
< Made in HP >
BlueTooth roaming proposals

Jean Tourrilhes, HPL

9 October 00

Just moving around...

1 Introduction
This document describes a roaming framework for BlueTooth, with lot of possible

techniques to overcome some of the challenges specific to BlueTooth. Maybe what is
written here make sense and is implementable, but the sole aim of this document is to
stir discussion within the PAN-APR group ;-)

2 Goal
BlueTooth defines two type of networking support, the LAN Access Profile (using

PPP) and the Personal Area Network (using BNEP). In both case, the assumption is that
a specific BlueTooth device called an Access Point enable BlueTooth client devices to be
connected to an infrastructure. This is similar to the definition of Access Points in IrDA
and 802.11.

BlueTooth has a limited range (from 15 cm to 100 m depending on
implementation). To be able to cover a large area, many Access Points need to be
deployed. We would like them to be deployed in a regular cellular fashion, but people will
put them where they want or where they can. There can also be multiple logical
BlueTooth network co-located and owned by different entities.

Most BlueTooth devices are personal device, and therefore move around with their
owner. There is not much we can do to prevent them to do that, so we better support this
mobility. One good way to support mobility is to allow device to move freely from one
Access Point to another without the need for user intervention and in a timely fashion.
Even better would be to migrate transparently network connections.

3 Approach
In this document, we will define a basic roaming mechanism. This mechanism is

the baseline, and we will add some other optional mechanisms to improve it (some
optimisations).

The main goal of the basic mechanism is to be simple, robust and to work in every
situations. We want it to work whatever the device, the implementation details, the
conditions and the environment, and to be easy to implement and get to operate in all
possible devices supporting LAN Access or PAN. However, this basic scheme will have
some performance issues.

The optimisations described later will deal with a lot of frequent generic cases
where it is possible to improve roaming and overcome some of those issues by making
more assumptions on the capacity of the device, the infrastructure configuration or the
operating environment. The aim of those optimisations is to be simple, fit on top of the
basic scheme and offer some tangible value.
1



< Made in HP >
4 Basic mechanism
The basic mechanism doesn’t assume much and is quite simple.
The BlueTooth device is connected with an Access Point, and move out of range.

After some time (supervisionTO, see 10.11), the BlueTooth stack in the device declares
the link to be dead and close the LMP connection. At this point, the L2CAP connection
used by the network traffic receives an event (LP_DisconnectInd) and close down. The
higher layer are kept in suspended mode until the roaming procedure is completed
(TCP/IP may timeout if we take too much time).

At this point, the BlueTooth device performs an Inquiry. If the inquiry doesn’t find
any Access Point, the node continues with inquiry, up to the point where it timeout and
close down the higher layer (either PPP or BNEP).

If the BlueTooth device finds an Access Point, it connects to it and query its SDP
service record. If the “Service Name” of this Access Point is the same has the one of the
previous Access Point, the device connect to it. If the “Service Name” is different, and if
the device discovered other Access Points in the Inquiry process, the device should try
to connect to those Access Points. In other words, we are using the “Service Name” as a
logical network identifier, like the ESSID in 802.11.

If the Device can’t find a Access Point with the same “Service Name”, it can either
try to connect to one of the other Access Point, continue doing Inquiry, or return a failure
to the user. A Access Point with a different “Service Name” is managed by a different
authority and may not offer the same connectivity options, so there is no guarantee that
we can connect to it, have similar services and resume its suspended connections.

When the device connect to the Access Point, it registers to it and opens a L2CAP
connection with this Access Point, and then reconnect the suspended higher layer on top
of this L2CAP connection. For PPP, we need to establish a new PPP connection (LCP and
IPCP) and redirect IP traffic on top of this new PPP instance. For BNEP, we should be
able to reconnect the old BNEP instance on the new L2CAP connection (except if we
change IP subnet, which should happen only if the “ServiceName” is different.

For the Access Point, it is as if the device would connect to it for the first time, and
it just needs to pass the IP traffic back and forth. The old Access Point would also
timeout, close the L2CAP connection and the higher layers, and flush its data buffers.

5 Challenges
Roaming is already something that other technology implement, for example

802.11 has strong support for roaming. However, BlueTooth has a certain number of
features making roaming more challenging and interesting.

5.1 Discovery latency
The whole discovery process in BlueTooth takes a long time. For us, we define the

discovery as the process by which a BlueTooth device get to know the presence of a
device and connect to it. Usually, a discovery is composed of 3 phases, Inquiry, Paging
and higher layer connection.

The Inquiry is usually the slowest. For example, a full Inquiry as defined in the
spec last in excess of 10 s, and it doesn’t guarantee that all the devices that need to be
discovered are discovered (in case of fading or interferences). Such a long time has a high
probability to interfer with the user experience and TCP/IP connections.
2



< Made in HP >
This time is dependant of the inquiry time itself (how many frequency scanned)
and the time between inquiries for the Access Point. For the Access Point, there is clearly
a tradeoff between throughput and discovery latency, if we increase the time between
inquiries we allocate more time for data traffic but discovery will be slower.

The remaining part of the Discovery is faster. Paging, when done after a discovery,
is pretty quick (below 100 ms). Connecting the higher layer is pretty quick as well ;
establishing a L2CAP depends on how many L2CAP options are exchanged but should
be well below 50 ms, for PPP it should be below 100 ms (assuming a good
implementation), and for the PAN as well (in fact, in most cases PAN should be faster
than PPP).

So, a good implementation should be able to go from Start of Paging to IP flowing
in less than 250 ms. Of course, I can be wrong, and in a noisy environment, it could take
much longer. But this is the type of delay that won’t affect too much the user experience
and TCP/IP.

To summarise, the discovery latency is mostly due to the Inquiry process. Doing the
inquiry more efficiently or skipping it would improve the latency time.

5.2 Need to connect to identify AP
For protocols which are designed from the ground up as a cellular system, such as

802.11, the task of identifying an Access Point is pretty straightforward. The packets
sent as part of the discovery process (called Beacons) identify if the node is an Access
Point or not and advertise the logical network it is part of (i.e. in 802.11 the Beacon
contains the ESSID of the logical network).

In BlueTooth, this is not the case. At the end of the Inquiry process, the BlueTooth
device just has a list of devices that support the LAN Access profile or the PAN profile.
By adding the correct information to the FHS packet (see 4.4.1.4), we should be able to
narrow down to the list of Access Points in the vicinity.

But, this is not good enough, because we aim to support co-located logical networks
and we want to favor handover within the same logical network and IPsubnet as much
as possible. Moreover, Access Points may be set up with different access right and
security settings, so the node may not be able to use all Access Points that he founds.

The information needed to select the right Access Point is part of the SDP record.
And to access the SDP record, the device needs to connect to the relevant Access Point
and make a SDP query.

This mean that when performing roaming, the device may need to connect to
multiple Access Points, query their SDP, until it finds the right one. Each connection and
query is quite fast, but they add up, so if there are lots of private Access Points or co-
located networks, this may take some time.

To summarise, the problem is that we don’t know which Access Point to connect to.
If there are to many choices, finding the right one may take some time.

5.3 Lack of RSSI
The third issue is that many BlueTooth devices will lack RSSI (Received Signal

Strength Indicator). The RSSI measures the power of the incoming radio signal, and is
commonly used in CSMA systems to assess the state of the channel (free or busy).
BlueTooth, as it uses a TDMA channel access mechanism, explicitly doesn’t require a
RSSI circuit in its implementation. Implementing a reliable and sufficiently accurate
3



< Made in HP >
RSSI in the radio is expensive, so it is our expectation that most BlueTooth device won’t
offer any RSSI (and it won’t be good enough in most device that does).

The lack of RSSI has definitely strong implications on roaming. When a node
connect to an Access Point, we would like to pick the best Access Point. There might be
multiple Access Point offering the same service (effectively overlapping cells), and most
often the best one is the one from which we receive the strongest signal (because we will
get a lower BER and we will decrease the frequency of handovers).

Without a RSSI, we have very few way to select the best Access Point. BER (Bit
Error Rate) would work only in the lower range of the RSSI, if there is no interferers and
would be less reliable. And we don’t want to rely on a location system...

In most wireless systems, RSSI is also used to detect when to perform a handover.
Basically, when the RSSI is below a certain level, the device decides to search for another
Access Point giving better service. Detecting a link failure without RSSI is tricky,
because fading and interferer may make the link unavailable for some period of time.
The only option is to trigger handover when the link has been inactive after a time long
enough (supervisionTO in BlueTooth). But, this doesn’t allow to do pro-active roaming
and increase the time it takes to perform roaming.

To summarise, without RSSI we don’t have a good way to select the best Access
Point, to assess the link quality with the Access Point and to detect efficiently when we
should switch Access Point.

6 Optimisations
The basic scheme for handover described above is very simple, but unfortunately

not very efficient. In this section, we will propose a set of optimisations to improve the
performance of handover.

Most of those optimisation are simple and bring some tangible benefits. Those
optimisation will assume some common and usual network configuration, but may not
work all the time. Those optimisations may be used alone or can be combined to improve
the overall performance. Actually, some implementations depend on others.

The first optimisations will be generic and won’t deal with the specificities of
BlueTooth. On the other hand, the second set of optimisation will be dedicated to
BlueTooth, by addressing BlueTooth specific issues and using BlueTooth specific
features.

6.1 AP to AP communication
One of the most common optimisation of 802.11 networks is to have an Access Point

to Access Point protocol. The goal of this protocol is to flush the ressource that were use
by the roaming node in the old Access Point.

In the wireless environment, because of interferers and fading, a wireless link can
be blocked for quite a bit of time before data can flow normally again. The same is true
for node that use power saving and only exchange data with the Access Point
infrequently. For this reason, the Access Point assumes a node is no longer associated
with it only after a long timeout, to avoid disrupting a connection already potentially
weak.

On the other hand, every node associated with an Access Point consumes some
ressource in the Access Point. The Access Point has to keep a record of the association
(node characteristic, security parameters, connection information) and buffer packets
4



< Made in HP >
going to this node. Even more critical in BlueTooth is the fact that there can be only 7
nodes associated with an Access Point, so we would like to know if these 7 link addresses
are put to a good use.

When the node starts the roaming procedure, it doesn’t know if it will be successful,
so doesn’t terminate its existing connection with the Access Point (in case it needs to
come back). In most case, the node will have already lost contact with the Access Point
when starting the roaming procedure. So, basically the node doesn’t inform the Access
Point when it is roaming away.

On the other hand, when the node has been associated with a new Access Point, the
new Access Point can broadcast this information to the other Access Points on the wired
backbone, so that the old Access Point can learn about it and flush all the resources
associated with that node (registration record, packet buffers and link address).

If the time to perform handover is significantly faster than the timeout used by the
AP to de-associate a node, this can result in significant ressource saving in the Access
Points. We can increase the number of nodes active per Access Point, therefore reducing
the number of Access Points needed. Our hope is that we will manage to get the
handover time short enough that this optimisation is worth it ;-).

6.2 Optimised AP handover
A lot of people in the academia have been doing work on optimising generic

handover. They have studied the interaction between the long time the link layer is
blocked and TCP timers, and how to optimise the TCP recovery.

All those optimisation are of course applicable to the BlueTooth case. The first
classical optimisation is to pass buffered packets from the old Access Point to the new
Access Point.

While the node is performing its handover, the old Access Point still continue to
receive and buffer packets for the roaming node, but can’t deliver them. When the node
is associated with the new Access Point, the new Access Point start to receive packets
for that node at this point, but doesn’t grab earlier packets. In other words, all the
packets sent from the infrastructure while the node was performing the handover are
not received by the node.

Those packets will need to be re-sent from the original source, which will take time
and will reduce the TCP window, increasing the time it takes TCP to recover. On the
other hand, the old Access Point has stored most of those packets, and they are just
waiting in its buffer.

When the old Access Point receive the de-registration message from the new Access
Point (see section 6.1), it can simply re-send all the packets in its buffer associated with
this node. The new Access Point will pick them up and deliver them to the node.

In most cases, this should speed up significantly the TCP/IP recovery and overall
increase performance and reliability of the higher layer through the handover.

6.3 Getting neighbour AP list
One of the challenge that we have identified is that when the node need to roam, it

has no way to identify which Access Points available in its vicinity offer the same service
as the one it was using (part of the same logical network) amongst all the Access Points
available. This is explained in section 5.2.
5



< Made in HP >
There is a very simple solution for that. As part of the registration process, or on a
regular basis, the Access Point could send to the node the list of Access Points in the
vicinity that offer the same service. When the node perform the basic handover
procedure, it simply compares the result of the inquiry with the list of Access Point and
pick an Access Point in the common subset.

This scheme would save the node all the trial and errors of finding the right Access
Point, which would decrease both handover time and power consumption. While
roaming, the node doesn’t need to query the SDP of all Access Points around, because it
knows in advance which Access Points to connect to.

Now, we need to define how this list sent from the Access Point to the node. I would
suggest to sent 2 levels of the hierarchical tree of neighbouring Access Points. In other
words, the Access Point would send the list of its immediate neighbours, and for each
neighbour the list of its immediate neighbours.

Having neighbouring Access Point one hop and two hops away should be good
enough to cover most roaming speed and environment (most often you would roam one
hop away, and most remaining cases 2 hop away). Limiting to 2 hops will allow to limit
the amount of data exchanged (this increase exponentially with the number of hops).
The fact that the data is presented in a hierarchical way duplicates some information
(some 2 hops APs will appear twice), but allows to favor roaming one hop away and will
be used in a later scheme (see section 6.6).

For each Access Point, we also want to transmit timing information related to
paging and inquiry. We will also use that later (see section 6.5 ;-).

To summarise, by having the Access Point sending the node the list of its
neighbouring Access Points, the node doesn’t need to query each Access Point, which
significantly improve the performance of roaming.

6.4 Building neighbour AP list
One of the problem of the previous scheme (see section 6.3) is to generate the list of

neighbouring Access Points. Some setups will be fixed and managed, so we can expect a
network administrator to enter the list of neighbours as part of the configuration of the
Access Point. But, there are many cases where the network is not tightly managed or is
dynamic, and this solution is not good enough.

On the other hand, when the network is not tightly managed or is dynamic, cells
tend to be widely overlapping. This is because there is no strict network design, so the
placement of Access Point and distance between them has to be conservative. Also,
overlapping cells increase reliability and can be used for load balancing.

If we have widely overlapping cells, Access Points are within range of their
neighbours, so Access Points can discover each other through BlueTooth inquiry. By
querying the SDP record of the Access Points it can see, an Access Point can build
automatically the list of neighbours.

Then, using the AP to AP protocol on the wired medium, the Access Point can
interrogate its neighbours for their neighbours. This way, the list of Access Point to be
passed to the mobile node can be automatically constructed and dynamically updated
without any human intervention.

The advantage of this scheme is that more network deployment and configurations
can use the previous optimisation (see section 6.3).
6



< Made in HP >
6.5 AP presence checking (AP probing)
The previous optimisation (see section 6.3) was dealing mostly with the second

phase of the basic roaming procedure (querying APs). However, the first phase (Inquiry)
is also a major hurdle.

As part of the Access Point list (see section 6.3), we pass timing information for each
Access Point. Basically, for each Access Point, we want to know when it performs inquiry,
inquiry scan, page and page scan, what is its clock offset and its scanning pattern.

Then, using that information, the node can regularly check if it can see any of its
neighbouring Access Point. As the node has all the necessary information, it can probe
the Access Point only when it knows it is performing inquiry and paging, and should find
it very quickly. In most case, it doesn’t need to connect, but just receive a single FHS
packet sent by the Access Point (we may want to connect to do PiggyBack RSSI - see
section 6.7). By doing some regular probing of the various Access Points synchronised to
their inquiry or page patterns (i.e. probing at the right time), the node can determine
which Access Point it can reach and which it can not with minimal overhead.

One of the issue is for the node to hold its link to the Current Access point while
it’s doing this fast probing of the other Access Points. Hopefully, this time can be made
very short, and the IPSS subgroup will tell us how to do it ;-). The frequency of the
probes can be adjusted depending in various parameters (such as roaming history, data
load and bit error rate).

The big advantage of building the list of reachable Access Points is that when the
node loose its link with the current Access Point, it knows in advance which Access
Points are reachable, so doesn’t need to perform a full inquiry and can connect directly
with the Access Point it desires. This connection is faster because the node already
knows the timing of the Access Point (paging and co). This is also more reliable, because
during a single inquiry procedure we may not see some nodes due to fading or
interference, whereas this procedure aggregate data over a longer period of time.

In other word, we use the information sent to the node by the Access Point to
perform continuously some targeted fast inquiries, so that we don’t have to perform a
full inquiry later.

6.6 Position estimation
The only challenge that we haven’t tackled so far is the fact that we don’t know

which Access Point gives us the best quality of service (see section 5.3). This prevent us
to choose the best Access Point and to know when to perform pro-active handover.

On the other hand, in the previous optimisation (see section 6.5), the node check
which are the Access Points it can reach. And, the node also knows the topology of the
Access Point deployment (which Access Points are close to which - see section 6.3).

By correlating those two informations, the node can decide which is the best Access
Point. For each Access Point, the node calculate how many of the Access Point neighbour
it can see. The Access Point for which it can see the most neighbours will usually be the
closest Access Point. If this Access Point is not the current Access Point, the node should
start the handover procedure.

In fact, if the list of Access Point is build automatically (see section 6.4), what we
are trying to do is to find the Access Point which radio environment is most similar to
ours, and in most case this is the closest and best Access Point.
7



< Made in HP >
In other words, by correlating the list of Access Points the node can reach with the
hierarchical list of Access Points, the node may be able to estimate its position relative
to the Access Points and select the best one. However, this optimisation is rather crude,
does an approximate job and will not work reliably in a certain number of cases.

6.7 PiggyBack RSSI
As we have mentioned earlier (see section 5.3), the RSSI is still the best way to

determine the quality of the link with the Access Point. The problem is that we can’t
assume that BlueTooth devices will be equipped with it. On the other hand, the Access
point is a more expensive device, is a dedicated ressource shared by many users and
handover is an essential feature of it.

So, we may imagine that some class of Access Points will be equipped with RSSI,
and they will be able to assess the quality of the link for each node they support. Then,
we can imagine a simple protocol where the Access Point piggyback the RSSI measure
to the node. Knowing its current transmitted power, the node can then estimate the
quality of the link (and can do power control if needed).

This piggyback RSSI information can also be used to detect when to roam, as in
802.11. When the measure goes below a certain threshold, the node trigger handover.
However, this piggyback RSSI will be rather infrequent (to avoid overhead), so it can be
used only for relatively slow roaming.

A more interesting use of PiggyBack RSSI would be for the probing procedure,
when the node is checking presence for Access Points (see section 6.5). The idea is that
when the node probe for the presence of an Access Point, the Access Point return to it
the RSSI measure of the signal it receives from the node. If the node collect those
PiggyBack RSSI from various Access Points, it could rank the various Access Points it
can connect to based on it, and could choose the best when times come to roam.

Then, we can also benefit from that improved probing procedure to estimate the
node position (see section 6.6). By comparing the PiggyBack RSSI of the various Access
Points probed, the node can see if any offer better service than the current one and can
also derive a more accurate relative position. This way, the node has a much better idea
of when to roam, and can do pro-active roaming (instead of waiting until it’s too late).

By having the Access Point returning a PiggyBack RSSI as part of the probing
procedure, the node can rank the various Access Points in term of quality of the link and
decide more accurately when to perform handover.

6.8 Fast AP connect
Using the previous optimisations, we can now do pro-active roaming based on link

quality (see section 6.7) and our estimated position relative to the Access Points (see
section 6.6). We may also need to do roaming for load balancing reasons (because an
Access Point can accept only 7 nodes).

Connecting to the new Access Point is easier, because we know its timing
information (see section 6.5). However, after we have decided to connect to an Access
Point, we have still to wait until this Access Point is ready to accept our connection, that
is to wait until the Access Point is in inquiry scan or paging scan mode.

But, in all the cases where we do pro-active roaming, we still have a working
connection to the old Access Point at the point we want to connect to the new Access
Point, and this allow us to do a simple optimisation to bypass this waiting time.
8



< Made in HP >
At the point when the node wants to connect to the new Access Point, it sends a
specific message to the new Access Point via the old Access Point and the wired
backbone. When the new Access Point receives this message, it sends back a
confirmation via the wired backbone and the old Access Point and put itself in page scan
mode. Then the node put itself in page mode and connect immediately to the Access
Point. The advantage is that the node doesn’t have to wait until the Access Point put
itself in the right mode and it can bypass inquiry, which save both time and power.

By contacting the new Access Point through the old Access Point and the backbone,
the node can trigger page scan mode on the new Access Point and connect immediately
to it instead of having to wait.
9


	BlueTooth roaming proposals
	1 Introduction
	2 Goal
	3 Approach
	4 Basic mechanism
	5 Challenges
	5.1 Discovery latency
	5.2 Need to connect to identify AP
	5.3 Lack of RSSI

	6 Optimisations
	6.1 AP to AP communication
	6.2 Optimised AP handover
	6.3 Getting neighbour AP list
	6.4 Building neighbour AP list
	6.5 AP presence checking (AP probing)
	6.6 Position estimation
	6.7 PiggyBack RSSI
	6.8 Fast AP connect



