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1  Introduction
The development of radio LANs is very challenging. The

radio medium presents some very specific behaviour (like
fading and hidden nodes) and has some very strict constraints
(scarce resources) that make it fundamentally different from
wired mediums. Through the years, a lot of different
techniques and MAC protocol have been developed to
accommodate those constraints and to mitigate the effect of
these behaviours.

Unfortunately, a MAC protocol is worthwhile only if it
delivers its performance to the user. This means that when
designing a radio MAC, we should not only worry about the
radio medium but also about TCP/IP and the likely traffic
usage above the MAC. The adaptation of the MAC protocol
to the traffic patterns, requirements and behaviour of TCP and
multimedia is essential.

2  Bidirectionality & CSMA/CA
Most MAC protocols are agnostic about the

directionality of the data. However, most traffics are
bidirectional, which has an impact on CSMA/CA, and
the protocol should be optimised for such a case.

2.1 A tale of UDP & TCP
The TCP/IP stack [4] provides two very different

transport mechanisms, TCP and UDP. UDP is
minimal, with only header encapsulation, offering
almost a raw access over the MAC layer. On the other
hand, TCP offers all the features expected from a
transport protocol, with flow control and end to end
reliability.

The TCP protocol has been optimised to deliver
excellent throughput in a wide range of
configurations. But when doing some benchmark [5]
of those two protocols on some Wireless LANs, it’s
not uncommon to see that UDP offers 25 % more user
throughput than unidirectional TCP.

The classical explanation is that the radio losses
are seen as congestion by TCP, and therefore TCP
reduces drastically the sending rate [3]. However, the
Wireless LANs tested include stop and go MAC
retransmissions, and the UDP test show that 100 % of
the packets are received and that they are delivered
strictly in sequence, so this explanation is not valid.

The second explanation is the overhead of the TCP a
packets. Those packets don’t carry any useful payload, a
moreover they are small, so subject to a high overhead [
This explains most of the difference, but there is still som
additional overhead unaccounted for.

This additional overhead for TCP is in fact due t
collisions between the TCP data packets and TCP ack pack
over the medium. As opposed to TCP, UDP is unidirection
so there is no such collisions.

2.2 Why collisions are bad
Packet collisions over the medium is the main challen

facing the designer of MAC protocols. The traffic pattern
generated by a network of TCP nodes (asynchronous a
bursty) doesn’t fit well with a connection oriented approac
like TDMA, so most Wireless LANs use CSMA/CA [1],
which is based on a per packet contention.

The radio turnaround time is slow, so to get dece
performance a low number of contention slots
chosen, leaving a high number of collisions. A tw
nodes fully loaded 802.11 contention proces
generates 10 % of collisions [7], and this numbe
increases as the number of nodes goes up.

MAC level acknowledgements and
retransmissions overcome those collisions, and us
RTS/CTS reduces the penalty of each collision. B
still, the net effect of collisions is to waste the
available bandwidth, either in packet retransmissio
or in unsuccessful RTS/CTS exchanges.

2.3 Layers interaction
We have been talking so far of TCP ack and MAC

level ack. This seems a bit confusing. In fact, in mo
radio LANs each layer (TCP and the MAC) has it’s
own acknowledgement and retransmissio
mechanism : a complex sliding window cumulativ
acknowledgement for TCP ; and a very simpl
immediate stop and go at the MAC level.

The result is that when TCP transfers a chunk
data, there is up to 4 transmission over the medium,
can be seen infig. 2.3. This seems like an overkill, but
is necessary to get things working and optima
performance.
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2.4 Bidirectionality in common traffic usages
As we have seen, a unidirectional TCP connection is

bidirectional at the MAC level, because of the flow of TCP
acks from the receiver to the sender. As most high layer
application and protocol use TCP (http, ftp, SMB, NFS...), we
can assume that any bulk data transfer is bidirectional, so for
each usage of the network there is two nodes contending for
the medium instead of only one.

Applications not using TCP are usually multimedia
applications, using UDP and having their own flow control
and reliability mechanism (tailored to the exact need of the
application). In many cases, those multimedia applications
are a real time interactions between two humans (like a voice
over IP phone call), so bidirectional as well.

In fact, bidirectionality is the general case for network
traffic over the link layer, and only exceptions are
unidirectional streams (like multicast traffic).

3  PiggyData
PiggyData is a scheme which takes advantage of

bidirectionality to reduce collisions and overhead on CSMA/
CA, and therefore achieves an increase of performance for
TCP and multimedia connections.

3.1 The main idea
TCP itself includes a scheme to reduce the overhead of the

TCP ack transmissions when it is carrying a bidirectional
traffic, called piggyback acknowledgement [4]. The data
packets transmitted in the reverse direction contain the
acknowledgements for the data transmitted in the forward
direction : when the receiving node has to acknowledge some
received packets, it can wait for the next data packet to be sent
and put the acknowledgement information in the header, so
doesn’t have to send a separate TCP ack packet.

The main idea of PiggyData is to apply the same concept
at the MAC level. The MAC acknowledgements are going in
the same direction as the reverse flow of data (seefig. 2.3), so
both could be combined.

However, the timing of the MAC stop and go mechanism
are tight, and the MAC level ack is integral part of the
transmission frame. The MAC level ack needs to be sent
precisely a SIFS period after the data packet, so the MAC
can’t piggyback the MAC level ack in a later data packet.

The MAC level ack and the reverse stream of data can still
be combined by doing the reverse operation : to piggyback a
data packet in the MAC level ack transmission.

By sending the data with the ack packet instead of
separately, we reduce the level of contention and collision,
because this data packet is sent “contention free”. The
overhead is also reduced, because the transmission of this
data packet avoid the time taken to resolve the contention.

3.2 Implementation
PiggyData combines a MAC level ack and a data

transmission in a contention free frame. We want to retain the
MAC level ack as a separate packet, because its short size
guarantees a low error probability, but the two packets can’t

be separated in time by a SIFS (the shortest timing) beca
other mechanisms (like fragmentation) depend on it.

PiggyData sends the MAC level ack and the data packe
two separate packets in the same transmission burst (seefig.
3.2). The two packets are unmodified and only concatenat
sharing the same synchronisation field. The ack packet ne
to signal the data packet following (a flag in the ack heade
to allow the receiver to recognise the PiggyData ack.

The PiggyData procedures are quite simple. When a no
receives a valid data packet, if the transmit queue is empty,
node sends back a normal ack, otherwise it sends a PiggyD
ack including the first data packet from the transmit que
(the one ready for transmission). As each packet of t
PiggyData frame retains its own destination address, we c
associate any data packet with the ack regardless of
address (and therefore avoid any address comparison).

When any node receives a PiggyData frame, it decod
independently the ack and the data packet, processes eac
them if the destination address match its own, an
acknowledges the data packet if required.

PiggyData integrates transparently in most CSMA/C
MAC protocols such as 802.11, uses very few resources
simple to implement, requiring only minor change to th
framing, the ack transmission and reception processes.

3.3 Fragmentation and Packet Frame Grouping
The PiggyData scheme is quite simple, but th

interactions with fragmentation and Packet Frame Groupi
complicate its implementation.

Fragmentation [1] allows to split a large packet into
burst of shorter data-ack exchanges separated by a SIFS
decrease the impact of channel errors. To reduce the overh
of fragmentation and the resource usage in the receiver, all
fragments of the same packet should be sent into the sa
contention free frame.

PiggyData allows to group together a data and ack pack
with different destination addresses, so may break t
fragment train of the initial transmitter. To avoid that
PiggyData must be disabled on the intermediate fragme
and enabled only on final fragments and complete packet

Packet Frame Grouping [6] is similar to fragmentation b
applies on the fly to independent packets. As PiggyData
more efficient than Packet Frame Grouping, it should alwa
take precedence, and so no special rule needs to be app
PiggyData allows more than one node in the contention fr
frame, so the Frame Size is now defined as the maxim
number of bytes that an individual node can transmit betwe
two contentions (and is not enforced globally).

payload

headercontention

ack

data packet

sync field

piggydata payload

fig. 3.2piggydata ack

normal ack
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3.4 Fairness
In a normal CSMA/CA MAC protocol, accesses to the

medium are made only following a contention, so each node
has an equal opportunity to send a packet over the medium.

On the other hand, PiggyData allows all nodes involved in
a bidirectional traffic to have additional opportunity to
transmit data in the ack frame. So, PiggyData advantages all
nodes doing interactive sessions over those doing
unidirectional bulk transfer, but otherwise remains fair.

PiggyData also allows the grouping of any data packet
with an ack regardless of its destination address, so more than
two nodes can transmit in the same contention free frame, and
potentially all the nodes of the network in a round robin
fashion. In practice, traffic is mainly bidirectional, so this is
very unlikely. It is also possible to set a limit on the total
contention free size to avoid any excessive length.

4  Simulation model
The models used for these simulations have been carefully

chosen to be simple and realistic, to illustrate the PiggyData
scheme, its performance and behaviour.

4.1 MAC model
The MAC model includes a fairly complete 802.11

channel access mechanism. This model is based on an 802.11
backoff (slotted exponential contention). All management
functionalities have been removed to keep the model simple.

The model implements MAC level acknowledgments and
retransmissions (up to 4), RTS/CTS (for packets larger than
250 B) and Packet Frame Grouping [6] (the frame size is
2000 B).

The maximum packet size is 1500 B (non fragmented).
All other parameters conform to 802.11 [1] (CWmin = 16 ;
SIFS = 28µs ; Slot = 50µs ; Headers = 50 B).

Four types of MAC configuration are available :

• Normal: the basic standard 802.11 MAC

• PiggyData: with the addition of PiggyData only, up to
one packet per node after each contention.

• Packet Frame Grouping: with the addition of Packet
Frame Grouping only (see [6])

• PiggyData + PFG: with both scheme combined, each
node may transmit in the contention free frame up to the
limit set by the Frame Size.

4.2 Channel model
The channel model is a simple radio channel model,

including node to node attenuation (80 dB by default),
Rayleigh fading (calculated on a per packet basis) and
antenna diversity. The bit rate is 2 Mb/s, and there are no
hidden nodes and no interferers. The transmitted power is
+20 dBm, and the sensitivity is -80 dBm (in a Gaussian
channel).

4.3 Traffic models
Various traffic models are used through the simulations.

More information on the traffic models and their behaviour
may be found in [6].

5  Simulation results
Many simulations have been performed to study how we

PiggyData performs. All the simulations have bee
implemented under the Bones® Designer™ environment.

5.1 Random traffic
The random traffic uses a Poisson process, a unifor

distribution of packet sizes and random destination addre
The network is composed of an increasing number of act
nodes. In the throughput simulation the network load
1.80 Mb/s (saturated), whereas in the latency simulation t
network load is 1.40 Mb/s.

When there is only one node active on the networ
obviously PiggyData offers no improvement, because t
traffic is unidirectional (seefig. 5.1a). When the number of
active node increases, the length of the contention free fra
created by the PiggyData scheme also increases on ave
(more nodes can participate), which increases the ove
network performance. The combination of both Packet Fram
Grouping and PiggyData offers the best result.

In a similar way, PiggyData decreases the laten
experience by packets (seefig. 5.1b). The latency doesn’t
increase with the number of active nodes because the sa
load is statistically spread on all the nodes (so each no
receives a smaller load).
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5.2 TCP like traffics
As the random traffic doesn’t represent accurately real

traffic, more simulations have been done with some TCP like
traffic patterns.

5.2.1 “TCP2” traffic
The TCP2 traffic is a simple bimodal traffic, with large

(TCP data - 1500 B) and small (TCP ack - 40 B) packets. The
traffic is saturated and the destination address random, and
there is 5 nodes in the network.

In the simulation we explore different settings of the ratio
between the number of TCP data packets and TCP ack
packets. This ratio is controlled by the size of the TCP
window and the settings of the TCP stack : an optimised TCP
stack will produce less TCP acks than an non optimised one.

In this simulation, the number of nodes contending is
always the same, five. The Frame Size (2000 B) is set in such
a way that a node can group many ack with a data packet but
not two data packets together. As we can anticipate, when the
frequency of the TCP ack decreases, there is less packet to
group, so the improvement offered by Packet Frame
Grouping decrease significantly (seefig. 5.2.1).

However, PiggyData can always group packets regardless
of their size, so its effect is less sensitive to that parameter,
except that the improvement is inversely proportional to the
size of the packets grouped, so decreases as well.

5.2.2 “TCP1” traffic
The TCP1 traffic simulates a bulk transfer between two

nodes, one sends large packets (TCP data - 1500 B) and the
other reply with a small ones (TCP ack - 40 B). The traffic is
saturated.

This time, changing the data/ack ratio impact the way the
second node contend for the medium : when we decrease the
proportion of TCP ack in the traffic, the second node has less
and less to send, when the ratio reach infinity we have in fact
a unidirectional traffic (like UDP).

Consequently, when we decrease the ack proportion, there
is less contention, so less collisions, so the throughput
improve dramatically (seefig. 5.2.2). This is exactly the effect
we were observing in our benchmarks (see section 2.1).

As observed before (see section 5.2.1), Packet Fra
Grouping has little improvement, because it can only group
few TCP acks together, and PiggyData is quite effective wh
the traffic is highly bidirectional (data/ack ratio small) an
less when it becomes unidirectional.

One of the strange thing is that for low ratio, when w
increase the proportion of acks, the throughput wi
PiggyData only increases and is much higher than with t
addition of Packet Frame Grouping. When we don’t us
Packet Frame Grouping, we force all the TCP ack packets
use PiggyData (which presents slightly less overhead), a
we also decrease the average number of slots per conten
(because there is two nodes contending instead of one).

5.3 Multimedia traffic
This is exactly the same setting as in one of my previo

papers [6]. The previous simulations are not very good f
exploring latency problems, mixed and multimedia traffics, s
in this simulation we combine a TCP like traffic and a voic
traffic on the same medium.

5.3.1 TCP1 + Voice traffic
The simulation includes 4 voice nodes and 2 data nod

Thevoicetraffic has a fixed individual load (32 kb/s + UDP
overhead), and different average packet arrival times are u
in the simulation, which impact the packet size used by t
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voice nodes. The four nodes are grouped in two pairs talking
to each other, so PiggyData effect is limited to the two nodes
within the pair.

The two other nodes of the simulation are using theTCP1
traffic (one sender and one receiver, data/ack ratio set to 1).
Only the throughput of the two data nodes and the latency of
the four voice nodes are measured.

PiggyData offers a very significant improvement of the
throughput for the two data nodes (seefig. 5.3.1a). As before
(see section 5.2.2), adding Packet Frame Grouping to
PiggyData doesn’t improve the throughput of the data nodes.

As in my previous paper [6], Packet Frame Grouping offer
a very significative improvement of the latency experienced
on the network by the voice packets (seefig. 5.3.1b).
PiggyData is not as effective, and the combination of both
schemes gives a lower and stable latency across the whole
range of packet sending rate.

5.3.2 Latency target
In the previous simulations, the latency is in fact the

average latency of all the voice packets. This is a very good
indicator of performance (especially with the huge latency
improvements observed), but doesn’t show the exact shape of
the latency distribution.

Multimedia applications often expect packets to arrive
within a bounded delay at the receiver. Packets arriving too
late are just discarded. The number of packet discarded and
the delay tolerance impact the quality offered by the
application. For example, a Voice Over IP must feed voice
samples at fixed rate to the decoder, and good quality requires
less than 100 ms transfer delay between the two nodes and
less than 3 % packet losses [2].

The following simulation (seefig. 5.3.2) shows some
latency distribution. The same setting as the previous
simulation is used (TCP1 + Voice latency) with the average
arrival time of voice packets set to 25 ms. We set a latency
target and measure the probability for a packet to arrive within
this bounded delay. This represent in fact the reverse
cumulative distribution of latencies.

The improvement offered by PiggyData and Packet Frame
Grouping is quite different, Packet Frame Grouping works

best for most packets but leaves 3 % with a higher laten
than with PiggyData due to the potentially longer contentio
free frame. Within the same bounded delay, nodes using b
PiggyData and Packet Frame Grouping would discard mu
less packets than a normal 802.11 nodes, giving a much be
multimedia quality.

6  Conclusions
Most traffic generated by common applications an

networking stacks is bidirectional, which creates a high
collision rate over CSMA/CA.

PiggyData is a very simple modification of CSMA/CA
where each node piggyback some data packet in the M
level acknowledgement following the reception of a packe

PiggyData decreases the overhead and the collision r
increasing the network throughput and decreasing the late
in most traffic configurations in very effective way. PiggyDat
can be combined with Packet Frame Grouping to create
MAC highly optimised for TCP and multimedia traffics.
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