
ch
to
all

f
em.

ces
se
ry
nd

e
e
ss
es,

er
ff
d,
r
on

te
ce
le

s,
he
ut

se
1 Introduction
The BlueTooth wireless technology started as a humble

cable replacement [1], but has quickly evolved into the Swiss
Army Knife of wireless technologies, allowing all kinds of
appliances to be wirelessly connected together.

The vast majority of network applications are written for
TCP/IP. Using those TCP/IP applications between two
BlueTooth peers requires various manual steps : the user need
to explicitly establish the link prior to starting the application,
and close it afterwards. If the link breaks, the user need to
select another link and restart the application.

It is our belief that users should focus on the task they
want done, not on managing various link layers. Our
Connection Diversity framework implements various
techniques to make the link layer transparent to the user, and
offers the potential to make the usage of peer to peer TCP/IP
applications over BlueTooth much more user friendly.

2 Connection Diversity
Connection Diversity explores how mobile devices can

interact using the wide variety of wireless technologies
existing today, with a special emphasis on peer-to-peer and
ease of use [11].

2.1 Usage model and assumptions
Connection Diversity offers a simple usage model for peer

to peer applications, where a user, through his mobile device,
interacts locally with other physically nearby users or
appliances in the environment (peer to peer). Links layers are
automatically managed and invisible to the user.

A principal underlying assumption of Connection
Diversity is wireless diversity : the availability of multiple
wireless technologies with different characteristics in ea
information device. All applications are TCP/IP based
achieve link layer independence, and we want to enable
existing popular applications without modifying them.

2.2 Generic architecture and features
The Connection Diversity framework is composed o

various components inserted in a standard operating syst
It currently fully supports IrDA, BlueTooth and 802.11.

The Connection Manager (fig. 2.2) is the central
controller, a daemon managing the various wireless interfa
of the system and mapping application connections to tho
[14]. The Connection Manager monitors both peer discove
and outgoing connection requests to implement On-Dema
TCP, P-Handoff and Co-Link.

On-demand TCPenables peer to peer TCP/IP on a wid
variety of wireless links [11]. TCP/IP connections ar
automatically established and configured over the wirele
link when applications need them, between two peer devic
without the need for infrastructure, and then closed down.

P-Handoffenables transparent migration of peer to pe
TCP connections between wireless links [12]. P-Hando
doesn’t require any infrastructure and is fine graine
allowing flexible use of available links. A Policy Manage
tries to optimally use those links for each connection based
range, speed and cost.

Co-Link enables the use of any wireless link to activa
and configure another wireless link [13]. This allows a devi
to use the most power efficient links for discovery and enab
higher performance links only on-demand.

2.3 Link Adaptation Layer requirements
Different wireless technologies present different API

different operating characteristics and topologies [12]. T
core and methods of Connection Diversity are generic b
require aLink Adaptation Layer(LAL) for each wireless
technology we want to manage [11]. We enumerate tho
requirements here.

On-Demand BlueTooth :
Experience integrating BlueTooth in Connection Diversity

Jean Tourrilhes
jt@hpl.hp.com

Hewlett Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94304, USA.

Using TCP/IP applications between two peers over BlueTooth usually require many manual steps
from the user. Our Connection Diversity framework offers mechanisms to automate all these steps. The
implementations of Connection Diversity over BlueTooth enables TCP/IP applications to transparently
use BlueTooth and smoothly handoff to other link layers. We explain how Connection Diversity interface
with BlueTooth and various aspects of the implementation, including the management of connections,
discovery, Co-Link and name resolution. We then suggest a few modification of BlueTooth to improve its
suitability for peer to peer applications. We also discuss how to optimise BlueTooth handoffs. This
implementation allowed us to test various peer to peer usages models, we report their user friendliness,
their performance characteristics and how the design of BlueTooth impacts user experience.

fig. 2.3 :
Discovery

adapt.
IP adapt.

Link layer

query

Application Application

TCP/IP

Routing

IP adapt.

Link layer

config
events

traffic

query

Policy
Manager

Connection
Manager

DNS

Ad-hoc
resolver

Connection
Diversity

Co-Link
server
1

r

r

e
e

n

e

d
e
s

nt.

k
s
to

d

d.

er
A
ts

of
e
et

e
y

nd
;

is
2.3.1 Discovery Management
The Connection Manager depends on the knowledge of

which peers can be reached via each link layer, so it can
decide what potential connections can be routed on each link
layer.

The LAL needs to providepeer discovery. Wireless
Discovery is not trivial [13], however most link layers offer
built-in facilities for discovery, and we want to reuse those for
efficiency [11]. The LAL needs to know within a reasonable
time when a new peer is discovered. It also managespeer
expiry: it must keep track of discovered peers and remove
them from the discovery log when they are no longer
reachable (again, within reasonable time).

2.3.2 Peer IP Identity
Most often, the link layer discovery only reveals the link

layer identity of peers discovered (MAC address). However,
both the Connection Manager and the Ad-Hoc resolver need
theIP identityof those peers, consisting of a Globally Unique
IP address and a DNS name [11]. Therefore the LAL needs to
convert peer link identities to peer IP identities.

2.3.3 IP adaptation
Applications are TCP/IP based, so the LAL needs to

transport IP traffic over the link layer. This requires the proper
encapsulation of IP packets in link layer packets, and the
proper setup of IP configuration and routes.

2.3.4 Connection Management
Many link layers are connection oriented and don’t offer

automatic connection management, leaving it up to the user to
connect devices together. The Connection Diversity
framework automates this connection management [11].

To enable TCP/IP traffic, the LAL needs to be able to
create link connectionsto the desired peers, and toclose
those, based on its routing decisions. It also needs to detect
and closeidle link connections.

Most wireless links are unreliable, so the LAL must
monitor those connections for link failures. It needs to know
when the link detects likely failure conditions (blockedlink),
and also when the link layerdestroysthe link connection
because of this failure condition. We usually prefer to have
those two events separate [12], because it’s more efficient to
monitor the likely failure condition while the link is still
connected (even with errors) and because disconnecting and
reconnecting the link layer incur a large overhead.

2.3.5 Ad-Hoc Name Resolver
The name resolver translates both the DNS names and link

local names of peers into their Global IP address [11], without
using a global infrastructure. Aresolver moduleis needed for
each link layer, with correspondinglink local names.

2.3.6 Co-Link support
Co-Link uses HTTP requests and is mostly link laye

independent [13]. Co-Link needs to query and represent alink
layer configuration, and must be able to activate the link laye
and apply efficiently such configuration.

3 The BlueTooth Adaptation Layer
To better understand the integration of BlueTooth into th

Connection Diversity framework, we did a complet
implementation of its Link Adaptation Layer. We also
implemented additional features in the BlueTooth Adaptatio
Layer to enable additional usage models (section 6).

BlueTooth is quite different from link layers already
supported, so this implementation helps validating th
original design of the Connection Diversity framework.

3.1 The BlueTooth link layer
BlueTooth is a wireless communication standard initiate

in 1997 by Ericsson and Intel [1] and now managed by th
BlueTooth SIG (Special Interest Group) [2]. BlueTooth wa
influenced by the IrDA [5] and USB [7], and offers the
functionality of a wireless USB and serial cable replaceme

Like IrDA, and as opposed to 802.11, the BlueTooth lin
layer is connection oriented, so two BlueTooth device
explicitly need to connect to each other before being able
exchange any data [2].

3.2 Discovery Management
BlueTooth offers a link layer discovery process calle

Inquiry. The Inquiry procedure returns the list ofBdAddr
(BlueTooth MAC addresses) of devices that can be reache

Most devices periodically check if they need to answ
Inquiries (Inquiry Scan mode - every 1.28s for 11ms).
device performs an Inquiry by repetitively sending reques
and collecting answers from its neighbours (fig. 3.2).

The default Inquiry duration is 12s. Due to the design
Inquiry Scan mode (delayed answer [2]), the minimum tim
to get any answer from Inquiry is 4s, and the probability to g
an answer from a peer within 4s is often below 50%.

We have implemented adiscovery managerthat can use
Inquiry to build a discovery log (fig. 3.5). It performs a
periodic Inquiry for 4s every 60s (table 1). This aims to
tradeoff the latency of discovery, the length of time th
interface is unusable (while doing Inquiry) and the Inquir
overhead (both in throughput loss and power -section 4.1).

Once a peer is discovered, we need to keep track of it a
manage its expiry. This is done through the periodic Inquiry
if a peer is not discovered for 10 successive Inquiries, it
expired and removed from the discovery log (table 1).

Inquiry
Scan fig. 3.2 : Discovery and Identity Query

Inquiry

Inquiry
Scan

Page SDP

Page
Scan Passive

discovery
Inquiry
Scan

Page

Page
Scan

SDP

Passive
discovery

Peer 2

Peer 3

Peer 1
2

ing
ct

elf

o
ern
er
tor

ge
to

d
3

ve

ng
s
DP
ion

e
ed
r

of

he
ic

ost
so

k
s it.

PI,
er
ces
for
2],

e
P
y
o
P
n
ted

g

Inquiry in the discovery manager can be turned off, and
can also be triggered on-demand by the name resolver. The
additional “auto” mode allows tracking of discovered peers :
Inquiry is off by default and enabled only when there is a valid
peer in the discovery log.

The discovery manager can also performpassive
discovery, i.e., to discover peers without doing any Inquiry.
Peers performing Inquiry don’t reveal anything about their
identity. However, whenever a peer connects to us, we can be
notified of it and get its BdAddr. The discovery manager
monitors this event and adds the BdAddr of every incoming
connection in the discovery log (if it doesn’t already exist).

The discovery manager also monitors Inquiries triggered
by other applications on the device and collects their results.

3.3 Peer IP Identity
Inquiry and passive discovery only return theBdAddrof

peers and theirclass of devicebit-field, and do not contain any
other data that could be used to identify the peer. Therefore,
the discovery manager needs to query individually each
BdAddr found for its peer IP identity (section 2.3.2).

This is done usingSDP (Service Discovery Protocol).
SDP associates metadata to each BlueTooth socket, enabling
discovery of their functionality and attributes [2]. The SDP
server on each device maintains a list of SDP service records,
and any peer can query those records with a simple protocol.

We simply added an additional SDP attribute to the SDP
record of the BNEP socket (section 3.4). This attribute
contains the IP identity of the device (section 2.3.2).

Each time the discovery manager finds a new BdAddr, it
creates a BlueTooth connection to this peer and fetches the
SDP attribute containing the IP identity (fig. 3.2).

The BlueTooth connection is based on aPaging
handshake, and requires the BdAddr of the peer. After Pag
completes, the higher level of BlueTooth stack can conne
(SDP in our case). The time to perform the SDP request its
is usually small with respect to Page time (table 2).

Paging is similar to Inquiry and synchronises the tw
BlueTooth devices on the same Frequency Hopping patt
[2]. The target device periodically checks if it needs to answ
Pages (Page Scan mode - for 11ms every 1.28s). The initia
sends Page requests until it gets an answer or timeout.

To minimise connection latency, we reduced the Pa
timeout from 5s to 4s and the Page Scan period from 1.28s
0.6s (table 1). The peer itself may be doing an Inquiry an
unable to answer us, so we will retry the SDP query up to
times (once after each successful Inquiry or passi
discovery) before marking the discovery log entry invalid.

Performing a SDP query on each peer is time consumi
(fig. 3.2), therefore to improve scalability the peer identity i
cached in the discovery log. Since not all peers answer S
requests, especially those that don’t support Connect
Diversity, we pre-filter peers based on theirclass of device.

3.4 IP adaptation
We decided to use a simple subset ofPAN to do IP

adaptation. PAN (Personal Area Network) [3] is one of th
standardised networking profiles of BlueTooth, design
specifically for creating ad-hoc networks of devices o
connecting to dedicated access points.

The subset of PAN we use isBNEP(BlueTooth Network
Encapsulation Protocol), which is a direct encapsulation
Ethernet frames over a BlueTooth L2CAP socket (fig. 3.5).

The IP address configured at each end of the link is t
node Global IP address [11], so there is no need for dynam
IP configuration. The BlueTooth Manager also sets up a h
IP route and a ARP table entry for each BNEP connection,
that packets are properly routed.

3.5 Connection Management
When the Connection Manager requests a lin

connection, the BlueTooth manager creates and configure
It first connects to the peer using Paging (section 3.3), then
creates a BNEP connection using the standard BNEP A
finally configuring IP and the route. The BlueTooth Manag
maps the peer connections to the various BlueTooth interfa
available and attempts to find the best BlueTooth interface
each one. It enforces the 7 slaves and 1 master limitation [
and has basic master/slave switch support [2].

There is no facility in BlueTooth to detect idle links, so w
use Netfilter and optional KeepAlive packets to monitor I
traffic. Netfilter [10] is the standard packet monitoring facilit
of the Linux kernel and allows the BlueTooth Manager t
count incoming and outgoing packets on the BNE
connection. After 10s without seeing any activity betwee
two peers, the BlueTooth Manager closes the associa
connection and puts the peer back in demand mode (table 1).

To detect final loss of connectivity, we use the underlyin
BlueTooth facility : theLink Supervision Timeoutdictates the
time a BlueTooth link remains alive without an answer from

Table 1: BlueTooth parameter settings

Parameter standard new value

Periodic Inquiry period - ~60 s

Periodic Inquiry duration - 3.84 s

Discovery log expiry - 10 min

On-demand Inquiry duration 12.8 s 6.4 s

SDP retries - 3

Page timeout 5.12 s 4 s

Page Scan period 1.28 s 0.64 s

Link Supervision Timeout 20 s 5 s

Connection idle timeout - 10 s

Transmit Watchdog timeout - 500 ms

ApplicationApplication

Paging

BNEP SDP

BlueTooth stack (L2CAP, HCI)

MAC connections

Connection Mgr.

Discovery Mgr.

fig. 3.5

BlueTooth Mgr.

BlueTooth

Inquiry

BT resolver
TCP/IP stack

IP routing

Ethernet

Adaptation
Layer
3

n
ew
it

es
).

o

th
at is
’t

g,
. In
his
put
to

t is

e

es

e
ly
.

e
ait
g
en

of

on
sn’t
ne

de
m

el
to
ach
me

des
nt
ch

ur
ice
the peer [2]. We set it to 5s (the smallest value larger than an
Inquiry, to avoid false positives). When the Link Supervision
Timeout expires, the BNEP channel is automatically
destroyed, the Connection Manager gets notified of it and
usually triggers P-Handoff [12].

We also implemented the blocked link event (section 5).

3.6 Ad-Hoc Name Resolver
The BlueTooth name resolver module interfaces to both

the Connection Manager and the discovery manager (fig. 3.5).

If periodic Inquiry is active, the Connection Manager
already knows about all BlueTooth peers, and the name
resolver only needs to query the Connection Manager cache.

If periodic Inquiry is not active, the cache is empty. In the
case of DNS names, the name resolver will return “not found”
to avoid impacting the performance of regular DNS queries.
The resolver still tries to resolve BlueTooth link local names,
because those can be resolved only on the BlueTooth link.

The first form of link local name is composed with the
name of the peer and the.bt suffix, such asname.bt. After the
cache lookup, the resolver can trigger an complete Inquiry
(via the discovery manager - including associated SDP
requests) and wait for the result.

The second form of link local name is composed with the
BdAddr of the peer and the.bdaddrsuffix. After the cache
lookup, the resolver can trigger a SDP request on this BdAddr
(via the discovery manager).

3.7 Co-Link support
The Co-Link configuration [13] data for BlueTooth only

contains the BdAddr (BlueTooth MAC address) of the peer.
We can not add BlueTooth clock offset, because it is relative
to the adapter local clock. The XML fragment looks like :

<BT BdAddr="BD:AD:D8:01:23:45"/>

When Co-Link activation of BlueTooth is requested, the
BlueTooth manager switches on the best BlueTooth interface,
extracts the BdAddr from the XML, and passes it to the
discovery manager. The discovery manager then directly
issues an SDP request on this BdAddr to verify its
reachability and get its IP identity. Once the identity is known,
the Connection Manager can reroute traffic to this peer.

4 BlueTooth issues and improvements
Our implementation uncovered some issues with the

current BlueTooth implementation and specification that
would likely apply to other peer to peer applications (section
6). We also present a few simple techniques that would make
BlueTooth more friendly for such peer to peer applications.

The BlueTooth specification was designed to be mostly
master-slave [2], and by using it in peer to peer mode, we
seems to be pushing some of its limits. The peer to peer usage
model increases concurrency, two nodes are more likely to do
incompatible activities at the same time.

4.1 Issues with Inquiry
The single most problematic aspect of BlueTooth is the

slow, exclusive and expensive Inquiry procedure.

While performing an Inquiry the BlueTooth interface of a
node can’t be used for anything else for its whole duratio
(such as servicing existing connections or accepting n
incoming connections). If a peer tries to connect to
(Paging), it will fail. If two nodes perform Inquiry at the same
time, they won’t discover each other. We see those failur
fairly often in the discovery process (periodic Inquiry + SDP

When using periodic Inquiry, it usually takes minutes t
discover new peers and expire them (table 2). The Inquiry
consumes significantly more power than other BlueToo
modes. Another issue is that, once connected, the node th
the slave usually loses its ability to perform Inquiry, so can
keep track of its reachable peers until it disconnects.

The cause of this is both the nature of Frequency Hoppin
which requires peer synchronisation, and design choices
BlueTooth, the node can synchronise to a peer only when t
peer goes in Inquiry Scan mode, and to preserve through
this happen infrequently. The node doing Inquiry also has
transmit in every possible transmission slot [2].

Beyond our current setting of periodic Inquiry (table 1),
there is not much that can be done to fix Inquiry, because i
a core feature of the BlueTooth specification (section 3.2).
The only workaround is to use Co-Link to bypass entirely th
Inquiry process (section 6.4).

4.2 Issues with Paging
If a node tries to connect (Paging) to a node that do

Inquiry, it will fail (section 4.1). Similarly, if two nodes Page
each other at the same time, they both will fail. Therefore, w
had to make the Co-Link process over BlueTooth explicit
asymmetric : only the initiator attempts to do a SDP query

We also had stability problems with the hardwar
(lockups). When doing passive discovery, we have to w
until the incoming connection is accepted before performin
Paging. With Co-Link, we also needed a 20ms delay betwe
the activation of the BlueTooth interface and Paging.

4.3 Power saving modes
Many proposals in the PAN working groups make use

BlueTooth power saving modes (Park mode) to improve
scalability or enable scatternets.

The Connection Manager only establishes link connecti
as needed and close them down when unused, so it doe
need scatternet support and it is already saving power. O
scenario is to usePark mode to improve the discovery
process, by keeping track of discovered peers : the no
would automatically connect to all discovered peers, put the
in Park mode, and periodically poll them.

Using park mode forces the use of a networking mod
and introduces a significant complexity : we would have
manage a mesh of peer-to-peer connections. Between e
pair of nodes, one must be master and the other slave. So
nodes may be parked by multiple masters, and some no
might be both master and slave (with respect to differe
peers). The master also will need to periodically unpark ea
slave to verify if it is still reachable.

The performance of Park mode is not much better than o
current solution (using Paging). To wake up a peer, the dev
4

I

old.
SI

ics.
ch

m
it

I
not

ion
er

to
is

ect
t

th
:
rly

ns,
hen
g
d.

is

it

the

as
od
be

d

er

h
th
is
has to wait for the park beacon [2], and this is roughly in the
same order of time as the Page Scan period.

Finally, park mode does not allow us to eliminate the need
for periodic Inquiry. Only Inquiry allows to discovernew
nodes coming into range. As we still need periodic Inquiry to
happen, the advantage of using Park mode is marginal, and we
believe that the complexity and management overhead of
such setup is not justified for our usage model (section 2.1).

4.4 QoS implementation (Link monitoring)
The QoS latency variation constraint can be helpful for

triggering handoffs (section 5.3). Unfortunately, current
BlueTooth implementations don’t support this feature.

4.5 Paging probes (Expiry)
The Connection Manager needs a way to keep track of

peers it has discovered, and to expire them (section 2.3.1).

Currently, this is implemented via the periodic Inquiry.
We don’t want to use any of the Power Saving mode due to
the complexity and lack of benefits (section 4.3).

Another solution is to usePaging probes[15]. Every
BlueTooth node has a known Paging Scan behavior (typically
a 11ms window every 1.28s). Once the initial discovery of a
peer is done, the node could remember its peer’s Paging Scan
parameters. Then, it only needs to send a Page at the time it
knows the peer is doing Page Scan to verify that the peer is
still reachable (and timeout or disconnect immediately).

If the number of peers is relatively limited, this technique
would be much more efficient than periodic Inquiry or Park
mode. Unfortunately, due to the timing accuracy needed, this
can only be implemented in the BlueTooth hardware module.

5 The Blocked Link Event (handoff)
The blocked link eventis used to detect failing link

(section 2.3.4), and is therefore the main performance factor
for handoff [12]. We describe various ways to implement this
event and their limitations.

5.1 Link Supervision Timeout
The Link Supervision Timeout[2] is the standard way to

detect link failures : it specifies the length of time before the
BlueTooth hardware close inactive connections. It can be set
to very short values (minimum 0.625 ms).

However, a shorter timeout increases the probability of
spurious disconnections, for example if there is a temporary
interferer or if the peers goes momentarily out of range. To
maximise usage of the BlueTooth link, it is necessary to
efficiently detect these disconnections and recover from them.

When the Link Supervision Timeoutexpires, the
corresponding BlueTooth connection is closed, and therefore
recovery requires the rediscovery of the peer and the
reconnection to it. With our current setup, the peer discovery
may exceed a minute (table 2). We could trigger an Inquiry at
that point, but it would still take over 6 s and waste a lot of
resources (power and bandwidth -section 4.1).

The high cost of recovery prevents us to use a shortLink
Supervision Timeout, and this is the reason why its default
setting is 20 s [2]. To have efficient recovery, we need a

mechanism forblocked link eventthat doesn’t close the link,
similar to our implementation over IrDA [11].

5.2 RSSI measurements
A standard way to monitor link quality is through RSS

measurements (signal strength). Theblocked link eventcould
be generated when the RSSI goes below a specific thresh
The BlueTooth hardware offers an API to read the last RS
measured on each connection [2].

RSSI values depend on the hardware characterist
Therefore, the RSSI threshold need to be calibrated for ea
specific hardware, which is highly unpractical.

RSSI is mostly affected by distance, but not by rando
interference. If a strong interferer blocks communication,
won’t affect RSSI, but the link may be totally blocked.

The API doesn’t offer any way to know when the RSS
measurement was last updated, so the RSSI reading may
correspond to the present situation. When communicat
breaks, no signal is received, so the RSSI is no long
updated, while the last RSSI reading might be still strong.

The RSSI is not carried in each received packet, it has
be explicitly and separately probed at regular intervals. Th
adds some I/O overhead and time delay.

The BlueTooth RSSI mechanism may be used to det
blocked links in some conditions, but we feel that it’s no
dependable enough to cover all real world cases.

5.3 QoS latency variation limit
Our preferred way to implement theblocked link event

would be through the BlueTooth QoS mechanism. BlueToo
QoS allows to set a latency variation limit in the link layer
this generates an event for packets which can’t be prope
transmitted within this time constraint [2].

Delays in transmission are mostly due to retransmissio
which are caused by excessive range or interference. W
the link is blocked, packets would be retransmitted for a lon
time, and therefore an event would be eventually generate

Unfortunately, current implementations don’t support th
QoS feature (section 4.4), so we could not experiment with it
and determine its proper setting.

5.4 Transmit Watchdog
The solution we have finally implemented is a Transm

Watchdog in the BlueTooth protocol stack.

Each time some packets are successfully sent,
BlueTooth hardware send aNumber Of Completed Packets
HCI event [2]. The delay between the time the packet w
submitted to the hardware and this event is a go
approximation of the actual transmission delay, and can
used to generate theblocked link event.

To avoid the overhead of monitoring all transmitte
packets andNumber Of Completed Packetsevents, the
Transmit Watchdog need to be implemented in the lower lay
of the BlueTooth stack (section 6.1).

This mechanism has some flaws. It can’t distinguis
transmit delays due to a blocked link or normal BlueToo
operation (heavy loaded link, Power Saving, Inquiry...). Th
5

iry,
a

s
ur
del

n

on-
n’t

th
a
d
ess

the

of
e

ion

rts
of

he

no
d
le

nt

to

th

A
s to
is why we would prefer a solution implemented in the MAC
itself (section 5.3). For example, to test this mechanism we
just had to set the link in Power Saving Hold mode [2].
Fortunately for us, the hardware used was able to transmit and
Inquire in parallel, so Inquiry didn’t trigger the watchdog.

The Transmit Watchdog is set to 500 ms (table 1), to
balance performance and spurious events. Recovery is
triggered by the absence ofblocked link event(i.e. if no event
has been received for more than 500 ms).

6 Usage models and findings
The current implementation of Connection Diversity over

BlueTooth is quite flexible and enables various usage models.
However, those also expose some usability issues of
BlueTooth, where some design features of the BlueTooth
protocol impact the user experience of any BlueTooth peer to
peer application.

6.1 Implementation details
Connection Diversity has been implemented on Linux [8].

The hardware used is 3Com USB BlueTooth dongles (CSR
chipset, BlueTooth 1.1 compliant, 100m range). The
BlueTooth Linux stack is BlueZ 2.3 [9], with its standard SDP
and BNEP support. We tested various standard Linux
applications ; web browsing, mp3 streaming, telnet, ftp...

Both the discovery and identity process are implemented
in a standalone daemon. The IP adaptation is the BNEP kernel
module of BlueZ. The BlueTooth manager is implemented in
a module of the Connection Manager daemon. The BlueTooth
resolver is a NSS library [11].

We implemented the Transmit Watchdog in the low level
of BlueZ. A timer is activated for each ACL transmission and
canceled when theNumber Of Completed Packetsevent is
received. When the timer fires, it generates a pseudo-HCI
event to user space applications.

6.2 Transparent usage model
Connection Diversity aims for full transparency : the user

and the application should not be aware of the BlueTooth link.
In this usage model, we want to support any IP application
over BlueTooth without explicit user setup. This also allows
the Policy Manager to decide itself if it should use BlueTooth
or an alternate link for each TCP connection.

This usage model is very intuitive. The user just need to
start his favorite TCP/IP application and specify the DNS
name or IP address of the peer, or use a wildcard (for example
any.bt). The Connection Manager automatically handle all the
low level details for the user (connection, handoff...).

To achieve this, the BlueTooth discovery module must be
set to do periodic Inquiry and collect identity of reachable
peers. When the Connection Manager detects an application
that wants to communicate this peer, it automatically
establishes the associated BlueTooth connection (section 3.5).

Name resolution is instantaneous, because all peer
identities are cached (section 3.3). The establishment of the
link is fairly fast (table 2), because the MAC address is
already known (therefore mostly equal to the Paging time).

The main issue is that each peer has to do periodic Inqu
which is slow (table 2), consumes power and results in
significant number of connection failures (section 4.1).

6.3 Explicit usage model
The typical usage model for most BlueTooth application

is to have discovery and connection explicitly triggered. O
current implementation allows to reproduce this usage mo
with unmodified TCP/IP applications.

To enable this, the user must specify in the applicatio
only BlueTooth link local names (section 3.6) and can not use
regular IP addresses or DNS names. Those names force
demand name resolution, therefore periodic Inquiry does
need to be run by the discovery module.

The link local name specified is resolved by the BlueToo
ad-hoc resolver. As periodic Inquiry is disabled, it triggers
full Inquiry and waits until the discovery module has querie
all the discovered peers via SDP. The name resolution proc
takes a minimum of 7s (table 1) and increases with the
number of discovered peers (and this time also depends on
success or failures of the SDP queries).

The BlueTooth destination must also learn the identity
the initiator of the connection, to set up IP properly. When th
initiator does its SDP query on the destination, the destinat
uses the passive discovery mechanism (section 3.2) to query
back the IP identity of the initiator.

When the name resolution is done, the application sta
sending data to the destination. The demand mechanism
the Connection Manager triggers the establishment of t
BNEP connection, similar to the previous usage model.

The main advantage of this usage model is that there is
periodic Inquiry, so power consumption is lower an
connection setup is more reliable. Unfortunately the who
setup is so slow that it is noticeable to most users (table 2). In
addition the restriction to only use local link names preve
compatibility with the rest of Connection Diversity.

6.4 Co-Link usage model
One of the main issues with BlueTooth is the need

perform Inquiry (section 4.1). By using Co-Link, we can use
a link offering a better discovery process to enable BlueToo
and bypass Inquiry entirely [13].

The two alternatives that we currently support are IrD
and 802.11. Using 802.11 is problematic because it need

Table 2: Connection Diversity typical times

Action Typical time

Page (no failure) 150 ms - 700 ms

SDP request (excluding Page) < 40 ms

BNEP + IP setup (excluding Page) ~ 70 ms

TCP connection, transparent mode 250 ms - 850 ms

TCP connection, explicit mode ~ 8.5 s (1 peer)

TCP connection, Co-Link on IrDA ~ 2s

Peer discovery (periodic Inquiry) 10 s - 140 s

Handoff to 802.11 (blocked link) 700 ms

Recovery from 802.11 (unblocked) 900 ms
6

e
he
d
m

of
er
ing

d
nd
his

e
na

s
.

.

.

g

.

r

s.
be preconfigured (ESSID and mode setting). On the other
hand, IrDA is a good discovery link [6].

IrDA discovery is relatively low power, efficient and fast.
The default setup on IrDA is to have periodic discovery every
3s [11]. The full connection setup (including TCP/IP) over
IrDA is less than 1s [12].

The usage model is transparent, identical to our initial
usage model (section 6.2) with the restriction that the IrDA
ports must be aligned. The user can specify an IP address,
DNS name, link local name or wildcard such asany.irda.

After the initial setup over IrDA, the application start to
communicate immediately. In parallel, Co-Link does the
HTTP query, enables the BlueTooth port, and does a SDP
query to the peer. After those steps are completed, the
connection may be migrated to BlueTooth using P-Handoff.

This is a typical run using a SIR link (115 kb/s) :

time event => action
23:19:33.678 packet on demand channel => connect on IrDA
23:19:34.375 connected on IrDA => forward packets on IrDA
23:19:34.378 packets forwarded => Start Co-Link query
23:19:34.521 Co-Link reply => connect on BlueTooth
23:19:35.287 connected on BlueTooth, P-Handoff done

Another scenario is to use BlueTooth to activate and
configure a 802.11 link, in this case the usage model is similar
to the two previous ones, and with similar restrictions.

6.5 P-Handoff usage
P-Handoff is fully functional over BlueTooth and

transparent to the user. When a BlueTooth connection is
blocked, its TCP connections are automatically migrated to
an alternate link layer, if the BlueTooth link layer recovers
TCP connection may be migrated back (based on policy).

The implementation of theblocked link eventpermits fast
handoff. A typical handoff to 802.11 takes around 700 ms
(table 2), which is the sum of the watchdog timeout (500 ms)
and the 802.11 connection setup time (200 ms) [12].

In case the link unblocks (absence of watchdog event), the
recovery time is around 900 ms, and recovery is very reliable.
While recovery is happening, traffic still flows on the alternate
link, so further optimisation is not really needed.

P-Handoff also automatically migrates TCP connections
from an alternate link to BlueTooth, when either the peer is
discovered over BlueTooth or the alternate link is blocked.

7 Conclusion
The Connection Diversity framework is flexible enough to

accommodate the BlueTooth technology. Various modules
need to be added to the framework, to handle the Inquiry
process, SDP queries and BNEP connections. The techniques
we implemented and our configuration of BlueTooth is
mostly generic and should apply to other applications.

The current implementation of Connection Diversity can
make full use of BlueTooth and offers several useful usage
models for peer to peer TCP/IP networking. The
implementation has been optimised to give good performance
and ease of use, and is only limited by BlueTooth itself.

Using Co-Link can workaround the slow and expensiv
Inquiry process needed to discover new peers. T
implementation of a transmit watchdog allows fast an
predictable handoff, as well as fast and reliable recovery fro
erroneous handoffs.

Based on this experience, we make suggestions
improvements to the BlueTooth implementations to aid pe
to peer applications, such as adding QoS support, Pag
Probes and using Co-Link.

8 Acknowledgements
Thanks to Max Krasnyansky, Marcel Holtmann an

Stephen Crane for the BlueZ hacking opportunities a
integrating my patches, and thanks to Steven Singer for
detailed explanations of CSR firmware features.

Thanks to Casey Carter for the infrastructure of th
Connection Manager, and Venky Krishnan and Taja
Simunic for their picky review of this paper.

9 References
[1] Anders Edlund and al.MC-Link. Rev PA2, 15.10.97.

[2] Bluetooth SIG.Specification of the Bluetooth System.
v1.0b. http://www.bluetooth.org.

[3] Bluetooth SIG. Bluetooth Network Encapsulation
Protocol (BNEP) Specification. http://bluetooth.org.

[4] IEEE. IEEE 802.11 : Wireless LAN medium acces
control (MAC) and physical layer (PHY) specifications

[5] Patrick J. Megowan, David W. Suvak & Charles D
Knutson. IrDA Infrared Communications: An
Overview. http://www.irda.org.

[6] Ryan Woodings, Derek Joos, Trevor Clifton, Charles D
Knutson. Rapid Heterogeneous Connection
Establishment: Accelerating Bluetooth Inquiry Usin
IrDA. Proc. of WCNC 2002.

[7] USB-IF. Universal Serial Bus specification v1.1.
http://www.usb.org.

[8] Linus Torvalds and others. linux-2.4.0.tar.bz2
http://www.kernel.org

[9] Maksim Krasnyanskiy and al.Linux BlueZ Howto.
http://bluez.sourceforge.net.

[10] Rusty Russell.Linux 2.4 Packet Filtering HOWTO.
http://netfilter.samba.org/unreliable-guides/

[11] Jean Tourrilhes, Luiz Magalhaes & Casey Carter.On-
Demand TCP : Transparent peer to peer TCP/IP ove
IrDA. Proc. of ICC 2002.

[12] Jean Tourrilhes & Casey Carter.P-Handoff : A
framework for fine grained ad-hoc vertical handoff.
Proc. of PIMRC 2002.

[13] Jean Tourrilhes & Venky Krishnan.Co-Link
configuration : Using wireless diversity for more than
just connectivity. Proc. of WCNC 2003.

[14] Casey Carter, Robin Kravets & Jean Tourrilhe
Contact Networking: A Localised Mobility System.
Proc. of MobiSys 2003.

[15] Jean Tourrilhes.BlueTooth roaming proposal. http://
www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/
7

	1 Introduction
	2 Connection Diversity
	2.1 Usage model and assumptions
	2.2 Generic architecture and features
	2.3 Link Adaptation Layer requirements
	2.3.1 Discovery Management
	2.3.2 Peer IP Identity
	2.3.3 IP adaptation
	2.3.4 Connection Management
	2.3.5 Ad-Hoc Name Resolver
	2.3.6 Co-Link support

	3 The BlueTooth Adaptation Layer
	3.1 The BlueTooth link layer
	3.2 Discovery Management
	3.3 Peer IP Identity
	3.4 IP adaptation
	3.5 Connection Management
	3.6 Ad-Hoc Name Resolver
	3.7 Co-Link support

	4 BlueTooth issues and improvements
	4.1 Issues with Inquiry
	4.2 Issues with Paging
	4.3 Power saving modes
	4.4 QoS implementation (Link monitoring)
	4.5 Paging probes (Expiry)

	5 The Blocked Link Event (handoff)
	5.1 Link Supervision Timeout
	5.2 RSSI measurements
	5.3 QoS latency variation limit
	5.4 Transmit Watchdog

	6 Usage models and findings
	6.1 Implementation details
	6.2 Transparent usage model
	6.3 Explicit usage model
	6.4 Co-Link usage model
	6.5 P-Handoff usage

	7 Conclusion
	8 Acknowledgements
	9 References
	On-Demand BlueTooth�:
	Experience integrating BlueTooth in Connection Diversity

