
user
e

e
ser
e

ss
ous
k
ss.

e of
ss
e
e
ven
cess
e.

the
he
a

he
the
ur
ful
n
ge.

for
DAs
As

it
er-
e
r
o
A

d-
1 Introduction
Recent advances in technology have made it possible to

cram computing and networking technology into ever smaller
portable devices. As those devices incorporate more data and
services, enabling them to participate in ad-hoc networks can
be beneficial.

Traditionally, research in ad-hoc networking has focused
on the challenges of network autoconfiguration [15] and ad-
hoc routing [12]. The results of this work have been
implemented for several link layers, most notably Ethernet
and wireless LANs. Unfortunately, the techniques developed
can’t be applied to TCP/IP over IrDA, due to the connection
oriented nature of IrDA (seesection 3.1).

There are at least three well-known methods used to
encapsulate TCP/IP over IrDA (seesection 4.1), all of them
require extensive setup or explicit user intervention to
establish a TCP/IP network link between nodes, and so can’t
truly be classified as ad-hoc.

This paper outlines a novel approach to using TCP/IP
applications over IrDA. We describe a transparent and
seamless method of establishing TCP/IP connections on the
fly and without user intervention, allowing the user to ignore
the presence of the IrDA layer and its mechanisms.

2 Motivations
While this paper presents results specific to networking

and ad-hoc TCP/IP over IrDA, it is part of a more general
research project called CoolTown, and therefore its roots lie
in research to support ubiquitous computing.

2.1 CoolTown : the user
HP’s CoolTown has a web-centric view of environments

and their components [1], and aims to bridge the gap between
the physical world where the user lives and the computing
world where vast amounts of information and services are
available.

In CoolTown, spaces, devices and people have web pages,
and can interact using HTTP. This intelligent use of web
technology allows users to interact with the environment and
devices once they have obtained the devices’ URLs. A
protocol, e-Squirt [27] disseminates these URLs to interested

users via infrared. The Web Presence Manager helps the
communicate with various services available to him in th
current context and locality [2].

This project is part of CoolTown and is follows the sam
philosophy. In this case, we are concerned by how the u
interacts with wireless networking technology and how w
can make this technology useful to him. Usually, wirele
connections are used to support mobile hosts. In a ubiquit
computing environment it is desirable that networ
connectivity should be transparent to the user, if not seamle

2.2 The benchmark : compact flash
The measure of success of a user interface is its degre

transparency. The more intuitive the interface, the le
intrusive and user-friendly it will be. Of course, any interfac
can become “natural” if it is used sufficiently. Absolut
measurements of interface ergonomic are hard, and e
comparative measurements tend to be skewed by the pro
of evaluation and the differing expectations of each interfac

The basic benchmark we have defined to measure
degree of user-friendliness of our wireless interface is t
comparison with removable storage. If copying data to
compact flash or floppy and carrying it to the destination (t
so called “sneaker-net”) is easier than sending it through
network, then the design of the interface is flawed. It is o
firm belief that wireless ad-hoc networking can be success
only if it becomes easier to use and more friendly tha
removable storage. Unfortunately, we are not yet at that sta

2.3 IrDA : pervasive ad-hoc networking
Support for infrared communication has been present

a long time in laptops, and has seen increased usage as P
become more common. Jornadas, Palm Pilots and other PD
can “beam” information using OBEX over IrDA [8].

When HP started developing its CoolTown project,
made sense to use this widely available (although still und
used) link layer. Its main advantage over competitiv
technology is its directionality, which allows the use
interface to be greatly simplified (just point and shoot, n
need for messy on-screen selection). Other benefits of IrD
are its low price, widespread availability, high speed and a
hoc nature.

On-Demand TCP :
Transparent peer to peer TCP/IP over IrDA

Jean Tourrilhes, Luiz Magalhaes and Casey Carter

This paper describes a novel approach to using TCP/IP applications over IrDA and BlueTooth.
First, we look into why so few applications are available over IrDA and what is necessary to make the
use of those applications attractive to end-users. Then, we present a new scheme that enable the use of
the IrDA communication layer by those applications in a transparent fashion with minimal overhead.
We describe the various components necessary to implement such a scheme, IrNET, the name resolver
and the discovery manager, and explain how we have implemented those components under Linux. We
finish by showing a few examples of use of those components with real applications.

jt@hpl.hp.com
Hewlett Packard Laboratories

1501 Page Mill road, Palo Alto, CA 94304, USA.

magalhae@uiuc.edu, ccarter@uiuc.edu
University of Illinois at Urbana-Champaign
1304 W Springfield Av, Urbana, IL 61801.
1

e

st
P
we

r
of

he

.
, a
IP
ew
-

nt
at
ry

ts.
is
In
se

ad,
e
ct,
vice
in
he
g
el
till

et
hat
on
in
ng
ry
st

f
e

e
l

tive
e,

s
st
by
The problem with IrDA is that only a handful of
specialized applications are available for it.

2.4 TCP/IP is ubiquitous
The IrDA stack offers a fully featured socket API,

enabling applications to make rich use of IrDA connectivity.
It is fairly trivial to modify and recompile existing TCP/IP
applications to make them work over IrDA, except for some
UI issues. However, this is not something an end-user can do,
and very few application developers have adapted their
applications to IrDA.

Our goal is to use any common network application totally
unmodified over IrDA, especially the applications the user is
familiar with. As the vast majority of existing applications use
TCP/IP, this means carrying TCP/IP traffic over the IrDA
protocol. The other big advantage of TCP/IP is that it is
routable, so it enable various kind of Vertical Handoffs [29].

OBEX [8] is supposed to be the “official” way to build
applications over IrDA and BlueTooth, but there is today only
a few OBEX application available (most of them only
implement push functionality and don’t even offer browsing),
and OBEX doesn’t offer the versatility and large application
base of TCP/IP (media streaming, instant messaging, gaming
and various java networking applications).

2.5 IrDA and BlueTooth
The current work is based on IrDA, and some parts of the

implementation are specific to IrDA. However, the concept is
not specific to IrDA, and we plan to extend this work to TCP/
IP over BlueTooth [10] when it becomes available.

One limitation of the IrDA stack is that the lower layer,
IrLAP, is strictly point-to-point when connected [4].
However, to ensure that our work can be applied to
BlueTooth, we use multiple IrDA dongles. Each dongle can
carry a single point-to-point link, but the Linux IrDA stack
supports multiple dongles simultaneously, enabling us to
form point-to-multipoint networks.

3 General overview
Our goal is to transparently relocate the user’s favorite

applications onto IrDA. As we have discussed, this requires
transporting TCP/IP over IrDA, but there are other important
issues to consider.

3.1 The main problem : connection setup
The IrDA link layer, like the BlueTooth link layer, is a

connection oriented medium [4]. In order for IP packets to
flow, we must explicitly create an IrDA connection between
two nodes.

All the existing schemes for carrying TCP/IP over IrDA
expect the user to explicitly trigger this connection setup. The
TCP/IP over IrDA connection will be closed down at the
user’s request or if the IrDA connection is broken. IrLAN
access points are the only exception to this rule, if a device
discover one IrLAN Access Point and is already configured
for it, the device can automatically connect to it when in
range, but this is not an truly ad-hoc scenario.

Since we aim for transparency, we want to eliminate th
necessity of user involvement in TCP/IP over IrDA
connection establishment.

3.2 Emulating a connectionless broadcast medium
Ethernet is the link layer technology people are mo

familiar with, and doesn’t require this explicit setup. TCP/I
and all the autoconfiguration and ad-hoc mechanism that
want work perfectly on top of Ethernet.

So, we could just pretend that IrDA is just anothe
Ethernet link layer. The idea is to add mechanisms on top
IrDA to make it as similar as possible to Ethernet and hide t
specificity of IrDA. In other words, to emulate a
connectionless broadcast medium over IrDA.

The techniques are fairly well known, but a bit complex
Whenever a new node is discovered on the IrDA medium
TCP/IP connection is established to it. Standard
autoconfiguration techniques are used to configure this n
node properly within the ad-hoc network. Optionally, an ad
hoc routing algorithm [12] can be used over this set of poi
to point links to reduce the number of redundant links so th
a device doesn’t need to connect at the link layer with eve
device in range.

The problem is that such techniques have significant cos
First, they are complex : extensive debugging and tuning
needed to make them work well and interoperate properly.
fact, it seems that more work will be needed before tho
techniques are practical [14].

Second, there is significant management overhe
especially if we want the system to react quickly to th
dynamic topology changes common to IrDA systems. In fa
even when the user doesn’t need network access, his de
will spend much of its energy trying to manage and mainta
this ad-hoc network with devices in range, which impacts t
CPU and battery life of the device. Using reactive routin
protocols such as AODV [13] can only reduce the IP lev
management traffic, however the link layer connections s
need to be maintained.

Imagine a hypothetical user walking down a busy stre
with a BlueTooth capable mobile phone. Further assume t
his phone is establishing a TCP/IP over BlueTooth connecti
with the cellphone of every other person who passes with
range, keeping alive those BlueTooth links and exchangi
various routing information. The mobile phone's batte
would be flat in short order ; such an ad-hoc network is ju
not practical on a busy city street.

Finally, there are strict limitations to the number o
simultaneous link layer connections. IrDA can have only on
active connection per physical port [4]. With BlueTooth, th
limit is 7 per radio [10]. Increasing the number of physica
ports increases the cost, and is therefore not an attrac
option. Since IrDA can connect to only one device at a tim
it is vital that we ensure it’s the right one.

3.3 On-demand TCP
The type of network traffic on ad-hoc wireless links i

usually different from that seen on a wired backbone. Mo
portable devices tend to be personal clients directly used
2

ing
als

s
PP
le

ses
nd
es
es,

s.

s
we

f

n

of
d

ts
m
m
the

e

n’t
se

for
nd

P
a
ng
/

as
rk
their owner, so traffic tends to be transaction oriented : there
is useful traffic only when the user performs a network
transaction, otherwise no connection is needed.

Also, the transactions are mostly two kinds, directed
(device to device) or toward the infrastructure. Device to
device transactions are with people within physical range :
the user is physically interacting with someone (i.e. chatting)
and wants to complement this with a digital transaction
(sending the picture of his new girlfriend or new car).
Transactions to the infrastructure use the relevant information
or service in the Internet (paying for coffee).

We believe that most ad-hoc interactions will therefore be
“one-hop” in nature, from our device directly to a peer or
directly to an infrastructure access point. We personally don’t
want other people to use our bandwidth, CPU and battery life
for their private interactions. Note that “our device” might be
a set of personal devices configured to work as a unit and
linked together by BlueTooth or a similar personal area
network technology.

Based on these assumptions, we propose an on-demand
TCP/IP scheme, where TCP/IP connections are established
only when needed, directly to the intended target, and closed
when no longer needed. This slightly increases the
complexity of the system and the management overhead, but
offers various benefits.

The on-demand scheme proposed act at the IP level (see
section 6.3), so all protocols part of the TCP/IP stack are
handled properly (including TCP, UDP, RTP and ICMP).

3.4 Benefits and constraints
The main advantage to our approach is that the device

need not pay the price of setting up and keeping alive an IrDA
connection with any peers when it is not communicating. This
should result in a tremendous saving of power, since
resources are only used when needed.

However, the on-demand nature of our approach
precludes the use of the classical IP autoconfiguration
techniques. Those techniques usually assume a permanently
connected broadcast medium and work on top of IP, whereas
by default our approach has no IP connectivity. Therefore, we
must use novel autoconfiguration techniques integrating IrDA
and TCP/IP.

Also, our solution doesn’t solve all usage models and
network configurations. One of the most important
restrictions is that we can’t connect to devices out of range if
there is no infrastructure. Some usages and configurations
require multi-hop routing and permanent TCP/IP
connectivity, and in those specific cases more traditional
solutions can be used [12].

3.5 Relation to PPP dial-on-demand
The TCP/IP on-demand scheme that we have described is

very similar to dial-on-demand that can be found in most PPP
implementations. This scheme deals with the same problem :
minimizing the use of a costly resource. When the TCP/IP
stack wants to reach the host or gateway on the other side of
the PPP link, PPP dials the modem and establishes the link.
When there is no traffic on the link, it is disconnected.

The two schemes are similar and use the same underly
mechanisms, but there are significant differences. PPP de
with a single link and single IP address which i
preconfigured, although some implementations can use a P
instance for each of several IP addresses to allow multip
links. On the other hand, our scheme deal with IP addres
with are not known in advance, their number is variable a
potentially large, and the number of active links also vari
and is usually much smaller than the number of IP address
so we need a more scalable solution than what PPP offer

3.6 The general design
The current design involves four different functional unit

that must be added to the operating system of the devices
are dealing with (seefig 3.6).

The first is IrNET, interfacing the TCP/IP stack on top o
the IrDA stack. We assume fully functional TCP/IP and IrDA
stacks. This module allows TCP/IP traffic to flow across a
IrDA connection.

The second is the IrNET Control Channel. This is a part
IrNET that exports IrDA events to the rest of the system an
allows fine control over IrNET (mapping of specific TCP/IP
flows to specific IrDA destinations).

The third is the Discovery Manager. It receives even
from IrNET and the TCP/IP stack and sets up the syste
appropriately in response. Intelligence to control the syste
and establishment of on-demand connections resides in
Discovery Manager.

Fourth is the IrDA name resolver, which performs nam
resolution over IrDA.

The network applications present on the system do
interact directly with these components, but continue to u
the standard system APIs (seefig. 3.6).

3.7 Implementation bits and pieces
We have implemented this autoconfiguration scheme

the Linux operating system. The system is operational a
has been demonstrated with real applications.

The Linux distribution used is GNU/Linux Debian 2.2
[22], upgraded with kernel 2.4.0 [23]. We tested on H
OmniBook 6000 laptops using the integrated IrDA port (
NSC 87338 FIR chipset) and HP Vectra workstations, usi
serial IrDA dongles (115 kb/s) or USB IrDA dongles (4 Mb
s).

We mostly reuse existing parts of the Linux OS, such
the TCP/IP stack, the IrDA stack, PPP and the netwo

fig. 3.6
IrNET

IrDA

query

Application Application

Sockets

config
events

traffic

query

Discovery
Manager

IrDA
resolver

Name
resolver

TCP/IP

Control
Channel
3

IP
IP
rm

an
N
e
n.
ork
a

sed

a
uch
h for
g

ET
et.
the
e

le
er
P,
ser

her
he

it
ll
o

on,
n is
he
he
applications (web browser, web server, streaming MP3
player).

IrNET and its control channel are implemented in a kernel
driver module. The IrDA resolver is a libc module. The
Discovery Manager is a regular system daemon.

4 TCP/IP over IrDA : IrNET
The first part of the work is to interface the TCP/IP stack

and the IrDA stack. The goal is to encapsulate TCP/IP packets
on IrDA connections, and to be able to manage those
connections.

4.1 The contenders
There are three different ways to carry TCP/IP over IrDA

(seefig. 4.1).

The most common is PPP over IrCOMM [7]. This is the
method used to communicate with data-enabled mobile
phones (those which support IrDA).

IrCOMM is the IrDA stack's simple serial emulation layer,
so it's quite straightforward to setup PPP over this pseudo
serial port. Unfortunately, this introduces inefficiency due to
PPP framing and serial emulation.

The second option is to use IrLAN [6], which is the
official IrDA standard for transporting TCP/IP over IrDA, and
is implemented in IrDA LAN Access Points. IrLAN is
basically an Ethernet emulation over an IrDA socket.

The third option is to use IrNET [9], which is used by
Windows 2000 to connect two PCs together (Direct Cable
Connection over IrDA). IrNET is synchronous PPP over an
IrDA socket, using only the protocol part of PPP and
removing both the serial emulation and the PPP framing for
greater performance.

4.2 Why we picked IrNET
The PPP protocol has some very nice features, features

which are desirable for our project.

The main benefit is that PPP can deal automatically with
IP addresses, IP routing and IP configuration through the
IPCP negociation, obviating the necessity of other
mechanisms to perform those functions. PPP also has built-in
security (authentication [19] and encryption [20]).

PPP is slightly more efficient than Ethernet emulation, as
it removes the Ethernet header and can perform IP header
compression [17] and IP payload compression [18]. In our
tests, the performance of uncompressed IrNET and IrLAN
were very close, so it’s mainly the rich feature set of PPP that
made us prefer IrNET over IrLAN.

The main difference between IrNET and PPP over
IrComm is performance, because no PPP framing is done.
The other advantage is control, because IrComm doesn’t
allow to specify the IrDA destination address of the serial
connection.

Finally, PPP is usually associated with long term static
configuration (dial-up connections). Using PPP in an ad-hoc
and dynamic fashion is a challenge that we could not ignore...

4.3 IP autoconfiguration
One of the nicest features of PPP is that it deals with

configuration for us. The IPCP protocol [16] can negotiate
addresses for each end of the link and PPP will then perfo
all necessary network layer setup.

A lot of devices connected to the Internet already have
IP address configured (static or via DHCP on a WA
interface). If no IP address is explicitly given, PPP will us
this default IP address of the device for the IrNET connectio
This IP address may already be in use by another netw
interface of the device, but that not a problem. In fact, it’s
benefit, because all interfaces of the device will be addres
in the same way.

If the device doesn’t have any IP address, PPP will pick
random IP address in one of the non-routable IP subnet (s
as 10.0.0.0/24). Those addresses are usually good enoug
the kind of short lived directed transactions we are talkin
about.

PPP assigns two IP addresses at each end of the IrN
connection which may or may not be in the same subn
However, PPP sets the appropriate host-specific route in
IP routing table, so in practice IP traffic always gets to th
correct destination.

PPP can also automatically setup proxy ARP, to enab
packet forwarding between the IrNET connection and oth
network interfaces. Our work does not use this feature of PP
since we assume that devices are personal and the u
doesn’t want his resources and battery to be used by ot
people. On the other hand, proxy ARP could be used in t
future to implement an IrNET access point.

4.4 The Linux Implementation
IrNET was not available for Linux, so we implemented

[28]. As Linux offers both a full featured PPP stack and a fu
featured IrDA stack, it was simply a matter of gluing the tw
together properly.

The Linux PPP stack is composed of a user space daem
pppd, and a set of kernel modules. The user space daemo
in charge of the protocol part of PPP. One kernel module is t
PPP multiplexer, which interfaces the TCP/IP stack and t

fig. 4.1

Application

IP Routing

802.3PPP mux

PPP
daemon

PPP framer

TTY layer

IrComm IrLANIrNETIrSock

Application

Ethernet
driver

Ethernet
card

Application

IrDA stack (IrTTP, IrLMP, IrLAP)

IrDA dongle IrDA dongle

TCP/IP
4

the
at

y
ple
6

IP
ice,
re
ter
ls
s)

d
TP
the
me

ch
for
hic
the

c
le
ion
we
nd

r
d
rk,
.

a
A
s
A

ss
he
IP

he
A
e
is
lf
re
PPP daemon, and deals with common code (such as
compression). A second module is one of the framing
modules, which performs the link adaptation and usually
interfaces with a TTY.

The IrDA stack is a set of kernel modules and composed
of the IrLAP, IrLMP and IrTTP protocols. IrSock (the
infrared socket API) is built on top of IrTTP.

Although it would be possible to implement IrNET using
the standard external APIs as a user space module between
the socket and the TTY APIs, for performance reasons, we
interfaced IrNET directly to the PPP multiplexer and IrTTP in
the kernel. This allows zero-copy communication between
TCP/IP and IrDA (if PPP doesn’t perform compression), to
minimizing latency and reducing the code size of the IrNET
module.

The resulting implementation is quite efficient. With a
NSC FIR chipset (4 Mb/s link), the TCP throughput
measured by netperf [26] is 3.19 Mb/s (uncompressed). The
time to setup the IrNET link is less than 800 ms on a 115 Kb/
s link (including full IrDA and PPP setup).

4.5 The control channel
Our main contribution to IrNET is the control channel.

The control channel is a very simple API (a pseudo file called
/dev/irnet) enabling user space applications to interact with
the IrNET module in the kernel.

The first function of the control channel is to bind a
specific IrNET instance to a specific IrDA destination. When
PPP creates a new connection, the IrNET module has no way
of determining to which IrDA device the PPP channel should
connect. All current TCP/IP over IrDA solutions simply
connect to the first device they find. With the control channel,
it is possible to specify on the pppd command line the desired
destination address, enabling IrNET to properly support
multiple devices in range and point-to-multipoint
configurations.

The mechanism is simple. The pppd daemon has a
command line option (connect) to pass some arbitrary data
directly to the input of the PPP driver used. With a regular
modem, this is usually the set of AT command to dial the
relevant phone number. For IrNET, we have defined a simple
set of commands to specify the IrDA address of the
connection and a few other parameters.

The second function of the control channel is to export
events related to the IrNET connections as well as IrDA
discovery events. By reading the /dev/irnet pseudo file,
applications are informed when the connection is broken and
when new nodes are discovered.

An example event log is :

Discovered 8c3478c8 (bougret)
Request from 8c3478c8 (bougret)
Connected to 8c3478c8 (bougret) on ppp0
Disconnected with 8c3478c8 (bougret) on ppp0
Discovered 8c3478c8 (bougret)
Expired 8c3478c8 (bougret)

5 The Ad-Hoc Name Resolver
We have chosen IrNET because PPP handles most of

problems related to autoconfiguration. The only thing th
PPP doesn’t do for us is name resolution.

5.1 The need for name resolution
The TCP/IP protocols provide connectivity, but the onl

addressing that it knows about is IP addresses. Most peo
don’t want to deal with IP addresses, especially IPv
addresses, and want to use familiar names.

Various protocols can be used to associate names to
addresses. The most common is the Dynamic Name Serv
DNS [21], designed to work on the connected Internet, whe
names are organized in a well known hierarchy (my compu
is ‘bougret.hpl.hp.com’). Other common naming protoco
are Network Information Service, NIS (a.k.a. YellowPage
and the use of the static /etc/hosts file.

The user interface of most applications is built aroun
human-readable names. The most common example is HT
that embeds the DNS name inside the URL. To preserve
user's ability to use names, our system needs to perform na
resolution over IrDA.

It may seem a bit paradoxical that we spend so mu
energy on names when most user interfaces, especially
IrDA, are graphic. But names are present under the grap
skin, and are used between the various component of
system.

5.2 The basic protocol
The classic DNS protocol is too heavy for ad-ho

networking, requires configuration, doesn’t hand
dynamism, is not peer-to-peer and requires an IP connect
(i.e., infrastructure support). To avoid these shortcomings,
implemented a lightweight protocol that is peer-to-peer a
doesn’t require IP connectivity to resolve names.

The basic idea is to use the underlying link laye
discovery. The IrDA stack itself can perform discovery an
can build a local database of devices present on the netwo
including their IrDA address, IrDA nickname and hint bits
Discovery may be done continuously or on demand.

When the user wants want to resolve a destination with
specific IrDA nickname, the resolver query the current IrD
discovery log and extract its IrDA address. This i
instantaneous and doesn’t generate any additional IrD
traffic.

The second step is to convert the IrDA link layer addre
into an IP address. We use the IrIAP protocol to query t
node associated with the target IrDA address for its
address.

IrIAP [5] is a basic IrDA protocol that allows IrDA
devices to query the IAS database of their peer devices. T
IAS is a local database of service record attributes in the IrD
stack. IrIAP can query attributes on an IrDA node by nam
and obtain their values. The advantage of IrIAP is that it
very efficient, being a link-layer protocol (one request is ha
the cost of setting up an IrDA socket) and doesn’t requi
server software on the target device.
5

C
S
e

all

d

to

ry
e.
call
s.
e

n
a

es
S

s to

en
nt
e

nt

ger
this

to
er
it

IP
DA
.

el
T

nel.
on
his
n,
se

ry
f.
of

ress
Our use of IrIAP is straightforward. The Discovery
Manager just add a XML string in the IAS database
describing the IP configuration (IP address, DNS name...).
Then, we can use IrIAP to query this attributes.

To convert from IrDA address to IP address, the resolver
sends an IrIAP query for the attribute named “IPconfig” to the
target IrDA device. The result of this query will be a XML
string containing the IP address needed.

5.3 The naming convention
In the absence of an infrastructure and a central organizing

authority, we can't have a proper name hierarchy. Moreover,
we want to resolve IrDA nicknames, so we use a flat name
space.

We reuse the “dot” notation of DNS, since most users are
familiar with it. Each device on the IrDA link will have a
name composed of its IrDA nickname and the suffix “.irda”.
For example, my computer has the name “bougret.irda”.

The name space is not managed, so there may be name
collisions, although such occurrences will hopefully be rare
on such small networks. One way to resolve collisions is to
add an instance number prefix to the name to distinguish
different devices (for example “1.bougret.irda” and
“2.bougret.irda”).

Another option is to use the IrDA attributes found during
the operation of the discovery protocol: we can prefix the
name with the IrDA class of the device (for example
“pda.bougret.irda” and “printer.bougret.irda”). IrDA has only
10 classes of devices and they are used loosely, but this
technique will be more useful with BlueTooth, whose
discovery protocol SDP is richer and more strict.

We have also introduced an IrDA specific wildcard name,
“any.irda”, that is not a real device name but resolves to the
first device discovered on the IrDA link. This is useful for a
line-of-sight link like IrDA because the user can connect to a
device without knowing its name by just pointing at it. Of
course, the name “any” can be combined with a class prefix
(for example “printer.any.irda”).

Finally, we can optionally resolve standard DNS names
when the hostname part of the DNS name matches the IrDA
nickname (as is usually the case). We use the DNS IAS entry
of the remote host to make sure we match the proper node.

5.4 The Linux implementation
The name resolver client code is implemented in the

library, as a set of modules with a well defined interface (NS
- Name Service Switch). Those modules include nam
resolvers for DNS, NIS, host file, and other mechanisms,
configured in the file /etc/nsswitch.conf.

The IrDA resolver is just another resolver module adde
to NSS (seefig. 5.4). It exports to the C library a name
resolution handler. It receives name resolution requests, try
perform the resolution and return the result or an error.

Any user space application can query the discove
database of the Linux-IrDA stack through its socket interfac
This is done via a getsockopt call. We have added another
to allow user space applications to also perform IAP querie
The IrDA resolver is not specially privileged, it just uses thos
two calls appropriately.

The current resolver has a few interesting configuratio
options. We can choose to resolve “any.irda” only if there is
single device in range, or also if there are multiple discoveri
(in this case we pick the first one). The resolution of DN
names is optional.

The resolver can also be used to resolve IrDA addresse
IP addresses through the gethostbyaddr() call.

6 The Discovery Manager
IrNET provides the basic method to pass TCP/IP betwe

IrDA nodes, however it doesn’t deal with the manageme
and setup of IrNET connections. This is the role of th
Discovery Manager.

6.1 On demand TCP/IP
The main goal of the Discovery Manager is to impleme

on-demand TCP/IP (seesection 3.3), to create IrNET
connections when needed and tear them down when no lon
in use. It implements the state machines necessary for
task.

The Discovery Manager needs two types of information
perform its function : it needs to know what are the other pe
devices that it can reach through the IrDA link, and when
should establish a link with them.

The whole system is based around TCP/IP and
addresses, so the first task is to collect IP addresses of Ir
peers, and the second to monitor IP traffic to those nodes

6.2 Collecting IP addresses
The Discovery Manager uses the IrNET control chann

to get discovery events. When a new node supporting IrNE
is discovered, an event is generated on the control chan
This event carries the IrDA address of the new node. Up
receiving such an event, the Discovery Manager extracts t
IrDA address and, if this IrDA address is not already know
it then uses the IrDA resolver to query its IP address. The u
of the IrDA resolver is just a convenience, the Discove
Manager could easily implement the IrIAP protocol itsel
The IP address is added to the Discovery Manager's list
active IP addresses, and the binding between the IP add
and the IrDA address is stored.

fig. 5.4

IrDA resolver

Application Application

NSS (name resolver)

IrDA stack

DNS resolver

TCP/IP stack

C Library (glibc)

gethostbyname(“bougret.irda”)

nss_irda_gethostbyname(“bougret.irda”)

IRLMP_ENUMDEVICES(“bougret”)

=> 10.0.0.1

=> 10.0.0.1

=> 0x8c3478c8
IRLMP_IAS_QUERY(0x8c3478c8,
 “IPconfig”)
=> <IP IPv4addr=“10.0.0.1”/>
6

st
nt

nk
to
our
e
ly
ll
this

a
ties

g
It

g
e

that
e
the

P

er
N
the
es

v/

int
le
, the
The Discovery Manager also reads Expiry events from the
control channel, informing it when nodes have left
communication range so that it may remove their IP addresses
from the active list (the address binding is kept a bit longer in
case the node comes back).

6.3 Monitoring IP traffic
The Discovery Manager must monitor outgoing IP traffic

towards nodes present in its list of active IP addresses.

Our initial version of the Discovery Manager was using
TCP/IP filtering facilities that are present on most standard
TCP/IP stacks (such as Packet Filter, Net Filter...). The
Discovery Manager was creating a list of IP addresses and
receiving events for any packet matching the filter.

However, not all TCP/IP stacks support this functionality,
so we changed the Discovery Manager to use a virtual
network interface. This is a very simple network driver that
offer an Ethernet interface to the stack and exchange data with
the Connection Manager (a kernel loopback).

The use of such virtual interface is very simple. The
Discovery Manager configure the standard IP routing table to
forward all discovered IP addresses on the virtual interface.
Then, any packet sent to one of those IP addresses will
generate an event containing this packet sent to the Discovery
Manager (seefig. 6.4).

When the Discovery Manager receives such an event, it
first checks the state of the IrDA link associated with this IP
address. If the link is unconnected, the Discovery Manager
sets up a connection with PPP and IrNET and remove this IP
address from the route to the virtual interface. When the
IrNET link is up, all packets with this IP address
automatically reach their destination. When the link goes
down, this IP address is re-routed to the virtual interface.

The Discovery Manager also needs to close unused links.
This is done by setting the idle timeout of PPP to 10s so that
PPP itself closes the link if inactive. PPP also automatically
tears down the PPP connection and the associated IrNET link
if the IrDA link is blocked for more than 5s (usually implying
that the destination moved out of range). These timeouts may
need to be tuned to a specific device or application.

The current system creates a link in response to any packet
matching the IP address of the link. This strategy is borrowed
from the regular PPP demand mechanism and works well in
practice ; unidirectional IP packets are almost always part of
a connection and carrying useful information.

We do not, however, support broadcast and multica
traffic. Broadcast packets are typically periodic manageme
packets, and do not normally indicate user demand for li
connection. Establishing a link with any device in range
exchange such management packets would contradict
goal of preserving power. Multicast packets can b
management or multimedia applications ; dealing efficient
with them in such ad-hoc point-to-point environment is sti
an open research issue and well beyond the scope of
paper.

6.4 The Linux implementation
The Discovery Manager is implemented in Linux as

regular user space daemon and use the various facili
offered by the system.

It reads events on the IrNET control channel by openin
the pseudo file exported by the IrNET module (/dev/irnet).
uses the IrDA resolver to translate IrDA to IP addresses.

It performs IrNET connection establishment by launchin
pppd, the PPP daemon, with the right command lin
arguments. One of these arguments is the IrDA address
pppd write on the IrNET control channel. The command lin
can also contain the PPP idle timeout and the IP address of
interface.

The first version Discovery Manager monitors TCP/I
traffic using the Linux NetFilter framework [24] and its
associated IPtables library, but it was not optimal.

Currently, the Discovery Manager no longer use NetFilt
but a virtual interface. It can use either the Universal TU
driver [25] or the PPP loopback, both standard features of
Linux kernel. The Discovery Manager just route IP address
on the virtual network interface (either “tun0” or “ppp0”) and
read packets on a pseudo file (either “/dev/tun” or “/de
ppp”).

The Discovery Manager has been tested two multipo
configuration. The first configuration is when there is multip
peers, each visible behind a separate dongle. In this case

fig. 6.2 : Discovery state machine

route add -host 10.0.0.1 dev vif

Discovered 0x8c3478c8

IrDA
resolver

Routing
table

IrNET
Control

Channel

gethostbyaddr(0x8c3478c8)

=> 10.0.0.1

fig. 6.3 : Connection state machine

route del -host 10.0.0.1 dev vif

IP_PACKET dest=10.0.0.1

Routing
table

pppd /dev/irnet noauth idle 10

Connected to 0x8c3478c8

NetFilter
(TCP/IP)

 connect addr 0x8c3478c8IrNET
Control

Channel

fig. 6.4

IrNET
control

IrNET #2

IrLAP #2

IP#1

TCP/IP

Routing

IrNET #1

IrLAP #1

config

eventstraffic

Discovery
Manager

Virtual
interface

IP#2
IP#3, IP#4

channel
7

e

red
ns

e

is
ted
at

at

is

on
the
re
he

t of
eal
d-

in
of

al
eal

P
se

].

e

,

,

nt
Discovery Manager allow to establish multiple TCP/IP
connections to these peers simultaneously.

The second configuration is when all the peers are visible
behind the same dongle. In this case, because of the
limitations of the IrDA protocol, the Discovery Manager
allow to establish TCP/IP connections to these peers only in
sequence.

7 Putting all together
Now that we have described the various parts of the

system, let’s see how they can be used to improve the user
experience in a few simple examples.

Of course, it’s impossible to list all the potential use of
such technology, as it is only an enabling technology that
many applications and developers can use for communication
over IrDA, and not and end-user application in itself.

7.1 Simple IrDA Web browsing
The HTTP browser has become the user interface of

choice for many tasks involving networking, and many
appliances contain embedded web servers allowing other
devices to browse their content or user interface [1].

If the user wants to browse the content of another IrDA-
capable device, he must only point his device toward it, type
“any.irda” in the URL field of the browser, and magically the
default web page of the other device will appear in his
browser. The user can then transparently browse the various
web pages of the device.

This is possible using a standard web browser and server,
unmodified, on a system that implements our technique. And
all web features (post forms, SSL, cookies, multimedia
streaming, java plug-ins) are transparently supported.

This is how it works under the hood. As soon as the user's
device discovers the other IrDA device, the Discovery
Manager puts its IP address in the active list. When the user
type “any.irda” in the browser, the browser resolves it and the
IrDA resolver returns the target IP address. Then, the browser
establishes a connection to the IP address. The Discovery
Manager intercepts those IP packets and establishes the
IrNET link. After that, the IP packets flow over IrDA and the
HTTP server on the other device handle the incoming request.

7.2 Self referenced Squirt
Squirt is a protocol designed as part of the CoolTown

project [27], allowing users to remotely control appliances.
Squirt push URLs over IrDA using Obex. When the remote
appliance receives such an URL, it uses its wired internet
connection to fetch the content of URLs and do the
appropriate thing with it (display, play or print it for example).

However, this protocol currently applies only for
documents available on the Internet. By using our technique,
the remote appliance can also transparently fetch documents
on the squirt sender. The squirt sender just needs to pass a
URL referencing itself (its DNS name) and the local
document.

An example is an Internet radio [3] developed as part of
the CoolTown project. The user can squirt a URL referencing

a local MP3 file, the Internet radio will query and stream th
file from the user device over IrDA and play it.

7.3 Network neighborhood
The usual user interface for IrDA is a graphical window

showing icons associated with each of the devices discove
on the link. The user can communicate and perform actio
on these devices by manipulating their icons.

Using our setup, any network application can b
integrated easily into this interface, without changes.

For example, if the user want to add telnet support to th
GUI, he can add an item in the contextual menu associa
with each device containing “telnet %n.irda” (assuming th
“%n” resolve to the IrDA name of the device).

8 Conclusions
The IrDA link layer has some unique characteristics th

make it different from usual networking technology : IrDA is
peer-to-peer, connection oriented, dynamic, and the link
directional.

These characteristics make the deployment of comm
network applications based on TCP/IP not transparent to
user : the user must explicitly connect the IrDA stack befo
using the application. Also, due to the ad-hoc nature of t
medium, any network solution must be ad-hoc.

In this paper, we have presented a framework and a se
components that connect the IrDA stack on demand and d
with various details of TCP/IP configuration on such an a
hoc link. This allows the IrDA link layer to be totally
transparent to the application and the user. The ma
advantage of our approach is its simplicity and the reuse
various existing components to ease its implementation.

The components have been implemented in a re
operating system and have been used with various r
applications successfully.

Our next steps are to implement a similar on-demand TC
framework on 802.11 and BlueTooth, and to integrate the
components in our Ad-hoc Vertical Handoff framework [29

9 References

[1] CoolTown team.People, Places, Things: Web Presenc
for the Real World. www.cooltown.com

[2] D. Caswell and P. Debaty. Creating web
representations for places. Proc. Second International
Handheld and Ubiquitous Computing Symposium
HUC’2000, Bristol, England, 2000.

[3] V. Krishnan, and G. Chang.Customized Internet radio.
Proc. Ninth International World Wide Web Conference
Amsterdam, 2000.

[4] IrDA. Serial Infrared Link Access Protocol (IrLAP).
www.irda.com

[5] IrDA. Link Management Protocol. www.irda.com.

[6] IrDA. LAN Access Extensions for Link Manageme
Protocol - IrLAN. www.irda.org

[7] IrDA. ‘IrCOMM’: Serial and Parallel Port Emulation
over IR (Wire Replacement). www.irda.org.
8

l

.

.

[8] IrDA. IrDA Object Exchange Protocol - IrOBEX.
www.irda.org.

[9] Microsoft. IrTran-P, IrLPT, and IrDA Networking
Support under Windows 2000. www.microsoft.com.

[10] J. Haartsen, M. Naghshineh, J. Inouye, O. J. Joeressen
and W. Allen. BlueTooth: Vision, Goals, and
Architecture. ACM Mobile Computing and
Communications review, Vol. 2, No. 4, (October 1998).

[11] IEEE. IEEE 802.11 : Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications.

[12] S. Corson, J. Macker.Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues and
Evaluation Considerations. RFC 2501.

[13] C. Perkins and E. Royer.Ad-Hoc On-Demand Distance
Vector (AODV) Routing. In Proceedings of the Second
IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA ’99), pages 90--100, 1999.

[14] Erik Dutkiewicz. Impact of Transmit Range on
Throughput Performance in Mobile Ad Hoc Networks.
In Proceedings of ICC 2001.

[15] S. Thomson and T. Narten.IPv6 Stateless Address
Autoconfiguration. RFC 1971.

[16] G. McGregor and Merit.The PPP Internet Protocol
Control Protocol (IPCP). RFC 1332.

[17] M. Engan, S. Casner and C. Bormann.IP Header
Compression over PPP. RFC 2509.

[18] D. Rand. The PPP Compression Control Protoco
(CCP). RFC 1962.

[19] W. Simpson. PPP Challenge Handshake
Authentication Protocol (CHAP). RFC 1994.

[20] G. Meyer. The PPP Encryption Control Protocol
(ECP). RFC 1968.

[21] P.V. Mockapetris.Domain names - implementation and
specification. RFC 1035.

[22] The Debian project. GNU/Linux Debian 2.2
www.debian.org.

[23] Linus Torvalds and others. linux-2.4.0.tar.bz2
www.kernel.org

[24] Rusty Russell.Linux 2.4 Packet Filtering HOWTO.
http://netfilter.samba.org/unreliable-guides/

[25] Maxim Krasnyansky. Universal TUN/TAP device
driver. http://vtun.sourceforge.net/tun/

[26] Rick Jones. NetPerf : a network performance
benchmark. http://www.netperf.org/.

[27] Jean Tourrilhes. e-Squirt for Linux-IrDA. http://
www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/
squirt.html

[28] Jean Tourrilhes. IrNET for Linux-IrDA. http://
www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/
IrNET.html

[29] Jean Tourrilhes & Casey Carter.A-Handoff : A
framework for fine grained ad-hoc vertical handoff. To
be published.
9

	1 Introduction
	2 Motivations
	2.1 CoolTown�: the user
	2.2 The benchmark�: compact flash
	2.3 IrDA�: pervasive ad-hoc networking
	2.4 TCP/IP is ubiquitous
	2.5 IrDA and BlueTooth

	3 General overview
	3.1 The main problem�: connection setup
	3.2 Emulating a connectionless broadcast medium
	3.3 On-demand TCP
	3.4 Benefits and constraints
	3.5 Relation to PPP dial-on-demand
	3.6 The general design
	3.7 Implementation bits and pieces

	4 TCP/IP over IrDA�: IrNET
	4.1 The contenders
	4.2 Why we picked IrNET
	4.3 IP autoconfiguration
	4.4 The Linux Implementation
	4.5 The control channel

	5 The Ad-Hoc Name Resolver
	5.1 The need for name resolution
	5.2 The basic protocol
	5.3 The naming convention
	5.4 The Linux implementation

	6 The Discovery Manager
	6.1 On demand TCP/IP
	6.2 Collecting IP addresses
	6.3 Monitoring IP traffic
	6.4 The Linux implementation

	7 Putting all together
	7.1 Simple IrDA Web browsing
	7.2 Self referenced Squirt
	7.3 Network neighborhood

	8 Conclusions
	9 References
	On-Demand TCP�:
	Transparent peer to peer TCP/IP over IrDA

