhere in between the content is kept in encrypted form.

Secure adaptation (transcoding) at untrustworthy mid-network
nodes: It is often beneficial for a mid-network node or proxy to be
able to adapt content that it receives to match downstream dynamic
network conditions or receiving clients. However, when the con-
tent is encrypted the conventional approach is to decrypt the stream,
adapt, and then re-encrypt. This is not an acceptable solution as it
breaches the end-to-end security and leads to many vulnerabilities.
In addition to these vulnerabilities, in many situations it is desirable
to perform adaptation at mid-network nodes or proxies that are un-
trustworthy, and therefore should not have access to the key. There-



fore, the goal is to be able to adapt the encrypted content without
requiring the key. This task of simultaneously achieving the conflict-
ing goals of (1) adapting at intermediate, possibly untrusted network
nodes, while (2) preserving end-to-end security, seemingly leads to
a paradox because intuitively to adapt in the middle of the network
you want to know what the bits are, but the goal of end-to-end se-
curity is to prevent any intermediate node from knowing what the
bits are. This problem can be overcome by co-designing the coding,
security, and packetization [5, 6].

Secure adaptive streaming at untrustworthy sender: In ad-
dition to securely adapting the content at a mid-network node, an-
other important and related capability is to enable a (potentially un-
trustworthy) sender to stream and adapt the streaming of encrypted
content without knowing what the content is. For example, con-
tent creators typically prefer to protect the content themselves, and
would like the media distributors to appropriately distribute the con-
tent without unprotecting it. Similarly, the media distributors would
also prefer if possible to be able to adapt the delivery of the content
without requiring access to the keys or unprotecting it as then they
are not liable for any breaches.

Creation-to-consumption security: In addition to the notion
of end-to-end security (from sender to receiver) that is common in
the Internet space (e.g., VPNs, IPsec, SSL), as mentioned above for
the untrustworthy sender there is the important capability of pro-
tecting the content at the content creator and unprotecting it only
at the consumer – creation-to-consumption security – where every-
where in between (including untrustworthy streaming servers and
mid-network nodes) the content is kept in protected form. Creation-
to-consumption security is common for file-based delivery, however
once again our focus is on adaptive streaming.

For simplicity the above discussion has focused on providing
confidentiality (via encryption), however a variety of security ser-
vices are desired, e.g., authentication, access control (see, e.g. [8, 7]).

3. FRAMEWORK FOR PROVIDING FUNCTIONALITIES

The above media-security functionalities can be provided within a
framework referred to as Secure Scalable Streaming (SSS) which in-
volves the careful co-design of the compression, security, and pack-
etization. This approach allows for the creator-to-consumer delivery
of encrypted media content while enabling mid-network adaptation
to be performed without decryption. This capability is referred to
as Secure Adaptation (Secure Transcoding) in order to stress that
the adaptation is performed without requiring decryption (without
requiring the key) and therefore preserving the end-to-end security.
Note that with this approach, the media content is protected through-
out the delivery chain from the content creator to each receiving
client, so the encryption keys are only available to these entities,
and not to the streaming sender which performs the secure adaptive
streaming, or to the mid-network node which performs the secure
adaptation. SSS was designed for scalably coded media, however
it is also applicable, though to a much more limited extant, to non-
scalably coded media such as H.264/AVC video [9].

The basic idea of SSS is to co-design the coding, encryption,
and packetization to facilitate intelligent discarding of data, where
after discarding the remaining data can still be decrypted, authenti-
cated, and decoded. Furthermore, the creation of “hints”, such as
rate-distortion (R-D) hints, which can be used to intelligently direct
the adaptation. For a streaming server, the hints can be placed as
unencrypted hints in the Secure R-D Hint Tracks within a modified
MPEG-4 File Format that is stored at the server, thereby enabling se-
cure R-D optimized adaptive streaming at an untrustworthy sender.

High BW

Med BW

Low BW

Untrustworthy 
Streaming 

Server
Secure

Adaptation

Creator-to-Consumer Security

Untrustworthy
Mid-network Node

Storage

Content Creator

High BW

Med BW

Low BW

Untrustworthy 
Streaming 

Server
Secure

Adaptation

Creator-to-Consumer Security

Untrustworthy
Mid-network Node

Storage

Content Creator

Fig. 1. Secure adaptive streaming & secure mid-network adaptation.

Similarly, hints can also placed in unencrypted packet headers of
Secure Scalable Packets (described below) to enable R-D optimized
secure adaptation at untrustworthy mid-network nodes.

Note that while the use of R-D hints at a server and mid-network
node are conceptually similar, their operation is quite different. A
server typically has ample room to store large amounts of extra data
without penalty, while the overhead from packet headers directly re-
duce the delivered data. Furthermore, while the server has access
to the entire media, a mid-network node only has access to a small
window of packets within which it must perform its processing.

SSS can provide secure, coarse-grain to fine-grained (layer to
packet to sub-packet) adaptation capabilities. Furthermore, fine-
grained secure adaptation can be performed in a R-D optimized man-
ner by using the information contained in the unencrypted packet
headers. We next examine the granularity that can be achieved with
SVC and how to perform R-D optimized streaming and adaptation.

3.1. Granularity of Secure Adaptation: Layer vs. Packet vs. Trun-
cated Packet

This section examines the important issue of the granularity that can
be achieved with secure adaptive streaming and secure mid-network
adaptation. The level of granularity may be one of the following:

• Sequence or group of pictures (GOP)

• Scalable layer

• Packet

• Sub-packet (e.g., truncated packet)

Sequence and GOP level granularity are available in both scal-
able and non-scalably coded video. In addition, SVC creates mul-
tiple layers of compressed data that are prioritized in terms of im-
portance, e.g., spatial, temporal, or quality scalability. These en-
hancement layers can be independently encrypted and sent in sep-
arate packet flows, allowing a mid-network node to discard a flow
containing low-priority data while forwarding the flows containing
high-priority data which are then received, decrypted and decoded at
the receiver. This can also be straightforwardly achieved in a single
flow, when each packet’s header identifies its layer information. This
approach provides a fine solution in certain contexts. However, the
granularity of the above adaptation is limited by the granularity of
the layers, which is not sufficient in certain contexts.

Packet networks operate with a packet granularity, so the oper-
ation of packet select/discard is natural in this context. However,
sometimes even finer granularity can be beneficial. For example, in
streaming applications a mid-network node typically has access to
only a small number of packets to perform its adaptation.

The ability to have sub-packet granularity, such as by perform-
ing packet truncation, provides much finer granularity and improved



performance as compared to operations such as packet select/discard
or the much coarser select/discard of scalable layers. For example,
consider the case when a transcoder has access to only two packets
and must reduce the bit rate by 10 %. Clearly the ability to truncate
a packet could lead to better performance than being forced to dis-
card a packet. Furthermore, when only one packet is available and a
reduction in bit rate of 10 % is required then the inefficiency is even
more apparent — if limited to packet select/discard then no data will
be delivered. These simple examples illustrate that the capability to
truncate packets can be quite valuable.

The above processing can be achieved by first creating scalable
packets, by deliberately placing the scalable coded data into pack-
ets in a prioritized manner so that adaptation can be performed via
a packet truncation (or discard) operation. The scalable packet pay-
load data is then encrypted using a progressive encryption method
to form secure scalable packet data. Progressive encryption meth-
ods have the property that after truncation the truncated encrypted
data can still be decrypted and decoded. Note that progressive en-
cryption methods correspond to conventional encryption methods —
which are used in a non-conventional manner where portions of the
encrypted data are discarded. Also note that while the discussion fo-
cuses on the operation of packet truncation because of its conceptual
and practical simplicity, one can discard the head of the packet pay-
load or arbitrary ranges of bytes in the interior of the packet payload,
where the preferred form of discarding of data depends on a variety
of issues which are not discussed here because of limited space.

Importantly, SSS packets include an unencrypted header which
contains information that is used to direct the subsequent SSS adap-
tation. This information may include a relative or absolute mea-
sure of each packet’s importance, a series of recommended trunca-
tion points for each packet, or hints to guide downstream nodes to
perform adaptation operations such as resolution reduction or rate-
distortion optimized bit rate reduction.

Secure adaptation is performed by reading the packet header and
appropriately discarding or truncating each packet to meet, e.g., the
downstream bit rate constraint. This operation is referred to as se-
cure adaptation (or secure transcoding) to emphasize that it does
not require decryption and therefore preserves the end-to-end secu-
rity. The key idea once again is that adaptation is performed by an
intelligent discarding of data, without requiring knowledge of what
the data actually is [5, 6].

R-D optimized secure adaptation is possible because the nec-
essary information to perform the R-D optimized processing can
typically be distilled into a small amount of data, and made avail-
able with the unencrypted hints (e.g., unencrypted hint tracks at the
streaming server or unencrypted packet headers). For example, as-
suming the total distortion and bit rate are additive across packets,
we can minimize the total distortion subject to a bit rate constraint
by truncating packets so that they operate at the same slope on their
respective R-D curves, such that the sum of the corresponding bit
rates satisfies the rate constraint. For instance, Figure 2 shows an
example where a mid-network node receives two packets and has
a transmission bitrate constraint where the output rate must be less
than 3/4 of the input rate. A conventional node in the network would
meet this bit rate constraint by discarding one of the two packets.
However, with the unencrypted packet headers which contain R-D
information for the two packets, the transcoder can estimate the R-
D curves for each packet and then truncate each packet so that it is
operating at the same slope on the R-D curve for each packet while
satisfying the bit rate constraint. Intuitively, one way to achieve this
is by truncating, in parallel, across the packets based on the slopes
of their R-D curves, until the desired rate reduction is achieved. The

resulting truncated secure scalable packets can be decrypted and de-
coded by the receiver with a reconstructed quality that depends on
the received data [5, 6].

Secure
Adaptation

Input rate
R bits/s

Output rate
R bits/s

Packet 1

Packet 2

4
3

Packet 1

Packet 2

Mid-Network
Node

Fig. 2. R-D optimized secure adaptation across two packets is
achieved by appropriately truncating each packet so that they op-
erate at the same slope λ on their R-D curves.

An important tradeoff exists between packet header size and se-
cure adaptation performance. The more information contained in the
packet header, the more accurate the estimate of the packet’s R-D
curves, and the better performance. However, the larger the header
the greater the overhead. Careful header design is necessary, and
depends on, e.g., whether the encrypted packet payload is fully em-
bedded with byte granularity or whether it has coarser granularity.
There is also an issue of potential leakage of information, since the
unencrypted header describes some attributes of the coded media.

Secure scalable packets provide a number of properties: they
are scalable to enable downstream adaptation by operations such as
packet truncation or discarding, encrypted to provide end-to-end se-
curity, provide hints to optimally guide the adaptation, and indepen-
dently decodable to provide resilience to packet losses.

SVC recently introduced a new SVC-specific NAL unit type,
which provides bitstream scalability at level of NAL packets (packet
select/discard). Furthermore, with FGS it supports truncation of en-
hancement layer packets at arbitrary points. Therefore, SVC has ba-
sic support for packet and sub-packet level processing and the abil-
ity to include certain header information describing packet payloads.
This enables scalable packets and adaptation of scalable packets as
described in SSS. With further consideration of security issues SVC
may support secure scalable packets and R-D optimized secure adap-
tive streaming and secure mid-network adaptation.

4. COMMENTS ON ENCRYPTION AND SVC

A straightforward approach to encrypt SVC coded video is to use
media-aware packetization and packet-by-packet encryption, based
on application-level framing principles. Specifically, packets are de-
signed to be independently decryptable, authenticatable, and decod-
able, so that even if packet loss occurs the receiver can decrypt,
authenticate, and decode all of the received packets. Security of
RTP flows is practically very important, and therefore an extension
of RTP, referred to as Secure RTP (SRTP), was developed which
provides confidentiality, message authentication, and replay protec-
tion for the RTP traffic, as well as for its associated control traffic
RTCP [4]. SRTP, and similar approaches (e.g., [10]), provide the ba-
sic security services required for secure streaming between a sender
and a receiver. However, in addition to providing secure streaming,
SSS provides the ability to securely adapt the protected content.

A very important design rule, which we strongly recommend to
follow, is to design SSS-based systems using existing, highly stud-
ied, cryptographic primitives, as opposed to designing new primi-
tives, since any new primitives are likely to have subtle, hidden flaws.
In addition, there is no need to create new cryptographic primitives.
The innovation with SSS is in using well-known and well-studied
cryptographic primitives in a different manner from how they are



conventionally used. For example, SSS can be used with a variety
of standard encryption methods, including block ciphers such as the
Advanced Encryption Standard (AES), and stream ciphers such as
RC4, or stream ciphers created out of block ciphers (e.g., AES us-
ing OFB or CTR). Similarly, authentication may be provided using
a number of popular and well-studied authentication primitives.

An example of the use of Secure Scalable Packets is shown in
Figure 3 where the Bus sequence (QCIF, 150 frames, 30 fps) is coded
using the SVC reference software [2, 3] into a H.264 base layer (223
kb/s) and one FGS layer (total rate 466 kb/s). We examine the per-
formance with/without the use of (1) progressive encryption of the
packets using AES in CTR mode which enables decryption of trun-
cated packets, and (2) unencrypted packet headers which guide the
adaptation of each individual packet. The ”Discard All” curve is
a crude, lower bound estimate of the performance if conventional
IPSEC-type packet encryption is used. When progressive encryp-
tion is used, but without the unencrypted headers for guidance, the
performance is estimated by truncating all packets equally to meet
the rate constraint. The ”Heuristic” and ”R-D Optimized Truncate”
curves are illustrative examples of what can be achieved by secure
adaptation when using both progressive encryption and unencrypted
R-D packet headers.

200 250 300 350 400 450 500
33

34

35

36

37

38

39

P
S

N
R

Bit Rate

PSNR for Different Methods of Secure Adaptation

R−D Optimized Truncate
Heuristic
Truncate All Uniformly
Discard All

Fig. 3. Example performance of secure adaptation without/with (1)
progressive encryption, (2) unencrypted R-D packet headers.

5. COMMENTS ON AUTHENTICATION AND SVC

In this paper, authentication refers to verifying the source and in-
tegrity of the data, i.e., whether or not the data has been acciden-
tally or maliciously altered. Conventional “data” authentication ap-
proaches employ message authentication codes (MACs) or digital
signatures and assume reliable delivery, i.e., all of the original signed
data is available at the receiver to perform the verification. Clearly
this is not the case for video streaming over UDP where packet losses
may occur — or when we would like to use SVC’s flexibility to pur-
posefully adapt the content at the sender or at a mid-network node.

To clarify this important point, for authenticated video only the
video packets which are both received and authenticated are de-
coded and contribute to the reconstructed video — video data which
are received but are not authenticated are equivalent to being lost.
Therefore authenticated video has two penalties as compared to con-
ventional video. The first is the additional rate (overhead) required
for the authentication information such as MAC(s) or digital sig-
nature(s). This part of the penalty can be reduced by amortizing
the overhead cost over a group of many packets. However, there is
an important tradeoff between verification probability and overhead,
because if any one of the packets in the group is lost then the group
can not be verified. The second penalty corresponds to the amount

of data which is received but unauthenticatable, and hence useless.
The first cost is deterministic, and known to the content creator, how-
ever the second cost depends on the channel losses and is unknown
to the content creator and can only be estimated. A Lagrangian R-
D framework can be used to determine the best authentication op-
eration, assuming knowledge of the channel loss rate, to optimally
balance rate overhead versus expected distortion from received but
unauthenticatable video packets [11].

SVC authentication should therefore be designed to be resilient
to packet losses, and not to adversely hinder secure adaptive stream-
ing and secure mid-network adaptation. Furthermore, since our goal
is to adapt the SVC content, it is important to be able to distinguish
between allowed versus malicious adaptations. Specifically, the re-
ceiver must be able to verify that any alterations were performed in
a valid and permissible manner. This includes authentication when
discarding scalable layers, packets, and packet truncations.

A design principle to efficiently achieve the above, is to align
the authentication dependencies with the SVC coding dependencies.
This will ensure that secure adaptation along pre-defined paths (given
by the dependencies between scalable layers) will not negatively af-
fect the verification probability of the remaining delivered SVC data.
This can be achieved via Merkle hash trees, which can easily be non-
binary and unbalanced. Additional adaptations at the sender or mid-
network node may be supported by adding “patches” based on the
specific adaptation performed, which preserve the receiver’s ability
to verify the received data.

6. SUMMARY AND ON-GOING WORK

This paper examined how secure adaptive streaming at a sender and
secure adaptation at a mid-network node can be supported in the de-
veloping SVC standard. This is achievable by leveraging the SSS
framework, as adopted in the JPSEC standard. We believe that these
functionalities may be practically quite useful in the future. We are
continuing our study of applying SSS to the developing SVC stan-
dard, and if the above functionalities are deemed useful and within
the scope of the standardization effort, we will contribute our recom-
mendations to the SVC effort.

7. REFERENCES

[1] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of the
IEEE, January 2005.

[2] J. Reichel, H. Schwarz, and M. Wien, Scalable Video Coding - Joint
Draft 4, JVT-Q201, ISO/IEC and ITU-T, October 2005.

[3] J. Reichel, H. Schwarz, and M. Wien, Joint Scalable Video Model
JSVM-4, JVT-Q202, ISO/IEC and ITU-T, October 2005.

[4] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“Secure real-time transport protocol (SRTP),” IETF RFC 3711, 2004.

[5] S.J. Wee and J.G. Apostolopoulos, “Secure scalable video streaming
for wireless networks,” IEEE ICASSP, May 2001.

[6] S.J. Wee and J.G. Apostolopoulos, “Secure scalable streaming enabling
transcoding without decryption,” IEEE ICIP, Oct. 2001.

[7] ISO/IEC JPEG-2000 Security (JPSEC) Final Committee Draft,
Nov. 2004.

[8] Y. Wu, D. Ma, and R. Deng, “Progressive protection of JPEG2000
codestreams,” IEEE ICIP, October 2004.

[9] J.G. Apostolopoulos, “Secure media streaming & secure adaptation for
non-scalable video,” IEEE ICIP, October 2004.

[10] Internet Streaming Media Alliance (ISMA), ISMA Implementation
Specification: Encryption and Authentication Specification, Feb, 2004.

[11] Z. Zhishou, Q. Sun, W. Wong, J. Apostolopoulos, and S. Wee, “Rate-
distortion optimized streaming of authenticated video,” ICIP, 2006.


