On-Demand BlueTooth :
Experience integrating BlueTooth in Connection Diversity

Jean Tourrilhes

jt@hpl.hp.com
Hewlett Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94304, USA.

Using TCP/IP applications between two peers over BlueTooth usually require many manual steps
from the user. Our Connection Diversity framework offers mechanisms to automate all these steps. The
implementations of Connection Diversity over BlueTooth enables TCP/IP applications to transparently
use BlueTooth and smoothly handoff to other link layers. We explain how Connection Diversity interface
with BlueTooth and various aspects of the implementation, including the management of connections,
discovery, Co-Link and name resolution. We then suggest a few modification of BlueTooth to improve its
suitability for peer to peer applications. We also discuss how to optimise BlueTooth handoffs. This
implementation allowed us to test various peer to peer usages models, we report their user friendliness,
their performance characteristics and how the design of BlueTooth impacts user experience.

1 Introduction A principal underlying assumption of Connection
Diversity is wireless diversity : the availability of multiple
wireless technologies with different characteristics in each
information device. All applications are TCP/IP based to
achieve link layer independence, and we want to enable all

existing popular applications without modifying them.

The BlueTooth wireless technology started as a humble
cable replacement [1], but has quickly evolved into the Swiss
Army Knife of wireless technologies, allowing all kinds of
appliances to be wirelessly connected together.

The vast majority of network applications are written for
TCP/IP. Using those TCP/IP applications between two 2.2 Generic architecture and features

BlueTooth peers requires various manual steps : the userneed The Connection Diversity framework is composed of
to explicitly establish the link prior to starting the application, various components inserted in a standard operating system.
and close it afterwards. If the link breaks, the user need to|t currently fully supports IrDA, BlueTooth and 802.11.

select another link and restart the application. The Connection Managerfig. 2.9 is the central
Itis our belief that users should focus on the task they controller, a daemon managing the various wireless interfaces

want done, not on managing various link layers. Our of the system and mapping application connections to those

Connection Diversity framework implements various [14]. The Connection Manager monitors both peer discovery

techniques to make the link layer transparent to the user, andand outgoing connection requests to implement On-Demand
offers the potential to make the usage of peer to peer TCP/IPTCP, P-Handoff and Co-Link.

applications over BlueTooth much more user friendly. On-demand TCRnables peer to peer TCP/IP on a wide

2 Connection Diversity variety Qf wireless _ links [11]. TC_P/IP connections_ are
]) i)) automatically established and configured over the wireless
~ Connection Diversity explores how mobile devices can |, when applications need them, between two peer devices,
interact using the wide variety of vylreless technologies ithout the need for infrastructure, and then closed down.
2;';22? J(;ga[{’l\]'v'th a special emphasis on peer-to-peer and P-Handoﬁgnables transpar.ent migr.ation of peer to peer
' TCP connections between wireless links [12]. P-Handoff
2.1 Usage model and assumptions doesn't require any infrastructure and is fine grained,
Connection Diversity offers asimp|e usage model for peer aIIowing flexible use of available links. A Policy Manager
to peer applications, where a user, through his mobile device {ries to optimally use those links for each connection based on
interacts locally with other physically nearby users or range, speed and cost.
appliances in the environment (peer to peer). Links layers are Co-Link enables the use of any wireless link to activate

automatically managed and invisible to the user. and configure another wireless link [13]. This allows a device
_ S — to use the most power efficient links for discovery and enable
ig;ég’rk | Application| | Application|- query higher performance links only on-demand.
- DNS . . .
Policy 2.3 Link Adaptation Layer requirements
traffi Manager Ad-hoc .) . :
TCP/IP | traffic ' / resolver Different wireless technologies present different APIs,
]—‘Routing _ C&’;’f’gggn Sery different operating characteristics and topologies [12]. The
config core and methods of Connection Diversity are generic but
fe"ems fig. 2.3 require alink Adaptation Layer(LAL) for each wireless
|IPadapt.| |IP adapt | DfSZOVG‘fy Connection technology we want to manage [11]. We enumerate those
‘Link/ayer‘ ‘Linklayer‘ adapt Diversity requirements here.

2.3.1 Discovery Management 2.3.6 Co-Link support

The Connection Manager depends on the knowledge of Co-Link uses HTTP requests and is mostly link layer
which peers can be reached via each link layer, so it canindependent [13]. Co-Link needs to query and represénka
decide what potential connections can be routed on each linkayer configurationand must be able to activate the link layer
layer. and apply efficiently such configuration.

The LAL needs to providepeer discovery Wireless .
Discovery is not trivial [13], however most link layers offer 3 The BlueTooth Adaptation Layer
built-in facilities for discovery, and we want to reuse those for ~ To better understand the integration of BlueTooth into the
efficiency [11]. The LAL needs to know within a reasonable Connection Diversity framework, we did a complete
time when a new peer is discovered. It also mangmeer implementation of its Link Adaptation Layer. We also
expiry: it must keep track of discovered peers and remove implemented additional features in the BlueTooth Adaptation
them from the discovery log when they are no longer Layer to enable additional usage modsksction §.
reachable (again, within reasonable time). BlueTooth is quite different from link layers already
2.32 Peer IP Identity supported, so this implementation helps validating the

Most often, the link layer discovery only reveals the link original design of the Connection Diversity framework.

layer identity of peers discovered (MAC address). However, 3.1 The BlueTooth link layer
both the Connection Manager and the Ad-Hoc resolver need BjyeTooth is a wireless communication standard initiated

thelP identityof those peers, consisting of a Globally Unique i, 1997 by Ericsson and Intel [1] and now managed by the
IP address and a DNS name [11]. Therefore the LAL needs tog|,eTooth SIG (Special Interest Group) [2]. BlueTooth was
convert peer link identities to peer IP identities. influenced by the IrDA [5] and USB [7], and offers the

2.3.3 IP adaptation functionality of a wireless USB and serial cable replacement.

Applications are TCP/IP based, so the LAL needs to Like IrDA, and as opposed to 802.11, the BlueTooth link
transport IP traffic over the link layer. This requires the proper layer is connection oriented, so two BlueTooth devices
encapsulation of IP packets in link layer packets, and theexplicitly need to connect to each other before being able to
proper setup of IP configuration and routes. exchange any data [2].

2.3.4 Connection Management 3.2 Discovery Management
Many link layers are connection oriented and don't offer jyeTooth offers a link layer discovery process called
automatic connection management, leaving it up to the user tanquiry. The Inquiry procedure returns the list 8dAddr
connect devices together. The Connection Diversity gjueTooth MAC addresses) of devices that can be reached.
framework automates this connection management [11]. Most devices periodically check if they need to answer
To enable TCP/IP traffic, the LAL needs to be able to |yquiries (Inquiry Scan mode - every 1.28s for 11ms). A

create link conngctionﬂ;q the dgsjred peers, and tbose device performs an Inquiry by repetitively sending requests
those, based on its routing decisions. It also needs to detechnq collecting answers from its neighbotiis. 3.2.

and closed!e link co-nnect|ons.) The default Inquiry duration is 12s. Due to the design of
Most wireless links are unreliable, so the LAL must Inquiry Scan mode (delayed answer [2]), the minimum time

monitor those connections for link failures. It needs to know g get any answer from Inquiry is 4s, and the probability to get

when the link detects likely failure conditionsl¢ckedlink), an answer from a peer within 4s is often below 50%.

and also when the link layedestroysthe link connection We have implemented discovery managethat can use

because of this failure condition. We usually prefer to have Inquiry to build a discovery logfig. 3.5. It performs a

those two events separate [12], because it's more efficient toperiodic Inquiry for 4s every 60stable 1. This aims to

momtort tge likely fgqllure condlt:jog while IZ? link is t§t|ll tradeoff the latency of discovery, the length of time the
connected (even with errors) and because disconnecting an terface is unusable (while doing Inquiry) and the Inquiry

reconnecting the link layer incur a large overhead. overhead (both in throughput loss and powazction 4.1

2.3.5 Ad-Hoc Name Resolver _ Once a peer is discovered, we need to keep track of it and
The name resolver translates both the DNS names and linknanage its expiry. This is done through the periodic Inquiry ;
local names of peers into their Global IP address [11], without if a peer is not discovered for 10 successive Inquiries, it is

using a global infrastructure. kesolver modulés needed for expired and removed from the discovery laple J).
each link layer, with corresponditigk local names

Inquiry Page SDP Page sbp
Peer 2 Inquiry Inquiry Page p
Scan Scan Scan dZ?:Sg(yeery
Peer 3 Inquiry))) Page Passive
Scan fig. 3.2 : Discovery and Identity Query scan giscovery

Inquiry in the discovery manager can be turned off, and The BlueTooth connection is based on Raging
can also be triggered on-demand by the name resolver. Thénandshake, and requires the BdAddr of the peer. After Paging
additional “auto” mode allows tracking of discovered peers : completes, the higher level of BlueTooth stack can connect
Inquiry is off by default and enabled only when there is avalid (SDP in our case). The time to perform the SDP request itself
peer in the discovery log. is usually small with respect to Page tirtab(e 2.

The discovery manager can also perforpassive Paging is similar to Inquiry and synchronises the two
discoveryi.e., to discover peers without doing any Inquiry. BlueTooth devices on the same Frequency Hopping pattern
Peers performing Inquiry don't reveal anything about their [2]. The target device periodically checks if it needs to answer
identity. However, whenever a peer connects to us, we can béPages (Page Scan mode - for 11ms every 1.28s). The initiator
notified of it and get its BdAddr. The discovery manager sends Page requests until it gets an answer or timeout.
monitors this event and adds the BdAddr of every incoming To minimise connection |atency, we reduced the Page
connection in the discovery log (if it doesn’t already exist). timeout from 5s to 4s and the Page Scan period from 1.28s to

The discovery manager also monitors Inquiries triggered 0.6s €able 1). The peer itself may be doing an Inquiry and
by other applications on the device and collects their results.unable to answer us, so we will retry the SDP query up to 3

Table 1: BlueTooth parameter settings times (once after each successful Inquiry or passive
discovery) before marking the discovery log entry invalid.

Parameter standard new value - e)
T . . Performing a SDP query on each peer is time consuming
Periodic Inquiry period - ~60s (fig. 3.9, therefore to improve scalability the peer identity is
Periodic Inquiry duration - 3.84s cached in the discovery log. Since not all peers answer SDP
Discovery log expiry - 10 min requests, especially those that don’t support Connection
On-demand Inquiry durationl 12.8 s 6.45s Diversity, we pre-filter peers based on thetérss of device
SDP retries - 3 3.4 |P adaptation
Page timeout 5.12s 4s We decided to use a simple subset RAN to do IP
Page Scan period 1.28s 0.64s adaptation. PAN (Personal Area Network) [3] is one of the
Link Supervision Timeout 20s 5s standardised networking profiles of BlueTooth, designed
Connection idle timeout i 10 s specifically for creating ad-hoc networks of devices or
Transmit Watchdog timeout . 500 ms connecting to dedicated access points.
The subset of PAN we use BNEP (BlueTooth Network
3.3 Peer IP Identity Encapsulation Protocol), which is a direct encapsulation of
Inquiry and passive discovery only return tBdAddrof Ethernet frames over a BlueTooth L2CAP sockigt 8.5.
peers and theitlass of deviceit-field, and do not contain any The IP address configured at each end of the link is the

other data that could be used to identify the peer. Therefore,node Global IP address [11], so there is no need for dynamic

the discovery manager needs to query individually each|P configuration. The BlueTooth Manager also sets up a host

BdAddr found for its peer IP identitgéction 2.3.2 IP route and a ARP table entry for each BNEP connection, so
This is done usingSDP (Service Discovery Protocol). that packets are properly routed.

SDP associates metadata to each BlueTooth socket, enablin :

discovery of their functionality and attributes [2]. The SDP 85 Connection Management

server on each device maintains a list of SDP service records, Whe;n t?ﬁ B?on_lrjecttrl]on Manager t reque(:jsts fg I|nk't
and any peer can query those records with a simple protocolConnec lon, the Blue footh manager creates and configures it.

. o . it first connects to the peer using Pagisgdgtion 3.3, then
We simply added an addltlona! SbP attrlbyte o Fhe Sbp creates a BNEP connection using the standard BNEP API,
record of the BNEP sockets¢ction 3.4 This attribute

: finally configuring IP and the route. The BlueTooth Manager
contains the P |der.1t|ty of the dEVI(BE()t.IOH 232 _ maps the peer connections to the various BlueTooth interfaces
Each time the discovery manager finds a new BdAddr, it ayajlable and attempts to find the best BlueTooth interface for
creates a BlueTooth connection to this peer and fetches theach one. It enforces the 7 slaves and 1 master limitation [2],
SDP attribute containing the IP identifig(3.2. and has basic master/slave switch support [2].

There is no facility in BlueTooth to detect idle links, so we
use Netfilter and optional KeepAlive packets to monitor IP
traffic. Netfilter [10] is the standard packet monitoring facility
Connection Mgr. of the Linux kernel and allows the BlueTooth Manager to

count incoming and outgoing packets on the BNEP
Discovery Mgr.

connection. After 10s without seeing any activity between
fig. 3.5 connection and puts the peer back in demand mtzdee(1).

Application

Application

TCP/IP stack

IP routing BlueTooth Mgr.

| BNEP || spp

two peers, the BlueTooth Manager closes the associated

BlueTooth To detect final loss of connectivity, we use the underlying
| BlueTooth stack (L2CAP, HC)) | Adaptation BlueTooth facility : theLink Supervision Timeoulictates the
‘MAC COHneCt/OﬂSH Paging H Inquiry ‘ Layer time a BlueTooth link remains alive without an answer from

the peer [2]. We set it to 5s (the smallest value larger than an ~ While performing an Inquiry the BlueTooth interface of a
Inquiry, to avoid false positives). When the Link Supervision node can't be used for anything else for its whole duration
Timeout expires, the BNEP channel is automatically (such as servicing existing connections or accepting new
destroyed, the Connection Manager gets notified of it andincoming connections). If a peer tries to connect to it
usually triggers P-Handoff [12]. (Paging), it will fail. If two nodes perform Inquiry at the same
We also implemented the blocked link evesdtion 5. time, they won't discover each other. We see those failures
fairly often in the discovery process (periodic Inquiry + SDP).

3.6 Ad-Hoc Name Resolver) When using periodic Inquiry, it usually takes minutes to
The BlueTooth name resolver module interfaces to both discover new peers and expire thetable 2. The Inquiry

the Connection Manager and the discovery mandger.9. consumes significantly more power than other BlueTooth

If periodic Inquiry is active, the Connection Manager modes. Another issue is that, once connected, the node that is
already knows about all BlueTooth peers, and the namethe slave usually loses its ability to perform Inquiry, so can't
resolver only needs to query the Connection Manager cachekeep track of its reachable peers until it disconnects.

If periodic Inquiry is not active, the cache is empty. Inthe The cause of this is both the nature of Frequency Hopping,
case of DNS names, the name resolver will return “not found” which requires peer Synchronisationy and design choices. In
to avoid impacting the performance of regular DNS queries. BlueTooth, the node can synchronise to a peer only when this
The resolver still tries to resolve BlueTooth link local names, peer goes in |nquiry Scan mode, and to preserve throughput
because those can be resolved Only on the BlueTooth link. this happen ihfrequehﬂy_ The node doihg |hquiry also has to

The first form of link local name is composed with the transmit in every possible transmission slot [2].
name of the peer and thiet suffix, such amame.btAfter the Beyond our current setting of periodic Inquiriale 1),
cache lookup, the resolver can trigger an complete Inquiry there is not much that can be done to fix Inquiry, because it is
(via the discovery manager - including associated SDP g core feature of the BlueTooth specificaticedtion 3.2
requests) and wait for the result. The only workaround is to use Co-Link to bypass entirely the

The second form of link local name is composed with the Inquiry processdection 6.4
BdAddr of the peer and thdodaddrsuffix. After the cache
lookup, the resolver can trigger a SDP request on this BdAddr
(via the discovery manager).

4.2 Issues with Paging
If a node tries to connect (Paging) to a node that does
Inquiry, it will fail (section 4.1 Similarly, if two nodes Page
3.7 Co-Link support each other at the same time, they both will fail. Therefore, we
The Co-Link configuration [13] data for BlueTooth only had to make the Co-Link process over BlueTooth explicitly
contains the BdAddr (BlueTooth MAC address) of the peer. asymmetric : only the initiator attempts to do a SDP query.
We can not add BlueTooth clock offset, because itis relative we also had stability problems with the hardware

to the adapter local clock. The XML fragment looks like : (|ockups)_ When doihg passive discovery, we have to wait
<BT BdAddr="BD:AD:D8:01:23:45"/> untiI. the in_coming .connection is accepted before performing
Paging. With Co-Link, we also needed a 20ms delay between
When Co-Link activation of BlueTooth is requested, the the activation of the BlueTooth interface and Paging.
BlueTooth manager switches on the best BlueTooth interface
extracts the BdAddr from the XML, and passes it to the
discovery manager. The discovery manager then directly
issues an SDP request on this BdAddr to verify its
reachability and get its IP identity. Once the identity is known,

‘4.3 Power saving modes

Many proposals in the PAN working groups make use of
BlueTooth power saving moded4rk mode) to improve
scalability or enable scatternets.

the Connection Manager can reroute traffic to this peer. The Connection Manager only establishes link connection
as needed and close them down when unused, so it doesn’t
4 BlueTooth issues and improvements need scatternet support and it is already saving power. One

Our implementation uncovered some issues with the SCe€nario is to useark mode to improve the discovery
current BlueTooth implementation and specification that Process, by keeping track of discovered peers : the node
would likely apply to other peer to peer applicatiose¢tion would automatically connect to all discovered peers, put them
6). We also present a few simple techniques that would makein Park mode, and periodically poll them.

BlueTooth more friendly for such peer to peer applications. Using park mode forces the use of a networking model
The BlueTooth specification was designed to be mostly and introduces a significant complexity : we would have to
master-slave [2], and by using it in peer to peer mode, we Manage a mesh of peer-to-peer connections. Between each
seems to be pushing some of its limits. The peer to peer usag@air of nodes, one must be master and the other slave. Some
model increases concurrency, two nodes are more likely to do"odes may be parked by multiple masters, and some nodes

incompatible activities at the same time. might be both master and slave (with respect to different
peers). The master also will need to periodically unpark each

4.1 Issues with Inquiry slave to verify if it is still reachable.
The single most problematic aspect of BlueTooth is the The performance of Park mode is not much better than our
slow, exclusive and expensive Inquiry procedure. current solution (using Paging). To wake up a peer, the device

has to wait for the park beacon [2], and this is roughly in the mechanism foblocked link eventhat doesn't close the link,
same order of time as the Page Scan period. similar to our implementation over IrDA [11].

Finally, park mode does not allow us to eliminate the need 52 RSSI| measurements

for periodic Inquiry. Only Inquiry allows to discovemew A standard way to monitor link quality is through RSSI

nodes coming into range. As we still need periodic Inquiry to measurements (signal strength). Hhecked link eventould

happen, the advantage of using Park mode is marginal, and "Be generated when the RSSI goes below a specific threshold.

believe that' the (':om'p'lexny and management overhead 0fThe BlueTooth hardware offers an API to read the last RSSI
such setup is not justified for our usage mosetijon 2.1

measured on each connection [2].

4.4 QoS implementation (Link monitoring) RSSI values depend on the hardware characteristics.
The QoS latency variation constraint can be helpful for Therefore, the RSSI threshold need to be calibrated for each

triggering handoffs gection 5.3 Unfortunately, current specific hardware, which is highly unpractical.

BlueTooth implementations don’t support this feature. RSS! is mostly affected by distance, but not by random

4.5 Paging probes (Expiry) interference. If a strong interferer blocks communication, it

. won't affect RSSI, but the link may be totally blocked.
The Connection Manager needs a way to keep track of ,
peers it has discovered, and to expire themation 2.3.1 The API doesn't offer any way to know when the RSSI

o . . . measurement was last updated, so the RSSI reading may not
Currently, this is implemented via the periodic Inquiry. SO .
. . correspond to the present situation. When communication
We don't want to use any of the Power Saving mode due to K anal i . h . |
the complexity and lack of benefitgettion 4.3 breaks, no sighat 1S received, S0 t N RSSI IS NO lonhger
. i ' updated, while the last RSSI reading might be still strong.
Another solution is to usélaging probes[15]. Every

BlueTooth node has a known Paging Scan behavior (typicallybe The RSSI is not carried in each received packet, it has to

a 11ms window every 1.28s). Once the initial discovery of a explicitly and separately prqbed at regular intervals. This
adds some I/O overhead and time delay.

peer is done, the node could remember its peer’s Paging Scan)
parameters. Then, it only needs to send a Page at the time it | "€ BlueTooth RSSI mechanism may be used to detect

knows the peer is doing Page Scan to verify that the peer isblocked links in some conditions, but we feel that it's not
still reachable (and timeout or disconnect immediately). dependable enough to cover all real world cases.

If the number of peers is relatively limited, this technique 5.3 QoS latency variation limit
would be much more efficient than periodic Inquiry or Park Our preferred way to implement tHglocked link event
mode. Unfortunately, due to the timing accuracy needed, thiswould be through the BlueTooth QoS mechanism. BlueTooth
can only be implemented in the BlueTooth hardware module. QoS allows to set a latency variation limit in the link layer :

5 The Blocked Link Event (handoff) this generates an event for packets which can't be properly

_ _ 3 _ transmitted within this time constraint [2].
The blocked link events used to detect failing link Delays in transmission are mostly due to retransmissions,
(section 2.3.% and is therefore the main performance factor

- ! . ' which are caused by excessive range or interference. When
for handoff [12]. We describe various ways to implement this ¢ |ink is blocked, packets would be retransmitted for a long
event and their limitations.

time, and therefore an event would be eventually generated.
5.1 Link Supervision Timeout Unfortunately, current implementations don’t support this
The Link Supervision Timeoyg] is the standard way to ~ QOS featuregection 4.4, so we could not experiment with it
detect link failures : it specifies the length of time before the and determine its proper setting.
BlueTooth hardware clcl)s'e inactive connections. It can be Sel5 4 Transmit Watchdog
to very short values (minimum 0.625 ms). .) : . .
) ; . The solution we have finally implemented is a Transmit
H_owevgr, a shorFer timeout increases the.probabmty of Watchdog in the BlueTooth protocol stack.
spurious disconnections, for example if there is a temporary
interferer or if the peers goes momentarily out of range. To
maximise usage of the BlueTooth link, it is necessary to

Each time some packets are successfully sent, the
BlueTooth hardware send dumber Of Completed Packets
efficiently detect these disconnections and recoverfromthem.HCI e_vent [2]. The delay between thg time the packet was

submitted to the hardware and this event is a good

When the Link Supervision Timeoutexpires, the gnnroximation of the actual transmission delay, and can be
corresponding BlueTooth connection is closed, and therefore ;o to generate tiéocked link event

recovery requires the rediscovery of the peer and the
reconnection to it. With our current setup, the peer discovery
may exceed a minutégble 2. We could trigger an Inquiry at
that point, but it would still take over 6 s and waste a lot of
resources (power and bandwidtkection 4.1

The high cost of recovery prevents us to use a shiok
Supervision Timeoutnd this is the reason why its default
setting is 20 s [2]. To have efficient recovery, we need a

To avoid the overhead of monitoring all transmitted
packets andNumber Of Completed Packe®svents, the
Transmit Watchdog need to be implemented in the lower layer
of the BlueTooth stackséction 6.).

This mechanism has some flaws. It can't distinguish
transmit delays due to a blocked link or normal BlueTooth
operation (heavy loaded link, Power Saving, Inquiry...). This

is why we would prefer a solution implemented in the MAC The main issue is that each peer has to do periodic Inquiry,
itself (section 5.3. For example, to test this mechanism we which is slow ¢able 2, consumes power and results in a
just had to set the link in Power Saving Hold mode [2]. significant number of connection failureg¢tion 4.1
Fortunately for us, the hardware used was able to transmit and Table 2: Connection Diversity typical times

Inquire in parallel, so Inquiry didn't trigger the watchdog.

, . Action Typical time
The Transmit Watchdog is set to 500 mahle 1), to .
balance performance and spurious events. Recovery i Page (no failure) 150 ms - 700 ms
triggered by the absence blocked link eventi.e. if no event SDP request (excluding Page) <40ms
has been received for more than 500 ms). BNEP + IP setup (excluding Page ~70 ms
- TCP connection, transparent mode 250 ms - 850 ms
6 Usage models and findings TCP connection, explicit mode ~85s (1 peer)

The cur.rent !mplementatlon of Connecyon Diversity over TCP connection, Co-Link on I'DA| = 25
BlueTooth is quite flexible and enables various usage models . — .
However, those also expose some usability issues of Peer discovery (periodic Inquiry) 10s-140s
BlueTooth, where some design features of the BlueTooth| Handoff to 802.11 (blocked link) 700 ms
protocol impact the user experience of any BlueTooth peer to| Recovery from 802.11 (unblocked 900 ms
peer application.

6.3 Explicit usage model

6.1 Implementation details The typical usage model for most BlueTooth applications
Connection Diversity has been implemented on Linux [8]. is to have discovery and connection explicitly triggered. Our

The hardware used is 3Com USB BlueTooth dongles (CSRcurrent implementation allows to reproduce this usage model

chipset, BlueTooth 1.1 compliant, 100m range). The with unmodified TCP/IP applications.

BlueTooth Linux stack is BlueZ 2.3 [9], with its standard SDP To enable this, the user must specify in the application

and BNEP support. We tested various standard Linux only BlueTooth link local nameséction 3.$and can not use
applications ; web browsing, mp3 streaming, telnet, ftp... yeqular IP addresses or DNS names. Those names force on-
Both the discovery and identity process are implementeddemand name resolution, therefore periodic Inquiry doesn't
in a standalone daemon. The IP adaptation is the BNEP kerneheed to be run by the discovery module.
module of BlueZ. The BlueTooth manager is implemented in The ink local name specified is resolved by the BlueTooth
amodule of the Connection Manager daemon. The BlueToothyd-hoc resolver. As periodic Inquiry is disabled, it triggers a
resolver is a NSS library [11]. full Inquiry and waits until the discovery module has queried
We implemented the Transmit Watchdog in the low level all the discovered peers via SDP. The name resolution process
of BlueZ. Atimer is activated for each ACL transmission and takes a minimum of 7stgble 1) and increases with the
canceled when th&lumber Of Completed Packetsent is number of discovered peers (and this time also depends on the
received. When the timer fires, it generates a pseudo-HClsuccess or failures of the SDP queries).

event to user space applications. The BlueTooth destination must also learn the identity of
6.2 Transparent usage model the initiator of the connection, to set up IP properly. When the

Connection Diversity aims for full transparency : the user initiator does its SDP query on the destination, the destination

and the application should not be aware of the BlueTooth link. Esei :Ee Ips_s;wet.:ilsiot\r/]ery T_efhanlsmz(lon 3.3to query
In this usage model, we want to support any IP application ack the [~ identity ot the |r_1| |a_or. o
over BlueTooth without explicit user setup. This also allows ~ When the name resolution is done, the application starts

the Policy Manager to decide itself if it should use BlueTooth Sending data to the destination. The demand mechanism of
or an alternate link for each TCP connection. the Connection Manager triggers the establishment of the

This usage model is very intuitive. The user just need to BINEP connection, similar to the previous usage model.
start his favorite TCP/IP application and specify the DNS The main advantage of this usage model is that there is no
name or IP address of the peer, or use a wildcard (for exampleP€riodic Inquiry, so power consumption is lower and
any.b). The Connection Manager automatically handle all the Connection setup is more reliable. Unfortunately the whole
low level details for the user (connection, handoff...). setup is so slow that it is noticeable to most ustable 2. In

To achieve this, the BlueTooth discovery module must be additior! t.h.e re_striction to only use Iopal quk names prevent
set to do periodic Inquiry and collect identity of reachable compatibility with the rest of Connection Diversity.
peers. When the Connection Manager detects an applicatio5.4 Co-Link usage model
that wants to communicate this peer, it automatically ope of the main issues with BlueTooth is the need to
establishes the associated BlueTooth connecsiection 3.5. perform Inquiry 6ection 4.). By using Co-Link, we can use
Name resolution is instantaneous, because all peera link offering a better discovery process to enable BlueTooth
identities are cachedéction 3.3. The establishment of the and bypass Inquiry entirely [13].
link is fairly fast (table 2, because the MAC address is The two alternatives that we currently support are IrDA
already known (therefore mostly equal to the Paging time). and 802.11. Using 802.11 is problematic because it needs to

be preconfigured (ESSID and mode setting). On the other
hand, IrDA is a good discovery link [6].

IrDA discovery is relatively low power, efficient and fast.

Using Co-Link can workaround the slow and expensive
Inquiry process needed to discover new peers. The
implementation of a transmit watchdog allows fast and

The default setup on IrDA is to have periodic discovery every predictable handoff, as well as fast and reliable recovery from
3s [11]. The full connection setup (including TCP/IP) over €rroneous handoffs.

IrDA is less than 1s [12].

Based on this experience, we make suggestions of

The usage model is transparent, identical to our initial improvements to the BlueTooth implementations to aid peer

usage modelsection 6.2 with the restriction that the IrDA

to peer applications, such as adding QoS support, Paging

ports must be aligned. The user can specify an IP addressProbes and using Co-Link.

DNS name, link local name or wildcard suchaag.irda

After the initial setup over IrDA, the application start to
communicate immediately. In parallel, Co-Link does the

8 Acknowledgements
Thanks to Max Krasnyansky, Marcel Holtmann and

HTTP query, enables the BlueTooth port, and does a SDPStePhen Crane for the BlueZ hacking opportunities and
query to the peer. After those steps are completed, thelntegrating my patches, and thanks to Steven Singer for his

connection may be migrated to BlueTooth using P-Hando
This is a typical run using a SIR link (115 kb/s) :

detailed explanations of CSR firmware features.
Thanks to Casey Carter for the infrastructure of the

Connection Manager, and Venky Krishnan and Tajana

time event => action

23:19:33.678 packet on demand channel => connect on IrDA
23:19:34.375 connected on IrDA => forward packets on IrDA
23:19:34.378 packets forwarded => Start Co-Link query
23:19:34.521 Co-Linkreply => connect on BlueTooth
23:19:35.287 connected on BlueTooth, P-Handoff done

(1]
[2]
Another scenario is to use BlueTooth to activate and

configure a 802.11 link, in this case the usage model is similar(3]
to the two previous ones, and with similar restrictions. 4]
4

6.5 P-Handoff usage

P-Handoff is fully functional over BlueTooth and |[5]
transparent to the user. When a BlueTooth connection is
blocked, its TCP connections are automatically migrated to
an alternate link layer, if the BlueTooth link layer recovers [6]
TCP connection may be migrated back (based on policy).

The implementation of thelocked link evenpermits fast
handoff. A typical handoff to 802.11 takes around 700 ms
(table 2, which is the sum of the watchdog timeout (500 ms) [7]
and the 802.11 connection setup time (200 ms) [12].

In case the link unblocks (absence of watchdog event), the[8]
recovery time is around 900 ms, and recovery is very reliable.
While recovery is happening, traffic still flows on the alternate [9]
link, so further optimisation is not really needed.

P-Handoff also automatically migrates TCP connections [10]
from an alternate link to BlueTooth, when either the peer is

discovered over BlueTooth or the alternate link is blocked. [11]

7 Conclusion

The Connection Diversity framework is flexible enoughto [12]
accommodate the BlueTooth technology. Various modules
need to be added to the framework, to handle the Inquiry
process, SDP queries and BNEP connections. The techniquel 3]
we implemented and our configuration of BlueTooth is
mostly generic and should apply to other applications.

The current implementation of Connection Diversity can (14]
make full use of BlueTooth and offers several useful usage
models for peer to peer TCP/IP networking. The
implementation has been optimised to give good performance[15]
and ease of use, and is only limited by BlueTooth itself.

Simunic for their picky review of this paper.

9 References

Anders Edlund and aMC-Link Rev PA2, 15.10.97.

Bluetooth SIG.Specification of the Bluetooth System
v1.0b. http://www.bluetooth.org.

Bluetooth SIG. Bluetooth Network Encapsulation
Protocol (BNEP) Specificatiornttp://bluetooth.org.

IEEE. IEEE 802.11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications.

Patrick J. Megowan, David W. Suvak & Charles D.
Knutson. IrDA Infrared Communications: An
Overview http://www.irda.org.

Ryan Woodings, Derek Joos, Trevor Clifton, Charles D.
Knutson. Rapid Heterogeneous Connection
Establishment: Accelerating Bluetooth Inquiry Using
IrDA. Proc. of WCNC 2002.

USB-IF. Universal Serial Bus specification v1.1
http://www.usb.org.

Linus Torvalds and others.
http://www.kernel.org

Maksim Krasnyanskiy and alLinux BlueZ Howto
http://bluez.sourceforge.net.

Rusty RussellLinux 2.4 Packet Filtering HOWTO
http://netfilter.samba.org/unreliable-guides/

Jean Tourrilhes, Luiz Magalhaes & Casey Cartan-
Demand TCP : Transparent peer to peer TCP/IP over
IrDA. Proc. of ICC 2002.

Jean Tourrilhes & Casey CarteP-Handoff: A
framework for fine grained ad-hoc vertical handoff
Proc. of PIMRC 2002.

Jean Tourrilhes & Venky Krishnan.Co-Link
configuration : Using wireless diversity for more than
just connectivityProc. of WCNC 2003.

Casey Carter, Robin Kravets & Jean Tourrilhes.
Contact Networking: A Localised Mobility System
Proc. of MohiSys 2003.

Jean TourrilhesBlueTooth roaming proposahttp://
www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/

linux-2.4.0.tar.bz2.

	1 Introduction
	2 Connection Diversity
	2.1 Usage model and assumptions
	2.2 Generic architecture and features
	2.3 Link Adaptation Layer requirements
	2.3.1 Discovery Management
	2.3.2 Peer IP Identity
	2.3.3 IP adaptation
	2.3.4 Connection Management
	2.3.5 Ad-Hoc Name Resolver
	2.3.6 Co-Link support

	3 The BlueTooth Adaptation Layer
	3.1 The BlueTooth link layer
	3.2 Discovery Management
	3.3 Peer IP Identity
	3.4 IP adaptation
	3.5 Connection Management
	3.6 Ad-Hoc Name Resolver
	3.7 Co-Link support

	4 BlueTooth issues and improvements
	4.1 Issues with Inquiry
	4.2 Issues with Paging
	4.3 Power saving modes
	4.4 QoS implementation (Link monitoring)
	4.5 Paging probes (Expiry)

	5 The Blocked Link Event (handoff)
	5.1 Link Supervision Timeout
	5.2 RSSI measurements
	5.3 QoS latency variation limit
	5.4 Transmit Watchdog

	6 Usage models and findings
	6.1 Implementation details
	6.2 Transparent usage model
	6.3 Explicit usage model
	6.4 Co-Link usage model
	6.5 P-Handoff usage

	7 Conclusion
	8 Acknowledgements
	9 References
	On-Demand BlueTooth�:
	Experience integrating BlueTooth in Connection Diversity

