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Abstract

We propose a new fault tolerance metric for XOR-based
erasure codes: the minimal erasures list (MEL). A mini-
mal erasure is a set of erasures that leads to irrecoverable
data loss and in which every erasure is necessary and suf-
ficient for this to be so. The MEL is the enumeration of
all minimal erasures. An XOR-based erasure code has an
irregular structure that may permit it to tolerate faults at
and beyond its Hamming distance. The MEL completely de-
scribes the fault tolerance of an XOR-based erasure code
at and beyond its Hamming distance; it is therefore a use-
ful metric for comparing the fault tolerance of such codes.
We also propose an algorithm that efficiently determines the
MEL of an erasure code. This algorithm uses the structure
of the erasure code to efficiently determine the MEL. We
show that, in practice, the number of minimal erasures for
a given code is much less than the total number of sets of
erasures that lead to data loss: in our empirical results for
one corpus of codes, there were over 80 times fewer mini-
mal erasures. We use the proposed algorithm to identify the
most fault tolerant XOR-based erasure code for all possible
systematic erasure codes with up to seven data symbols and
up to seven parity symbols.

1. Introduction

Storage systems must be fault tolerant. Traditionally, tol-
erating a single disk failure via simple replication or RAID 5
has provided sufficient reliability. In storage arrays, ever
increasing disk capacity leads to ever increasing recovery
times which leads to sector or second disk failures being en-
countered during recovery [2]. Cluster-based and grid stor-
age systems are built with commodity components and rely
on network-attached components; the former have lower re-
liability and the latter lower availability than the compo-
nents traditionally employed in storage arrays. The trends
in storage arrays, cluster-based storage, and grid storage de-
mand that storage schemes with higher degrees of fault tol-
erance be developed and be well understood.

Erasure codes are the means by which storage systems
are typically made fault tolerant (i.e., tolerant of disk fail-
ures). There are many types of erasure codes, such as repli-
cation, RAID 5, and Reed-Solomon codes, each of which
trades off between computation (encode & decode) costs,
fault tolerance, and space efficiency. Reed-Solomon codes
provide the best tradeoff between fault tolerance and space
efficiency, but are computationally the most demanding
type of erasure code. Erasure codes that rely solely on
XOR operations to generate redundancy are computationally
cheap. However, such codes offer a non-uniform tradeoff
between space efficiency and fault tolerance. In practice,
the exact degree of fault tolerance such codes provide in
storage systems is not yet well understood, although there
is much recent activity towards this end [14, 13, 6, 4, 5, 7].

To completely understand the fault tolerance of an XOR-
based erasure code, we must enumerate every set of erasures
that leads to data loss. This is necessary because of the ir-
regular structure of such codes. For example, if the smallest
erasure pattern—set of erasures that leads to data loss—
for a given code is of size 3, then the Hamming distance of
the code is 4. However, the code may tolerate many era-
sures of size 4. The enumeration of all erasure patterns thus
completely describes the fault tolerance of an XOR-based
erasure code. Unfortunately, there are exponentially many
such erasure patterns.

In this paper, we propose enumerating every minimal
erasure to characterize the fault tolerance of a code. A min-
imal erasure is a set of erasures that leads to irrecoverable
data loss and in which every erasure is necessary and suf-
ficient for this to be so. We call the enumeration of min-
imal erasures, the minimal erasures list (MEL). The mini-
mal erasures list contains all of the fault tolerance informa-
tion as the list of erasure patterns, but can be much smaller
in size. There are also an exponential number of minimal
erasures, but our results suggest that, in practice, for most
codes, there are many fewer minimal erasures than erasure
patterns.

We introduce the Minimal Erasures (ME) Algorithm for
efficiently determining the MEL of an XOR-based erasure
code. The efficiency of the ME Algorithm is premised
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on there being few minimal erasures relative to the overall
number of erasure patterns, and on using the structure of the
XOR-based erasure code to identify the minimal erasures.
We have used our implementation of the ME Algorithm
to analyze many XOR-based codes. Our empirical results
demonstrate that there can be almost two orders of mag-
nitude fewer minimal erasures than erasure patterns (and
likely a bigger reduction as k and m increase). We use the
MEL to compare different small XOR-based erasure codes of
similar size and report the most fault tolerant codes. These
results demonstrate both the efficacy and utility of the ME
Algorithm for determining the fault tolerance of XOR-based
erasure codes.

The outline of the paper is as follows. In §2, we introduce
terminology and review some related work. We present
the ME Algorithm and prove its correctness in §3. In §4,
we describe our implementation of the ME Algorithm, our
method of validating the correctness of our implementation,
empirical results that demonstrate the efficiency of the ME
Algorithm, and identify the most fault tolerant systematic
XOR-based erasure codes with up to seven data symbols and
up to seven parity symbols. We discuss the ME Algorithm
in relation to specific other recent work in §5 and then con-
clude in §6.

2. Background

Table 1 lists some symbols and acronyms used in this pa-
per. An XOR-based erasure code consists of n symbols, k
of which are data symbols, and m of which are parity sym-
bols (redundant symbols). We refer to redundant symbols as
parity symbols because our focus is on XOR-based erasure
codes. We only consider systematic erasure codes: codes
that store the data and parity symbols. In storage systems,
data symbols are called “stripes.” The use of systematic
erasure codes in storage systems is generally considered a
necessity to ensure good common case performance.

A set of erasures f is a set of erased symbols; it may
contain either data symbols or parity symbols and it may or
may not be possible to recover these symbols. An erasure
pattern f̂ is a set of erasures that result in at least one data
symbol being irrecoverable (i.e., impossible to recover via
any decoding method). The erasures list EL for an erasure
code is the list of all its erasure patterns. A minimal erasure
f̃ is an erasure pattern in which every erasure is necessary
for it to be an erasure pattern; if any erasure is removed
from f̃ , then it is no longer an erasure pattern. The mini-
mal erasures list MEL for an erasure code is the list of all
its minimal erasures. A more compact representation of the
EL and MEL are respectively the erasures vector EV, and the
minimal erasures vector MEV. An erasures vector is a vec-
tor of length m in which the ith element is the total number
of erasure patterns of size i in the EL; the minimal erasures

Symbol Definition
n Total number of symbols in the erasure code.
k Number of data symbols in the code.
m Number of parity symbols in the code.
f A set of erasures.
f̂ An erasure pattern.
f̃ A minimal erasure.
EL The erasures list: a list of f̂ .
MEL The minimal erasures list: a list of f̃ .
EV The erasures vector for the EL.
MEV The minimal erasures vector for the MEL.

Table 1. Terminology

vector is defined similarly with regard to the MEL. The EV

and MEV vectors only need m entries because all erasure
sets greater than m in length are necessarily erasure pat-
terns.

2.1. Erasure codes

Plank’s tutorial on erasure codes is a great introduction
to erasure codes in general, and their applicability in storage
systems in particular [12]. A Reed-Solomon erasure code
uses m redundant symbols to tolerates all erasures of size
m or less; it is therefore perfectly space efficient. Unfortu-
nately, Reed-Solomon encode and decode require k opera-
tions to generate each redundant symbol, or to decode any
data symbols using redundant symbols. The operations re-
quired by Reed-Solomon codes are based on arithmetic op-
erations in Galois Fields (GF), and such operations are com-
putationally more demanding than simple XOR operations.
Cauchy Reed-Solomon codes implement Galois Field op-
erations only using XOR operations, but require many XOR

operations per Galois Field operation. XOR-based erasure
codes are appealing because of the computational efficiency
of encode and decode.

Two well known sub-classes of XOR-based erasure codes
are low-density parity-check (LDPC) codes and array codes.
LDPC codes trade imperfect space efficiency for improved
performance. Luby et al. [8] identified methods of con-
structing LDPC codes, and efficiently encoding and decod-
ing them; such codes were originally identified by Gal-
lager [3]. Plank has briefly surveyed LDPC code construc-
tions for their applicability to storage systems [14].

An LDPC code can be represented as a Tanner graph:
a bipartite graph with k constraint nodes on one side and
k + m data and parity symbols on the other. The efficiency
of LDPC codes hinges on bounding the degree of the nodes
in the Tanner graph and consequently on iterative decod-
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ing. The efficacy of iterative decoding is significantly af-
fected by stopping sets: erasure patterns that prevent itera-
tive decoding from recovering symbols (e.g., see the work
of Schwartz and Vardy [17]). We note that every minimal
erasure is a stopping set but that the converse is not true.
Stopping sets are defined with regard to iterative decoding;
minimal erasures are defined with regard to decodability,
i.e., without regard to any particular decoding method.

Array codes are specialized erasure codes for storage ar-
rays (e.g., RAID 5 is an array code). Two well known dou-
ble disk fault tolerant array codes are EVENODD by Blaum
et al. [1] and Row-Diagonal Parity (RDP) by Corbett et al.
[2]. Hafner has generalized the concept of XOR-based array
codes to HoVer codes: codes with parity symbols in both
Horizontal and Vertical dimensions of the array [5]. He has
also proposed Weaver codes, an XOR-based erasure code
construction that chains parity symbols among a subset of
servers in a redundancy group [4]. The ME Algorithm can
be applied to any XOR-based erasure code, for example, to
LDPC codes, Weaver codes, or array codes.

2.2. Evaluating erasure codes

The seminal RAID analysis by Patterson et al. [11] pro-
vides the framework that most storage system reliability
analyses follow: identify an appropriate Markov model,
plug in failure and recovery rates, and determine mean time
to data loss (MTTDL). Saito et al. [16] and Rao et al. [15]
both applied such a framework to analyze the reliability of
erasure codes. The former considered Reed-Solomon era-
sure codes and the latter array codes.

Plank et al. analyzed the read overhead of moderate-
sized LDPC codes using Monte Carlo methods [14] and of
small-sized LDPC codes using deterministic methods [13].
Read overhead is a performance measure of a client random
read policy; it measures the number of symbols beyond k
that must be read, on average, to decode all data symbols.
Recent work, done concurrently to our work, by Hafner
and Rao investigates the reliability of XOR-based erasure
codes [7]. The MEL and MEV output by the ME Algorithm
are “threshold” measures of fault tolerance. A reliability
measure requires additional assumptions about component
failure and recovery rates. We discuss the ME Algorithm in
the context of both of the above bodies of work in §5.

3. The Minimal Erasures (ME) Algorithm

The ME Algorithm uses the structure of an erasure code
to efficiently generate the MEL. We rely on two representa-
tions of the XOR-based erasure code: the Generator matrix
and the systematic Tanner graph. The Generator matrix of
a (k ,m)-code is a k×(k +m) matrix in GF(2). Addition of
rows and columns in the Generator matrix is done modulo 2

(i.e., the XOR operation). The Generator matrix consists of
a k×k identity matrix (the data submatrix) with m columns
of dimension k×1 appended (the parity submatrix). Each of
the k columns in the data submatrix corresponds to a stored
data symbol. Each of the m columns in the parity subma-
trix corresponds to a stored parity symbol. Parity column p
has a one in row i if, and only if, data symbol si is XOR’ed
to determine p. For example, if p = s2 ⊕ s4, then parity
column p has a one in rows 2 and 4, and a zero in all other
rows. We refer to the erasure pattern induced by the ones
in the ith row of the Generator matrix as the ith base era-
sure f̃i . (We show in §3.3 that a base erasure is a minimal
erasure.) The structure of an erasure code is also captured
by its Tanner graph T . Since we exclusively consider sys-
tematic erasure codes—erasure codes that store the k data
symbols and m parity symbols—we use a simplified Tan-
ner graph representation. In the representation we use, we
collapse the k data symbols from the one side into the con-
straint nodes on the other. In doing so, we end up with what
we call a systematic Tanner graph: a bipartite graph that
has k data symbols on one side and m parity symbols on
the other.

At a high level, the ME Algorithm operates as follows.
It begins by identifying the k base erasures (one for each
data symbol) and adding them to the MEL. The ME Al-
gorithm then proceeds, in an iterative fashion. For every
minimal erasure it finds, it generates child erasure patterns.
A minimal erasure has a child erasure pattern for every ad-
jacent data symbol. Adjacency is defined with regard to the
systematic Tanner graph. A data symbol is adjacent to a
minimal erasure if it is connected to a parity symbol in the
minimal erasure. To generate a child erasure pattern, the
base erasure from the Generator matrix that corresponds to
the adjacent data symbol is XOR’ed with the parent minimal
erasure. A child erasure pattern is either a minimal erasure
not yet in the MEL, a minimal erasure already in the MEL, or
an erasure pattern that can be partitioned into minimal era-
sures that are already in the MEL. We refer to the last case
as a composite erasure and discuss it in the next section.
The algorithm recurses upon child erasure patterns until all
minimal erasures in the MEL have no more children that are
minimal erasures (not in the MEL), or have no adjacent data
symbols (i.e., the minimal erasure contains all of the data
symbols from some component of the Tanner graph).

3.1. ME Algorithm Pseudo-code

The pseudo-code for the ME Algorithm is given in Fig-
ure 1. Variables used in the pseudo-code are listed on
lines 100–107. The function me search enumerates the
minimal erasures and stores them in the minimal erasures
data structure M , which it returns. This function has two
phases: in the first phase, the base erasures are enumerated
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100: s, S /∗ Data symbol s; Set of data symbols S . ∗/
101: p, P /∗ Parity symbol p; Set of parity symbols P . ∗/
102: e,E /∗ Edge e is a data/parity pair (e = sp); Set of edges E . ∗/
103: T /∗ Tanner graph. Has structure T .(S , P ,E). ∗/
104: f̃ /∗ A minimal erasure. Has structure f̃ .(S ,P). ∗/
105: M /∗ Minimal erasures data structure: a set of f̃ . ∗/
106: M /∗ Erasure patterns cache: a set of f̂ . ∗/
107: Q /∗ Erasures queue: a FIFO queue of f̂ . ∗/

/∗ Search systematic Tanner graph T for minimal erasures. ∗/
me search(T ) :

200: M ← ∅,M ← ∅, Q ← ∅ /∗ Initialize data structures. ∗/
201: /∗ Generate the k base erasures. ∗/
202: for all (s′ ∈ T .S) do
203: /∗ P ′ contains all parities connected to s′. ∗/
204: P ′ ← {∀p ∈ T .P ,∃e ∈ T .E : e = s′p}
205: f̃ ← ({s′},P ′) /∗ A base erasure. ∗/
206: Q .enqueue(̃f ) /∗ Enqueue f̃ to process its children. ∗/
207: M ← M ∪ {f̃ } /∗ Add f̃ to minimal erasures data structure. ∗/
208: end for
209: /∗ Process children of enqueued erasure patterns. ∗/
210: /∗ Repeat until no more erasure patterns are enqueued. ∗/
211: while (Q .length() > 0) do
212: f̃ ← Q .dequeue() /∗ Get next erasure pattern to process. ∗/
213: (M , M , Q)← me children(T ,M , M ,Q , f̃ )
214: end while
215: return (M )

/∗ Generate children of f̃ and enqueue them in Q . ∗/
me children(T ,M , M ,Q , f̃ )

300: /∗ S ′ contains all data symbols that are adjacent to f̃ . ∗/
301: S ′ ← {∀s ∈ T .S ,∃p ∈ f̃ .P ,∃e ∈ T .E : e = sp} \ f̃ .S
302: for all (s′ ∈ S ′) do
303: f̃ ′.S ← f̃ .S ∪ {s′}
304: /∗ P ′ contains all parities in T .P that are connected to s′. ∗/
305: P ′ ← {∀p ∈ T .P ,∃e ∈ T .E : e = s′p}
306: /∗ P contains all parities in f̃ .P that are connected to s′. ∗/
307: P ← {∀p ∈ f̃ .P ,∃e ∈ T .E : e = s′p}
308: f̃ ′.P ← (̃f .P ∪ P ′) \ P
309: if (̃f ′ ∈ M ) then continue
310: M ← M ∪ {f̃ ′}
311: Q .enqueue(̃f ′)
312: f̃MIN ← l : l ∈ M ,∀r ∈M , |l| ≤ |r|
313: if (|̃f ′| ≥ 2|̃fMIN |) then
314: if (is composite(T \ {f̃ ′})) then continue
315: end if
316: M ← M ∪ {f̃ ′}
317: end for
318: return (M , M ,Q)

Figure 1. ME Algorithm pseudo-code.

(cf. lines 201–208), and in the second phase, child era-
sure patterns are repeatedly enumerated (cf. lines 209–214).
Each base erasure corresponds to one row of the Generator
matrix; it consists of a single data symbol s ′ and the parities
connected to it in the Tanner graph T (cf. line 205). Every
base erasure is enqueued on the erasures queue Q , a FIFO
queue, and inserted into M .

In the second phase of me search, minimal erasures are
dequeued from Q , and then me children generates and pro-
cesses the child erasure patterns. In me children, line 301
determines which data symbols are adjacent to f̃ . There

is a child erasure pattern for every adjacent data symbol
s ′. Child erasure patterns are the XOR of f̃ with f̃s′ , the
base erasure corresponding to data symbol s ′. The pseudo-
code is written in set notation to make the relationship to the
structure of T more apparent. A child is created as follows:
s ′ is added to the parent (cf. line 303); parities connected to
s ′ are added to the parent (cf. line 305); parities connected
to s ′ and to some data symbol in the parent are removed
(cf. lines 307 and 308). Regarding P , there exists at least
one such parity to remove, otherwise the data symbol s ′

would not be adjacent to f̃ (cf. line 301). If the child era-
sure pattern has previously been generated by me children,
i.e., it is already in the erasure patterns cache M , then f̃ ′

is not processed (cf. line 309). If the child erasure pattern
has not yet been processed, then it is added to M and to
the erasures queue Q (cf. lines 310 and 311 respectively).
Each child erasure pattern that is a minimal erasure is in-
serted into M (cf. line 316). Once all of the children are
processed, me children returns the updated M , M and Q .

Lines 312–315 deal with composite erasures: those child
erasure patterns that can be partitioned into multiple mini-
mal erasures and thus are not added to M . Only child era-
sure patterns at least twice as big as the shortest known min-
imal erasure can possibly be a composite erasure. Line 313
determines the length of the shortest minimal erasure in
M . A child erasure pattern shorter than this length must
be a minimal erasure since it is too small to be a com-
posite erasure. A child erasure pattern twice or more this
length is analyzed to determine if it is a minimal erasure or
a composite erasure. The function is composite called on
line 314 determines if f̃ ′ is a composite erasure or not. It
does so by testing the rank of the matrix that corresponds
to {T \ f̃ ′} ∪ {e ∈ f̃ ′}. It is necessary and sufficient to
remove a single symbol e from f̃ ′ to test for minimality: f̃ ′

is either a minimal erasure, and so removing e yields a ma-
trix of full rank, or a composite erasure, and so removing e
yields a matrix not of full rank. (Note that removing erasure
e from f̃ ′ makes the symbol corresponding to e available for
decoding.)

Once the ME Algorithm completes, the minimal erasures
data structure M is trivially transformed into both the MEL

and the MEV.

3.2. Example execution

Consider the XOR-based erasure code with k = 4 and
m = 4 defined by the following Generator matrix:

C =

s1 s2 s3 s4 p1 p2 p3 p4

1 0 0 0 1 0 0 1
0 1 0 0 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1




f̃s1
f̃s2
f̃s3
f̃s4
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Figure 2. Systematic Tanner graph for code C

The columns in C are labeled as either a data column or a
parity column, and the rows are labeled as base erasures.

Figure 2 shows the systematic Tanner graph T for code
C. Table 2 summarizes the execution of the ME Algorithm
for the code defined by C. The first column lists the erasure
pattern f̂ being processed by me children, the second col-
umn lists the children of f̂ (possibly over multiple rows),
and the third column indicates (via a checkmark) if f̂ is
inserted into M and enqueued in Q . The first four rows
illustrate the base erasures f̃s1 , f̃s2 , f̃s3 , f̃s4 processed by
me search. The remaining rows illustrate the children gen-
erated by dequeuing erasure patterns from Q and indicates
which children are inserted into M . If a child is already in
M , then it is not inserted again. Consider the first erasure
pattern dequeued from Q : (s1, p1, p4). From the systematic
Tanner graph, it is easy to see that the adjacent data sym-
bols are s2 and s4. The final steps of the ME Algorithm
are elided because children generated by the remaining era-
sure patterns in Q are already in M . The MEL output by
the ME Algorithm is {(s1, p1, p4), (s3, p2, p3), (s4, p3, p4),
(s1, s2, s3), (s1, s2, p2, p3), (s1, s2, p2, p3), (s2, s3, p1, p4),
(s2, s4, p1, p2), (s2, s3, p1, p4), (s3, s4, p2, p4)}. Any f̃
longer than m = 4 is elided from the MEL. The MEV output
by the ME Algorithm is (0, 0, 4, 5).

3.3. Correctness

In this section, we prove that the MEL of an XOR-based
erasure code completely describes its fault tolerance (i.e.,
contains all of the information that the EL does), and that the
ME Algorithm generates a complete MEL and so is correct.

We first prove that the MEL is a complete description of
an XOR-based erasure code’s fault tolerance.

Theorem 3.1 If the fault tolerance of an XOR-based era-
sure code can be obtained through the EL, it can also be
obtained through the MEL.

Proof. By definition of minimality, every minimal erasure
is an erasure pattern. Now for each erasure pattern f̂ in EL,
write down all possible minimal erasures. This can be done
by exhaustively removing data and parity symbols from f̂ .

Q .dequeue f̂ M
(s1, p1, p4) ✓

(s2, p1, p2, p3, p4) ✓

(s3, p2, p3) ✓

(s4, p3, p4) ✓

(s1, p1, p4) (s1, s2, p2, p3) ✓

(s1, s4, p1, p3) ✓

(s2, p1, p2, p3, p4) (s1, s2, p2, p3) ✕

(s2, s3, p1, p4) ✓

(s2, s4, p1, p2) ✓

(s3, p2, p3) (s2, s3, p1, p4) ✕

(s3, s4, p2, p4) ✓

(s4, p3, p4) (s1, s4, p1, p3) ✕

(s2, s4, p1, p2) ✕

(s3, s4, p2, p4) ✕

(s1, s2, p2, p3) (s1, s2, s3) ✓

(s1, s2, s4, p2, p4) ✓

. . . . . . . . .

Table 2. Example ME Algorithm execution.

Clearly, from each of these minimal erasures, the original
erasure pattern f̂ can be generated by adding back the re-
spective data and parity symbols that were deleted. Now
take the union of all these minimal erasures. Since this
union is the MEL, and every erasure pattern in the EL can
be generated from some minimal erasure in MEL, the theo-
rem now follows. �

Consider the Generator matrix for the code and some
erasure set f . We refer to the matrix that corresponds to
the Generator matrix with all of the data and parity columns
that correspond to f removed as the recovery matrix. We
refer to a recovery matrix as a defective recovery matrix if
it cannot be used to recover some data symbol. We refer to
the rows in the recovery matrix that correspond to the data
symbols in f —which we refer to via the notation f .S—as
the lost data rows.

Proposition 3.2 A recovery matrix is defective if and only
if its rank is less than k .

Proof. Follows from the definitions of erasure pattern and
defective recovery matrix. �

Lemma 3.3 Every base erasure is a minimal erasure.

Proof. We first argue that a base erasure f̃b is an erasure pat-
tern. By definition, a base erasure precisely corresponds to
a row of the Generator matrix. The recovery matrix induced
by f̃b has rank of k − 1 because it has an all zero row—the
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single lost data row—and an (k − 1)× (k − 1) identity ma-
trix in the data submatrix. Therefore, by Proposition 3.2,
the recovery matrix is defective.

To show that a base erasure is a minimal erasure, we
need to establish that if any of the columns in the Generator
matrix, that are not in the recovery matrix, is added into the
recovery matrix, then the recovery matrix would have rank
k . If the data column sb corresponding to f̃b is added into
the recovery matrix, then the data submatrix would contain
an k × k identity matrix, thus have full rank, and not be
defective. If one of the parity columns corresponding to
some parity symbol p ∈ f̃b .P is added into the recovery
matrix, then a column swap operation can move it into the
data submatrix. Column additions within the data submatrix
can then be performed until an identity matrix of size k × k
is established. �

Lemma 3.4 The addition (XOR) of any subset of the col-
lection of base erasures is an erasure pattern.

Proof. Let {f̃1 , . . . , f̃k} denote the set of base erasures, and
f =

⊕k
i=1 f̃i denote their sum. Consider the recovery ma-

trix induced by f . Each of the lost data rows of the recovery
matrix can be written as a linear combination of all of the
other lost data rows. The lost data rows of the data sub-
matrix are all zeroes and so are linear combinations of one
another. The lost data rows of all the parity columns in the
recovery matrix have even parity. In each lost data row then,
each parity column is either a zero or a one: in either case, it
can be written as a linear combination of the other lost data
rows. If the column is a zero, then the other rows have even
parity, and their sum is zero; if it is a one, then the other
rows have odd parity and their sum is one. Therefore the
rank of the recovery matrix must be less than k and so is
defective; f is an erasure pattern. �

Unfortunately, the above lemma cannot be strengthened
to say that f is a minimal erasure. The XOR of some sets
of base erasures in some codes result in composite erasures
comprised of two or more minimal erasures. However, all
minimal erasures can be generated through the addition of
base erasures. We prove this next.

Theorem 3.5 Every minimal erasure can be obtained by
the addition of some set of base erasures.

Proof. Consider a minimal erasure f̃ . By Proposition 3.2,
the rank of the recovery matrix induced by f̃ is less than
k , and therefore, at least one lost data row in the recovery
matrix is linearly dependent on the other lost data rows, or
all zeroes. Below we strengthen this observation.

Claim 3.1 Every lost data row in the recovery matrix in-
duced by f̃ is linearly dependent on the rest of the lost data
rows, or is all zeroes.

Proof. Suppose there exist lost data rows in the recovery
matrix that are not linearly dependent on the rest of the lost
data rows. Ignore all such rows; the remaining lost data
rows are either linearly dependent on one another or a single
lost data row remains. If a single lost data row remains,
by Lemma 3.3, it is a base erasure (and is all zeroes), a
contradiction to the minimality of f̃ . On the other hand,
let S ′ be the set of data symbols that correspond to the lost
data rows that are linearly dependent on one another. Then,
S ′ ⊂ f̃ .S . Now, by Proposition 3.2, {S ′∪f̃ .P} is an erasure
pattern, a contradiction to the minimality of f̃ . �

Claim 3.2 In any subset of rows corresponding to lost data
symbols in the recovery matrix, if every row is linearly de-
pendent on the rest of the rows, then the respective parity
columns must have even parity.

Proof. Suppose there is a column that has odd parity. A
lost data row with a zero in this column cannot be linearly
dependent on all other lost data rows. �

By Claims 3.1 and 3.2, the parity columns of the recov-
ery matrix induced by f̃ must have even parity. So, by an
argument similar to the proof of Lemma 3.4, f̃ can be writ-
ten as the sum of the base erasures that correspond to the
data symbols in f̃ .S . This proves the theorem. �

3.4. Bounds on |MEL| and |EL|

The bound on the size of the EL is as follows:

|EL| ≤
m∑

i=1

(
k + m

i

)
< 2k+m

We use the fact that all erasure patterns of interest are less
than or equal to m in length to tighten the bound on |EL|.

Let BEL be the base erasures list: the XOR of each set
in the powerset of base erasures, except the null set. It is
thus the union of all minimal erasures and all composite
erasures. The bound on the size of the BEL is as follows:

|BEL| ≤
{∑m

i=1

(
k
i

)
if m < k ,

2k if m ≥ k .

The bound on the size of the MEL is as follows:

|MEL| ≤




min
((

k+m
m

)
,
∑m

i=1

(
k
i

))
if m < k ,

min
((

k+m
�(k+m)/2�

)
, 2k

)
if m ≥ k .

The first term in the minimum follows from the bound on
|EL| and the fact that a minimal erasure of size i precludes
many potential minimal erasures of size i + 1: |MEL| is
thus bound by the largest possible term in the summation
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that bounds |EL|. The second term in the minimum follows
from the bounds on |BEL|.

The difference in the bounds on |EL| and |MEL| suggests
that we can expect many more erasure patterns than mini-
mal erasures. Unfortunately, the bound on |MEL| indicates
that we can still expect the number of minimal erasures to
grow exponentially in k .

Consider the example execution from §3.2. For that
code, the size of the MEL is 9. This is less than the size of
the BEL for the code: 9 < 24 = 16. It is also much less than
the size of the EL for the code: 29. (We used a program de-
scribed in §4.1 to determine the EL for the code.) The value
29 fits the bound for |EL|: 29 <

∑4
i=1

(
8
i

)
= 162.

3.5. Using EV or MEV to compare two codes

The EV and MEV can be used to compare the fault toler-
ance of any two XOR-based erasure codes. An erasure vec-
tor is written as (j1, j2, . . . , jm) and ji indicates the num-
ber of erasure patterns of size i. A minimal erasure vector
is written similarly. Note that the first non-zero entry, ji, in
the MEV and the EV for a code are identical and indicate that
the Hamming distance for the code is i (i.e., that the code
tolerates all erasures of size i − 1).

To compare two erasure vectors, the value in the vector
are compared, from shortest to longest (i.e., from 1 to m).
If the value of the first entry in EV that is distinct from that
in EV′ is greater, then EV < EV′. For example, if EV =
(0, 4, 5) and EV′ = (0, 0, 10), then EV < EV′, because 4 >
0; and, if EV = (0, 4, 5) and EV′ = (0, 4, 4), then EV < EV′,
because 5 > 4. If EV < EV′, then the code corresponding to
EV′ is the more fault tolerant. Minimal erasure vectors can
be compared similarly. For two codes with the same k and
m, the result of comparing the MEV is the same as the result
of comparing the EV. For two codes that differ in k and/or
m, the result of comparing the MEV is only necessarily the
same as the result of comparing the EV if the codes have
different Hamming distances, or if the codes have the same
Hamming distance but different values in the MEV at the
Hamming distance.

4. Evaluation

In this section, we evaluate our implementation of the
ME Algorithm: mela. In §4.1, we describe how we vali-
dated the correctness of the mela implementation. In §4.2,
we use mela to determine the MEV of all XOR-based era-
sure codes with 1 ≤ k ,m ≤ 7. One major result from this
section is that we identify the most fault tolerant XOR-based
erasure codes over these parameters. Another major result
from this section is that, in practice, the average of the ratio
|EL|
|MEL| tends to increase with k and m. The average of this
ratio is over 80 for one corpus of codes we evaluated. This

result supports our claim that it is more efficient to deter-
mine the MEL than the EL (especially as k and m increase).

We used Python 2.4.3 to implement mela and the rest
of our tool suite. Python code is easy to modify and so al-
lows us to quickly prototype modifications and extensions
of the ME Algorithm. The minimal erasures data structure
and cache, M and M respectively, are implemented via m
dictionaries. The kth dictionary only stores erasure patterns
of length k. We store erasure patterns as bitmaps because
they are concise and efficient to compare. Testing for mem-
bership in a dictionary is efficient in Python. Dictionaries
keep track of the number of elements they store and so con-
version from M to the MEV is trivial. The minimal erasures
queue Q is a FIFO queue implemented via a list.

We also implemented a tool, mel2el, that efficiently
transforms a MEL into a EL using set operations. mel2el
must perform O(|EL|) operations and is efficient only in that
it does not perform any matrix rank tests. We use mel2el
to determine the EL and EV for some codes in this section.

We use nauty version 2.2 with gtools to generate
Tanner graphs for mela to evaluate [10, 9]. Specifically,
we use genbg to generate non-isomorphic bipartite graphs
that we translate into systematic Tanner graphs. Isomor-
phic Tanner graphs have similar fault tolerance characteris-
tics and so we only evaluate non-isomorphic Tanner graphs.
We refer to the set of all possible non-isomorphic systematic
Tanner graphs with a common k and m as the (k ,m)-code
corpus. For a given k and m, there are up to 2km possible
systematic XOR-based codes; there are dramatically fewer
codes in the (k ,m)-code corpus because we only include
non-isomorphic Tanner graphs.

All execution times in this section are based on execu-
tion on an HP DL360 computer with a 2.8 GHz Intel Xeon
processor and 4 GB of RAM.

4.1. Validation of implementation

To validate the correctness of the mela implementation
we generate the MEL via “brute force” for some codes. We
implemented a program, ela, that generates the EL for a
given code. Roughly speaking, ela performs a matrix rank
test for every erasure pattern with one erasure, then all era-
sure patterns with two erasures, and so on, up to all era-
sure patterns with m erasures. A matrix rank test indicates
if the erasure pattern is decodable. We developed another
program, el2mel, that filters the EL output by ela to pro-
duce the MEL. The implementation of el2mel is based on
inserting the erasure patterns in the EL into a data structure
that checks for the subset or equal to relationship. If an era-
sure pattern is a superset of an erasure pattern that is already
in the data structure, then it is not inserted. If an erasure pat-
tern is successfully inserted, then all larger erasure patterns
in the data structure are checked to see if they are a superset
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of the inserted erasure pattern; any that are a superset are
removed from the data structure.

We validated the correctness of mela for the (4, 4)-code
corpus; it contains 179 codes. The MEL output by mela
exactly matches the MEL output by ela piped to el2mel.
It took less than one second for mela to complete, 231
seconds for ela to complete, and less than one second for
el2mel to complete.

4.2. Fault tolerance of XOR-based codes

We evaluated all (k ,m)-code corpi for 1 ≤ k ,m ≤ 7
with mela. Table 3 lists the results. The first two columns
list k and m for each code corpus. The third column lists the
number of codes in the (k ,m)-code corpus. The fourth col-
umn, # w MEV∗, lists the number of codes in the corpus that
share the best minimal erasures vector. The fifth column, #
w d∗, lists the number of codes in the corpus that share the
best Hamming distance. The sixth column lists a parity sub-
matrix for a code from the corpus that has an MEV equal to
MEV∗. The parity submatrix is presented in “bitmap” rep-
resentation: each integer represents a column of the parity
submatrix (i.e., if the parity symbol includes data symbol
sj , then add 2j−1 to the integer representation). For exam-
ple, for the (4, 3)-code corpus, “7, 11, 13” means that the
first parity is the XOR of s1, s2, & s3, the second parity is
the XOR of s1, s2, & s4, and the third parity is the XOR of
s1, s3, & s4. The seventh column, MEV∗, lists the value of
the best MEV in the corpus. The eighth column, d∗, lists the
best Hamming distance in the corpus (i.e., the index of the
first non-zero entry in MEV∗). The ninth column, |EL|

|MEL| , lists
the average of the ratio |EL| to |MEL| for the corpus.

We do not list the rows for k = 1 or the columns for m =
1 in Table 3 because each such corpus has only one code:
replication for k = 1 and RAID 4 for m = 1. Replication
has no erasure patterns that lead to irrecoverable data loss of
size less than or equal to m and so both the MEL and EL are
empty. RAID 4 tolerates all erasure patterns of size 1 and so
again, both the MEL and EL are empty.

We make the following observations about the results:

• The average of the ratio |EL|
|MEL| tends to increase with

both k and m. For the (5, 7)-code corpus, directly
calculating the EL rather than the MEL requires 84.9×
more steps. We were surprised though that the (7, 7)-
code corpus did not have the greatest average ratio.

• As m increases with regard to some fixed k , the best
MEV improves; this makes sense since there is more
redundancy. As k increases with regard to some fixed
m, the best MEV degrades; this makes sense since the
same amount of redundancy is protecting more data.

• As k and m increase, very few codes share the abso-
lute best MEV. For example, in the (7, 7)-code corpus,

only 1 in 1.48 million codes has the best fault toler-
ance. However, 1 in 30 codes does share the best Ham-
ming distance.

• The data symbols for the best codes are included by
at least d∗ parity symbols. This is because we focus
exclusively on systematic codes. The best codes thus
have higher Hamming weight (are more connected)
than would be expected from reading the LDPC litera-
ture. The LDPC literature, in general, does not consider
systematic codes.

• We were surprised by the code corpi in which a spe-
cific parity symbol, the XOR of all data symbols, is
replicated (cf. corpi with k = 2 & m > 2, and k = 3
& m > 4). We wonder if this is generally true: if m
sufficiently exceeds k , then the “RAID 4 parity sym-
bol” is replicated many times in the best code.

• We were surprised to find that there does not exist a
systematic XOR-based erasure code with 5 ≤ k ≤ 7
and m = 7 that tolerates all erasures of size 4.

To appreciate the value of considering only non-
isomorphic Tanner graphs in a corpus, compare the number
of codes in any (k ,m)-code corpus to the value of 2km . For
the (7, 7)-code corpus the reduction is of over a factor of 19
million times. We had hoped to consider all code corpi up
to k = 10 and m = 10 but the growth in the size of such
corpi was prohibitive. To identify the best codes in larger
corpi we may need to develop additional theory to reduce
the number of codes we need to evaluate in each corpus,
improve the efficiency of the mela implementation, or get
a larger compute cluster. Our approach to enumerating all
non-isomorphic codes for a given k and m to evaluate is
quite different from the traditional approach of identifying
families of codes: most coding theorists focus on identify-
ing a code family, parameterized on k and m, that constructs
“good” codes given k , m, and possibly a random seed.

5. Discussion

Concurrently to our work, Hafner and Rao investigated
the reliability of irregular erasure codes [7]. They did so in
the “standard” RAID framework: they developed a Markov
model with failure and recovery rates for various compo-
nents. Irregular XOR-based codes do not simply “plug” into
such a model though. They calculate the conditional proba-
bilities qj that a state in their Markov model with j failures
results in irrecoverable data loss (note that they use sub-
script k not j for their notation). They do so by counting
the number of erasure sets of size j that do not lead to data
loss for all j ≤ m (resulting in vector sj). To get qj , they
divide sj by

(
k+m

j

)
. The vector sj is the complement of the
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k m # in corpus # w MEV∗ # w d∗ A parity submatrix w MEV∗ MEV∗ d∗ |EL|
|MEL|

2 2 3 2 3 1, 3 (0, 1) 2 1.8
2 3 5 1 2 1, 3, 3 (0, 0, 1) 3 2.9
2 4 8 1 2 1, 3, 3, 3 (0, 0, 0, 1) 4 4.9
2 5 11 1 2 1, 3, 3, 3, 3 (0, 0, 0, 0, 1) 5 8.4
2 6 15 1 2 1, 3, 3, 3, 3, 3 (0, 0, 0, 0, 0, 1) 6 14.2
2 7 19 1 2 1, 3, 3, 3, 3, 3, 3 (0, 0, 0, 0, 0, 0, 1) 7 24.0
3 2 5 2 5 3, 5 (0, 2) 2 2.0
3 3 17 2 2 3, 5, 6 (0, 0, 4) 3 2.8
3 4 42 1 1 3, 5, 6, 7 (0, 0, 0, 3) 4 6.7
3 5 91 1 1 3, 5, 6, 7, 7 (0, 0, 0, 0, 3) 5 13.9
3 6 180 1 1 3, 5, 6, 7, 7, 7 (0, 0, 0, 0, 0, 3) 6 26.4
3 7 328 1 1 3, 5, 6, 7, 7, 7, 7 (0, 0, 0, 0, 0, 0, 3) 7 47.7
4 2 8 1 8 7, 11 (0, 3) 2 2.0
4 3 42 1 1 7, 11, 13 (0, 0, 7) 3 3.4
4 4 179 1 1 7, 11, 13, 14 (0, 0, 0, 14) 4 6.3
4 5 633 1 14 3, 5, 9, 14, 15 (0, 0, 0, 6, 1) 4 16.2
4 6 2001 2 166 3, 5, 7, 9, 14, 15 (0, 0, 0, 2, 2, 1) 4 36.7
4 7 5745 1 10 3, 5, 7, 11, 13, 14, 15 (0, 0, 0, 0, 1, 2, 1) 5 75.5
5 2 11 2 11 7, 27 (0, 5) 2 2.3
5 3 91 3 91 7, 11, 29 (0, 1, 10) 2 4.0
5 4 633 3 35 7, 11, 19, 29 (0, 0, 4, 14) 3 7.6
5 5 3835 2 14 7, 11, 19, 29, 30 (0, 0, 0, 10, 16) 4 14.7
5 6 20755 4 542 3, 5, 15, 23, 25, 30 (0, 0, 0, 4, 14, 1) 4 36.3
5 7 102089 1 11890 7, 11, 13, 14, 19, 21, 25 (0, 0, 0, 1, 8, 0, 1) 4 84.9
6 2 15 2 15 15, 51 (0, 7) 2 2.4
6 3 180 6 180 7, 27, 45 (0, 2, 14) 2 4.6
6 4 2001 6 35 7, 27, 45, 56 (0, 0, 8, 18) 3 8.8
6 5 20755 7 12 7, 25, 42, 52, 63 (0, 0, 0, 25, 0) 4 16.9
6 6 200082 5 1338 7, 27, 30, 45, 53, 56 (0, 0, 0, 6, 24, 16) 4 31.8
6 7 1781941 19 118130 7, 11, 21, 25, 45, 51, 62 (0, 0, 0, 2, 16, 18, 1) 4 75.3
7 2 19 1 19 31, 103 (0, 9) 2 2.6
7 3 328 7 328 15, 51, 85 (0, 3, 19) 2 5.1
7 4 5745 10 28 15, 54, 90, 113 (0, 0, 12, 26) 3 10.1
7 5 102089 8 10 7, 57, 90, 108, 119 (0, 0, 0, 38, 0) 4 19.1
7 6 1781941 57 2610 7, 46, 56, 75, 85, 118 (0, 0, 0, 14, 28, 24) 4 35.7
7 7 29610804 20 965097 7, 27, 45, 51, 86, 110, 120 (0, 0, 0, 3, 24, 36, 16) 4 65.3

Table 3. Evaluation of all (k ,m)-code corpi for 1 ≤ k ,m ≤ 7.

EV in our work; it counts the number of erasure sets of size
j that are not an erasure pattern, whereas the EV counts the
number of erasure patterns of size j.

Hafner and Rao claim to compute sj by “straightfor-
ward calculation” using techniques they previously devel-
oped [6]. (We note that those previous techniques are based
on the pseudo-inverse of the Generator matrix and effi-
ciently determines if a set of erasures is an erasure pattern

or not, and if not, outputs how to reconstruct data.) The ME
Algorithm efficiently calculates the MEL and MEV. We ran
mela and mel2el on the Tanner code from Plank’s RAID

tutorial [12] that Hafner and Rao analyze in §3.2 of [7]. Our
analysis took less than one second and produced an EV com-
patible with the sj they produce.

Plank et al. analyzed the read overhead for LDPC con-
structions [14]. Read overhead is the expected number of
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symbols that must be read to recover all of the data symbols,
assuming a random read order. Read overhead is a good
performance metric for irregular XOR-based erasure codes
deployed in grid storage environments; in LAN settings, we
expect that storage systems would employ systematic codes
and read data symbols (“stripes”) before reading any parity
symbols. More recently, Plank et al. [13] analyzed the read
overhead for codes with small m. Our analyses overlap for
the (k ,m)-code corpi with k ,m ≤ 5. We believe that the
EV can be transformed into a read overhead metric, but have
not yet determined this transformation.

6. Conclusions

We identified a new fault tolerance metric for XOR-based
erasure codes, the minimal erasures list (MEL), a concise
representation of that metric, the minimal erasures vector
(MEV), and the Minimal Erasures (ME) Algorithm which
efficiently determines the MEL. We applied the implemen-
tation of the ME Algorithm to all systematic XOR-based era-
sure codes with 1 ≤ k ,m ≤ 7, and so identified the most
fault tolerant such codes. We presented empirical evidence
that the ME Algorithm requires less work (over a factor of
80×) than an algorithm that directly generates all erasure
patterns.
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