

Video Communications and Video Streaming

John G. Apostolopoulos Streaming Media Systems Group Hewlett-Packard Laboratories

Video Streaming

Video Communication Applications

- Video storage, e.g. DVD or Video CD
- Videophone over PSTN
- Videoconferencing over ISDN
- Digital TV
- Video streaming over the Internet
- Wireless video
 - Videophone over cellular (Dick Tracy's watch)
 - Video over 3G and 4G networks: Interactive games, etc.

Video Streaming Outline of Today's Lecture

- Properties of Video Communication Applications
- Brief case studies:
 - Video storage, e.g. DVD
 - Digital television
- Video streaming over the Internet
 - Bandwidth problem \rightarrow Rate control
 - Delay jitter \rightarrow Playout buffer
 - Loss \rightarrow Error control

Video Streaming Applications

Wide range of different video communication applications with different operating conditions or different properties:

- Broadcast
- Multicast
- Point-to-point
- Pre-encoded (stored) video
- Interactive/real-time or non-real-time
- Dynamic or static channels
- Packet-switched or circuit-switched network
- Quality of Service (QoS) support
- Constant or variable bit rate channel

The specific properties of a video communication application <u>strongly</u> influence its design

Properties of Video Communication Streaming Applications (cont.)

Broadcast

Video

- One-to-many (basically one-to-all)
- Typically different channels characteristics for each recipient
- Sometimes, system is designed for worst case-channel
- Example: Broadcast television
- Multicast
 - One-to-many (but not everyone)
 - Example: IP-Multicast over the Internet
 - More efficient than multiple unicasts

Page 5

• Point-to-point

- One-to-one
- Properties depend on available back channel:
 - With back channel: Receiver can provide feedback to sender \rightarrow sender can adapt processing
 - Without back channel: Sender has limited knowledge about the channel
- Examples: Videophone, unicast over the Internet

• Pre-encoded (stored) video

- Decoder retrieves a previously compressed video that is stored (locally or remotely)
- Limited flexibility, e.g. often preencoded video can not be significantly adapted to current situation
- Examples of locally stored: DVD or Video CD
- Examples of remotely stored: Video-On-Demand (VOD), RealNetworks & Microsoft coded content

Page 7

• Real-time (or interactive) vs non-real-time

- Real-time: Information has *time-bounded usefulness*,
 e.g. if the info arrives, but is late, it is useless
- Equivalent to maximum acceptable latency on transmitted information
- Non-real-time: Loose latency constraint (many secs)
- Examples of real-time: Videophone or videoconferencing, interactive games

Page 8

- Dynamic (time-varying) vs static channels:
 - Most communication involve channels whose characteristics vary with time, e.g. capacity, error rate, delay
 - Video communication over a dynamic channel is much more difficult than for a static channel
 - Examples of dynamic channels: Internet, wireless
 - Examples of largely static channel: DVD, ISDN

- Packet-switched vs circuit-switched network
 - Packet-switched: Packets may exhibit variable delay, may arrive out of order, or may be lost completely
 - Circuit-switched: Data arrives in order, however may be corrupted by bit errors or burst errors
 - Example of packet-switched: LAN, Internet
 - Example of circuit-switched: PSTN, ISDN
- Quality of Service (QoS) support
 - Types of service: Guarantees on bandwidth, maximum loss rates or delay
 - Network QoS support can greatly facilitate video communication
 - Networks that support QoS: PSTN, ISDN
 - Networks w/o QoS support: Current Internet (best effort, e.g. no guaranteed support)

- Constant bit rate (CBR) or variable bit rate (VBR) coding
 - Constant bit rate leads to variable quality
 - Variable bit rate can enable constant quality
 - Example of CBR: Digital TV, videoconferencing over ISDN
 - Example of VBR: DVD

Basic Video Coding Question: Video Streaming VBR vs CBR coding

• Question: How many bits should we allocate to code each frame?

Video Streaming How to Allocation Bits Among Frames?

- Digitized (uncompressed) video has a constant rate $\frac{480 \times 720 \, pixels}{frame} \times \frac{30 \, frames}{\sec} \times \frac{24 \, bits}{pixel} = 250 M \frac{bits}{sec}$
- Question: Compress at a constant bit rate? Variable rate?
- Observations:
 - Some frames are more complex than others, or are less predictable than others, and therefore require more bits
 - E.g., to achieve constant quality for every frame, a high complexity frame would require more bits than a low complexity frame

Page 14

Video Streaming VBR vs CBR Coding (cont.)

- Tradeoff between quality and bit rate:
 - Constant quality \rightarrow variable bit rate
 - Constant bit rate \rightarrow variable quality
- Constant quality corresponds to approximately the same distortion per frame:
 - Can be achieved by constant quantization stepsize for all frames
- Constant bit rate corresponds to approximately the same bit rate per frame (or other unit of time):
 - Can be achieved by using a buffer and feedback to direct the encoding

Video Streaming Outline of Today's Lecture

- Properties of Video Communication Applications
- Brief case studies:
- Video storage, e.g. DVD
 - Digital television
- Video streaming over the Internet
 - Bandwidth problem \rightarrow Rate control
 - Delay jitter \rightarrow Playout buffer
 - Loss \rightarrow Error control

Video Streaming Video Coding for Storage

- Goal: Store a video in storage with R_{Total} bits
 Example: DVD, 2 hour movie in 4.7 GB
- Problem: How do we encode the video for this storage constraint?
- Possible approach # 1:
 - Allocate equal number of bits to each frame,

For N frames:

$$R_i = \frac{R_{Total}}{N}$$
 where R_i is bits for frame *i*

– Problem:

- Some frames are more complex than others
- Some frames are more predictable than others
- \rightarrow Some frames should be allocated more bits than others

Video Streaming

⁹ Video Coding for Storage (cont.)

• Basic video coding problem for storage:

minimize
$$D_{Total} = \sum_{i=1}^{N} D_i$$
 such that $R_{Total} = \sum_{i=1}^{N} R_i$
 $D_i = \text{distortion for frame } i$

- Possible approach # 2:
 - Allocate bits per frame so that on *average:* $R_i \approx \frac{R_{Total}}{N}$
 - Allow some variation
 - Ensure storage constraint is satisfied when Nth frame is coded

Video Streaming Video C

Video Coding for Storage (cont.)

- Proposed approach # 2 (cont.):
 - Better than approach #1
 - Problem: Future frames are unknown
 - How many bits to allocate for them?
 - Can over estimate (too conservative)
 - Waste bits at end of sequence
 - Can under estimate
 - Not enough bits at end of sequence
 - \rightarrow Either way sub-optimal quality
 - Basic Problem: Future frames are unknown, have to guess how many bits to allocate for them

Video Streaming Video Coding for Storage (cont.)

- Idea: Video coding for storage doesn't require causal processing •
 - Can examine all frame before encoding
 - *Perform global bit allocation* (we have a global constraint)
- Proposed approach #3: ٠
 - 1. Code entire video sequence
 - 2. Gather and analyze statistics

Repea

- 3. Identify complex areas of video sequence
- 4. Re-estimate bit allocation for each frame
- 5. Re-encode entire video sequence
- *Multi-pass algorithm*: Process entire video multiple times
- Multi-pass coding can provide much better performance then ٠ single-pass coding

Video Streaming Video Coding for Storage (cont.)

- Example of DVD:
 - MPEG-2 Main-profile @ main-level video
 - Storage constraint: 4.7 GB
 - VBR coding
 - Can use multi-pass encoding to optimize quality given global storage constraint

Video Streaming Outline of Today's Lecture

- Properties of Video Communication Applications
- Brief case studies:
 - Video storage, e.g. DVD
 - Digital television
- Video streaming over the Internet
 - Bandwidth problem \rightarrow Rate control
 - Delay jitter \rightarrow Playout buffer
 - Loss \rightarrow Error control

Video Streaming

Video Coding for Digital Television

- Terrestrial (over-the-air) broadcast television
- Constraint: Constant bandwidth channel (20 Mb/s)
 → Requires CBR coding
- Must regulate video bit rate
 - Buffer to smooth instantaneous bit rate
 - Buffer control mechanism to control average bit rate
- Buffer feedback intuitively:
 - Quantizes *coarsely* if bit rate is too high

Video Streaming

Video Coding for Digital TV (cont.)

- Requirement:
 - Fast initialization and channel acquisition (turning on TV and changing channels)
 - Requires random access into video (1/2 sec OK)
- Solution: *Periodic I-frames*, MPEG GOP structure, one Iframe every 1/2 sec
- Remarks:
 - Simple solution, works well
 - Also used to provide random access for DVD
 - However, requires lots of bits for each I-frame
 - Impractical for many low-bit-rate applications

Video Streaming Video Coding for Digital TV (cont.)

- Example of Digital TV:
 - MPEG-2 Main-profile @ high-level
 - Channel constraint: 20 Mb/s
 - CBR coding
 - Receiver initialization/channel acquisition: Random access via periodic I-frames (MPEG GOP structure)

• Prof Lim will discuss Digital TV in detail next Tuesday

Video Streaming Outline of Today's Lecture

- Properties of Video Communication Applications
- Brief case studies:
 - Video storage, e.g. DVD
 - Digital television
- Video streaming over the Internet
 - Bandwidth problem \rightarrow Rate control
 - Delay jitter \rightarrow Playout buffer
 - Loss \rightarrow Error control

Video Delivery over the Internet: File Download

Download video:

- Same as *file download*, but a LARGE file
- Allows simple delivery mechanisms, e.g. TCP
- Disadvantages:
 - Usually requires LONG download time and large storage space (practical constraints)
 - Download <u>before</u> viewing (requires patience)

Video Streaming Video Delivery over the Internet: Streaming Video

Streaming video:

- Partition video into packets
- Start delivery, begin playback while video is still being downloaded (5-10 sec delay)
- Simultaneous delivery and playback (with short delay)
- Advantages:
 - Low delay before viewing
 - Minimum storage requirements

Video Streaming Video: Sequence of Constraints

- Problem of streaming video can be expressed as a *sequence* of constraints:
 - Frame N must be delivered & decoded by time T_N
 - Frame N+1 must be delivered & decoded by time ${\rm T_N+}\Delta$
 - Frame N+2 must be delivered & decoded by time $T_N + 2\Delta$
- Any data that is lost is useless
- Any data that <u>arrives late</u> is useless
- Goal: Design system to satisfy this sequence of constraints

Video Streaming Streaming Video over the Internet

- Problem: Internet only offers best-effort service
- No guarantees on:
 - Bandwidth
 - Loss rates
 - Delay jitter
- Specifically, these characteristics are *unknown* and *dynamic*
- Goal: Design a system to reliably delivery high-quality video over the Internet

Video Streaming Problems in Video Streaming over the Internet

Problems to be addressed include *unknown* and *dynamic*:

- Bandwidth
- Delay jitter
- Loss
- Many other problems also exist for streaming, but in the brief time available we focus on these three key video problems

Video Streaming Problems in Video Streaming over the Internet

Problems to be addressed include unknown and dynamic :

- Bandwidth
 - Can not reserve bandwidth in Internet today
 - Available bandwidth is dynamic
 - If transmit faster than available bandwidth
 - → Congestion occurs, packet loss, and severe drop in video quality
 - If transmit slower than available bandwidth
 - \rightarrow Sub-optimal video quality
 - Goal: Match video bit rate with available bandwidth
- Delay
- Loss

Video Streaming Rate Control

- Rate control:
 - 1. Estimate the available bandwidth
 - 2. Match video rate to available bandwidth
- Rate control may be performed at:
 - Sender
 - Receiver
- Available bandwidth may be estimated by:
 - Probe-based methods
 - Model-based (equation-based) methods

Video Streaming Source-Based Rate Control

- Source-based rate control:
 - Source explicitly adapts the video rate
 - Feedback from the receiver is used to estimate the available bandwidth
 - Feedback information includes packet loss rate
- Methods for estimating available bandwidth based on packet loss rate:
 - Probe-based methods
 - Model-based methods

Video Streaming Probe-Based Methods

- Probe-based methods:
 - Basic idea: Use probing experiments to estimate the available bandwidth
 - Example: Adapt sending rate to keep packet loss rate ρ less then a threshold P_{th}
 - If $(\rho < P_{th})$ then increase transmission rate
 - If $(\rho > P_{th})$ then decrease transmission rate
 - Different strategies exist for adapting transmission rate
 - Simple, ad-hoc

Video Streaming Model-Based Methods

- Model-based (equation-based) methods
 - Goal: *Ensure fair competition* with concurrent TCP flows on the network, e.g. fair sharing of bandwidth
 - Basic idea:
 - Model the average throughput of a TCP flow
 - Transmit video with the same throughput as if is was a TCP flow

$$l = \frac{1.22 \times MTU}{RTT \times \sqrt{r}}$$

l = Throughput of TCP

MTU=Maximum Transmit Unit (max packet size)

RTT = Round Trip Time r = Packet loss ratio

- Similar characteristics to TCP flow on macroscopic scale (not microscopic)
- Behaves macroscopically like a TCP flow, "fair" to other TCP flows, referred to as "TCP-friendly"

[Floyd, et.al.; Mathis et.al.; Tan, Zakhor]

Video Streaming

Why not use TCP for Rate Control?

• *TCP*:

- Guarantees delivery via retransmission, leading to timevarying throughput and delay
- Additive-increase multiplicative-decrease (AIMD) rate control

- Problem: Oscillations are detrimental for streaming
- Therefore, exactly matching TCP traffic pattern is bad
- Instead, match TCP traffic pattern on a coarser (macroscopic) scale, e.g. same average throughput over a time-window
- Summary:
 - Exactly emulating TCP rate control (AIMD) is bad
 - TCP-friendly approaches attempt to share bandwidth fairly on a macroscopic scale

Overcoming the Bandwidth Problem: Video Streaming Rate Control

- Rate control: •
 - 1. Estimate the available bandwidth
 - 2. Match video rate to available bandwidth
- Rate control may be performed at: ٠
 - Sender

- Receiver
- Available bandwidth may be estimated by: ullet
 - Probe-based methods
 - Model-based (equation-based) methods —

Video Streaming Receiver-Based Rate Control

- *Receiver explicitly selects* the video rate from a number of possible rates
- Key example: Receiver-driven Layered Multicast
 - Sender codes video with scalable or layered coder
 - Sends different layers over different multicast groups
 - Each receiver estimates its bandwidth and joins an appropriate number of multicast groups
 - Receives an appropriate number of layers up to its available bandwidth

- Example of *Receiver-Driven Layered Multicast* [McCanne, Jacobson, Vetterli]
 - Each client can join/drop layers

Video Streaming Adapting the Video Bit Rate

- Source must match video bit rate with available bandwidth
- Video bit rate may be *adapted* by:
 - Varying the quantization
 - Varying the frame rate
 - Varying the spatial resolution
 - Adding/dropping layers (for scalable coding)
- Options depend on real-time encoding or pre-encoded content:
 - Real-time encoding: Adapting is straightforward
 - Pre-encoded content: Limited options, e.g. drop Bframes, drop layers in scalable coding, or perform transcoding

Video Streaming Problems in Video Streaming over the Internet

Problems to be addressed include unknown and dynamic:

- Bandwidth
- Delay jitter
 - Variable end-to-end packet delay
 - Compensate via playout buffer
 - Loss

Video Streaming Why is Delay Jitter an Issue?

Example:

- Video encoder captures/sends video at a certain rate, e.g. 10 frames/sec or one frame every 100 ms
- Receiver should decode and display frames at the same rate
 - Each frame has its own specific playout time
 - *Playout time:* Deadline by which it must be received/displayed
- If a frame arrives after its playout time it is useless
- If subsequent frames depend on the late frame, then effects can propagate

Video Streaming Delay Jitter

- End-to-end delay in Internet: Depends on router processing and queuing delays, propagation delays, and end system processing delays
- Delay jitter:
 - End-to-end delay may fluctuate from packet to packet
 - Jitter: Variation in the end-to-end delay
- Example: Video coded at 10 frames/sec
 - Each frame sent in one packet every 100 ms
 - Received packets may not be spaced apart by 100 ms
 - Some may be closer together
 - Some may be farther apart

Video Streaming Playout buffer

- Goal: Overcome delay jitter
- Approach: Add *buffer at decoder to compensate for jitter*
- Corresponds to adding an offset to the playout time of each packet
 - If (packet delay < offset) then OK</p>
 - Buffer packet until its playout time
 - If (packet delay > offset) then problem

Video Streaming Playout Buffer (cont.)

• Packet delivery, time-varying delay (jitter), and playout delay:

Video Streaming Playout Buffer (cont.)

• Delay per packet and effect of playout delay:

Video Streaming Effect of Different Playout Delays

• Playout delays: $T_{D1} < T_{D2} < T_{D3}$

Video Streaming Effect of Different Playout Delays (cont.)

- As the playout delay is increased, the cumulative distribution of in-time packets is increased
- Note: (1) minimum transmit time, (2) long tail in the distribution

Video Streaming Comments

Comments on Playout Delay

- Designing appropriate *playout strategy* is very important
- Tradeoff between playout delay and loss
 - Longer delay leads to lower loss rates
 - Shorter delay has higher loss rates
- Streaming of stored video can tolerate long delays (e.g. Real uses 5-10 secs)
- Real-time interactive video can not tolerate long delays (maybe 400 ms)
- Delay jitter is dynamic (time-varying)
 - Fixed playout delay is sub-optimal
 - Adaptive playout delay is better
 - Estimate variance of jitter and adapt playout delay

Video Streaming Problems in Video Streaming over the Internet

Problems to be addressed include unknown and dynamic:

- Bandwidth
- Delay jitter
- → Loss
 - Overcome losses via error control:
 - Forward Error Correction (FEC)
 - Retransmission
 - Error concealment
 - Error-resilient video coding

Video Streaming Error Control

Coding

Source

Coding

- Goal of error control:
 - To overcome the effect of errors such as packet loss on a packet network or bit or burst errors on a wireless link
- Types of error control:
- **Channel** Forward Error Correction (FEC)
 - Retransmission
 - Error concealment
 - Error-resilient video coding

Video Streaming Error Control

- Goal of error control:
 - To overcome the effect of errors such as packet loss on a packet network or bit or burst errors on a wireless link
- Types of error control:
- Forward Error Correction (FEC)
 - Retransmission
 - Error concealment
 - Error-resilient video coding

Video Streaming Forward Error Correction (FEC)

- Goal of FEC or channel coding: Add specialized redundancy that can be used to recover from errors
- Example: Overcoming losses in a packet network
 - Losses correspond to packet erasures
 - Block codes are typically used
 - K data packets, (N-K) redundant packets, total of N packets
 - Overhead N/K
 - Example:
 - 5 data packets, 2 redundant packets (K,N) = (5,7)
 - 7/5 = 1.40 or 40 % overhead

Video Streaming FEC (cont.)

- Error correcting capability:
 - If no errors, then K data packets provide data
 - As long as any K of the N packets are correctly received the original data can be recovered

(Assuming maximum distance separable (MDS) code)

- Simplest case:
 - N = K + 1
 - Redundant packet is parity packet, simplest form of erasure code
 - OK as long as no more than 1 out of N packets are lost
- Example: 5 data packets, 2 redundant packets (5,7)
 - Can compensate for up to 2 lost packets
 - OK as long as any 5 out of 7 are received

Video Streaming FEC and Interleaving

- Problem: *Burst errors* may produce more than N-K consecutive lost packets
- Possible solution: FEC combined with *interleaving* to spread out the lost packets
- FEC and interleaving often effective
- Potential problem:
 - To overcome long burst errors need large interleaving depth \rightarrow Leads to large delay

Video Streaming Summary of FEC

- Advantages:
 - Low delay (as compared to retransmits)
 - Doesn't require feedback channel
 - Works well (if appropriately matched to channel)
- Disadvantages:
 - Overhead
 - Channel loss characteristics are often unknown and time-varying
 - FEC may be poorly matched to channel
 - Therefore often ineffective (too little FEC) or inefficient (too much FEC)

Video Streaming Error Control

- Goal of error control:
 - To overcome the effect of errors such as packet loss on a packet network or bit or burst errors on a wireless link
- Types of error control:
 - Forward Error Correction (FEC)
- Retransmission
 - Error concealment
 - Error-resilient video coding

Video Streaming Retransmissions

- Assumption: *Back-channel exists* between receiver and sender
- Approach: Receiver tells sender which packets were received/lost and *sender resends lost packets*
- Advantages:
 - Only resends lost packets, efficiently uses bandwidth
 - Easily adapts to changing channel conditions
- Disadvantages:
 - Latency (round-trip-time (RTT))
 - Requires a back-channel (not applicable in broadcast, multicast, or point-to-point w/o back-channel)
 - Effectiveness decreases with increasing RTT

Video Streaming Retransmission (cont.)

Variations on retransmission-based schemes:

- Video streaming with time-sensitive data
 - Delay-constrained retransmission
 - Only retransmit packets that can arrive in time
 - Priority-based retransmission
 - Retransmit important packets before unimportant packets
 - Leads to interesting scheduling problems, e.g. which packet should be transmitted next?

Video Streaming Joint Source-Channel Coding

- Data communication:
 - All data bits must be reliably delivered
- Video communication:
 - Some bits are more important than other bits
 - It is not necessary for all bits to be reliably delivered
- Idea: *Exploit the differing importance* in the video data
- Joint source-channel coding: Designing the source and channel coders to exploit the difference in importance

Video Streaming Joint Source-Channel Coding (cont.)

Examples of coded video data with *different importance*:

- *Different frame types* have different importance (depending on dependencies between frames)
 - I-frame: Most important
 - P-frame: Medium importance
 - B-frame: Minimum importance (can be discarded)
- Different layers in a scalable coder have different importance
 - Base layer: Most important
 - Enhancement layer 1: Medium importance
 - Enhancement layer 2: Minimum importance

Video Streaming

Joint Source-Channel Coding (cont.)

- Adapt error-control based on importance of video data
 - FEC: Unequal error protection
 - Retransmit: Unequal (prioritized) retransmit strategies
- Example for I, P, and B frames:

	I-frame	P-frame	B-frame
FEC	Maximum	Medium	Minimum (or none)
Retransmit	Maximum	Medium	Can discard

Video Streaming Joint Source-Channel Coding (cont.)

• Example for scalable video coding:

	Base Layer	Enhancement	Enhancement
		Layer #1	Layer # 2
FEC	Maximum	Medium	Minimum
			(or none)
Retransmit	Maximum	Medium	Can discard

Video Streaming Review of Today's Lecture

- Properties of Video Communication Applications
- Brief case studies:
 - Video storage, e.g. DVD
 - Digital television
- Video streaming over the Internet
 - Bandwidth problem \rightarrow Rate control
 - Delay jitter \rightarrow Playout buffer
 - $-\log \rightarrow$ Error control
 - Forward Error Correction (FEC)
 - Retransmission

- Next lecture Error concealment Error-resilient video coding

