Published in proceedings of The 45th IEEE Asilomar Conference on Signals, Systems,
and Computers (SSC 2011), November 6-9, 2011, Pacific Grove, California, USA

Finding the most fault-tolerant flat XOR-based
erasire codes for storage systems

Jay J. Wylie
HP Labs
jay.wylie@hp.com

Abstract—We describe the techniques we developed to effi- Il. BACKGROUND
ciently find the most fault-tolerant flat XOR-based erasure codes
for storage systems. These techniques substantially reduce the An erasure code consists afsymbols,k of which aredata
search space for finding fault-tolerant codes (e.g., by a factor sympols and m of which areredundant symbolsFor xOR-

of over 52 trillion in one case). This reduction in the search :
space has allowed us to find the most fault-tolerant codes for codes, we refer to redundant symbolssity symbols In

larger codes than was previously thought feasible. The result of Storage systems, symbols are packed into device blocks that
our effort to find the most fault-tolerant flat XOR-based erasure fail as a whole. A storage system converts any failure of such
codes for storage systems has yielded a corpus of 49,215 erasura block into an erasure and so we use failure synonymously

codes that we are making public. with erasure. Instead of symbols, we referelementswhich
correspond to the basic 1/O unit of an underlying storage
l. INTRODUCTION device (e.g., a block).

We only considesystemati@rasure codes: codes that store

In this paper, we describe the techniques we used to find the data elements and the parity elements. Systematic erasure
most fault-tolerant flat XOR-based erasure codes for storaggres provide a common case read path that requires no de-
systems. By “find”, we mean exhaustive computational searchding computation — data elements are simply concatenated
of the code space. By “most fault-tolerant”, we literally meato recover the stored value. Such a read path also permits an
the most fault-tolerant codes. l.e., the codes with the bégdividual data element, or portion of a data element, to be
Hamming Distance, and in the case of two codes with thiead and returned,; this is important for some file system and
same Hamming Distance, the one with fewer possible failu@tabase workloads.
sets at the Hamming Distance. By “flat”, we mean an erasureThe fault-tolerance of an erasure code is definedibijs
code in which exactly one element (data or parity) is storédamming distance. An erasure code of Hamming distahce
on each device (e.g., hard disk drive, SSD, or flash memorlerates all failures of fewer thad elements. We use the
By “XOR-based” we mean erasure codes in which each parfgllowing terminology to talk more exactly about the fault-
element is the XOR-sum of some subset of data elements. Jerance of a specific erasure code. Amsure patternis a
“for storage systems”, we mean systematic erasure codesdet of erasures (i.e., list of failed elements) that result in at least
small values oft (the number of data elements) and (the one data element being irrecoverable. Enasures listfor an
number of parity elements). The target audience for this pamgasure code is the list of all its erasure patterns. The erasures
are other engineers, scientists, and theoreticians interestegdotor is a vector of lengthn in which the ith element is
erasure codes for storage systems. the total number of erasure patterns of siz@ the erasures

We provide some background on erasure codes for stordigé The dth entry of the erasures vector is the first non-zero
systems and our prior work on evaluating flair-based era- entry. A minimal erasureME is an erasure pattern in which
sure codes (section 11). We then describe our core contributi@very erasure is necessary for it to be an erasure pattern; if any
a computational approach to finding the most fault-tolerant flatasure is removed fromg, then it is no longer an erasure
XOR-based erasure codes for storage systems (section I11). patern. Theminimal erasures lis{MEL) for an erasure code
describe, at a high level, the techniques we developed to i@i)the list of all its minimal erasures. Thainimal erasures
efficiently explore all codes in a code space (i.e., for sonvector(MEV) is a vector of lengthn in which theith element
given number of data and parity elements), and (i) efficientlg the total number of minimal erasures of siz& the MEL.
determine the fault-tolerance of each code in a code space. @ believe that thelEV is the the most concise representation
effort to find the most fault-tolerant flat XOR-based erasu@f the exact fault-tolerance of an erasure code and so use it to
codes for storage systems has yielded a corpus of 49,2fermine the most fault-tolerant erasure codes.
erasure codes that we are making public [1]. We hope thatWe originally defined the minimal erasures terminology in
other storage systems and coding theory researchers can f@gnwhere we introduce the Minimal Erasures (ME) Algorithm.
efit from the codes we found. We summarize and discuss sofitee ME Algorithm uses the structure of a flabr-based
interesting properties of the codes in our corpus (section \8rasure code represented in its Tanner graph to efficiently
Finally, we discuss potential future work (section V). enumerate the code’s Minimal Erasures List. In this work, we

Published in proceedings of The 45th IEEE Asilomar Conference on Signals, Systems,
and Computers (SSC 2011), November 6-9, 2011, Pacific Grove, California, USA

extend and improve the ME Algorithm to efficiently find thedimensional (i.e., not flatyor-based erasure codes for storage
mostfault-tolerant erasure codes. systems by exhaustive search for patterns of offsets and stripe
Flat xOR-based storage codes for storage are quite similaidths that achieve desired level of fault-tolerance for a given
to low-density parity-checkLpPC) codes [3]. Flatxor-based rate. Our starting point differs from Hafner’s in that we limit
codes differ fromLDPC codes in that they are systematic codesurselves to flat codes and do not constrain ourselves to codes
and have “small” values df andm. By small, we mean small with rotational symmetry. The rationale for this is many-fold:
enough to be used in a storage system (exg= k& + m < we are not convinced of the benefit of rotational symmetry for
30). Properties ofibpc codes based on probabilistic and/oerasure codes in storage systems; limiting our interest to flat
asymptotic arguments that rely on large numbers of symbaisdes reduces the code space we need to exhaustively explore;
do not apply to the flakor-based codes we consider. and, we think the corpus of flat codes may be more useful for
Even though flatxor-based codes are similar toopPCc others to build upon than multi-dimensional codes.
codes, and we use the Tanner graph to determinevthe
our assessment of fault-tolerance is not basestopping sets
Stopping set$4] are specific sets of failures that can prevent To find the most fault-tolerant flakor-based codes, the
iterative decodingfrom successfully decoding. In a storagédrute force approach would consist of two steps: One, generate
system, we expect to use comprehensive decode methods dtigbossible such codes in thé,{n)-code space; Two, try all
require a matrix to be inverted and so ignore stopping setspossible failure patterns to determine the exact fault-tolerance
Because of space limitations, we discuss related work of each §,m)-code in the code space. Such a brute force
erasure codes for storage systems in a narrow manner. &pproach is prohibitively expensive: for a givel), there
broader coverage of related work on flbRr-based erasure are 2¢*(*+™) possible XOR codes, and each such code has
code constructions, and on evaluating erasure codes for st possible failure patterns. We followed the basic flow
age, please see Section Il of our most recent paper [5]. Traadi-the brute force approach, but made each step significantly
tionally, LDPC codes are constructed by randomly generatingore efficient.
a Tanner graph based on some probability distributions of the ,
edge counts for data and parity elements. Plank and ThomaSorEfficiently exploring the code space
survey and evaluate such constructions for storage systems [6]There are many ways in which we reduced ther{}:code
they focus their investigation on a specific performance metdpace explored while still ensuring that we found the most
(read overhead) and cover valueskofrom small to moderate fault-tolerant ¢,m)-code in the space. First, we note that there
(up to 150). We are interested in identifying the absolutre only2**™ possiblesystematicOR codes which greatly
most fault-tolerant constructions for some valueskofind reduces the code space. Second, we note that many of the
m and so do not rely on randomized constructions. Plai?k*™ possible codes are in fact isomorphic to one another.
et al. built upon their initial work to find codes for smallTherefore, to fully explore thek(m)-code space, we only need
values ofk andm with the best read overhead [7]. They usetb enumerate all non-isomorphic systematic Tanner graphs for
both computational means and analytic means to produc¢he space.
substantial list of optimal and near-optimal codes for use in Our Tanner graph representation is a bipartite graph with
systems research [8]. Their computational approach is simitiata elements on one side, and parity elements on the other. A
to ours, though the metric of interest is different. parity element is connected to each data element thatfked
In storage systems, many erasure codes are generatedirviés calculation. Non-isomorphic bi-partite graph generation
formulaic construction. l.e., an algorithm, based on sonie well understood [10] and theauty tool can efficiently
mathematical insight and parameterized Aym, and often generate all such graphs [11].
other values (e.g., some prime value), is used to construcfThenaut y tool provides many options that we used to fur-
an erasure code with some known properties (e.g., a spedifier reduce the portion of the (n)-code space we explored.
fault-tolerance or with specific recovery properties). See ohirst, we only needed to consider connected graphs, since a
prior work for examples and discussion of such parametif@anner forest is necessarily less fault-tolerant than a Tanner
formulaic constructions [5]. Such constructions tend to kgraph for a given §,m). Second, thenaut y tool can shard
based on some regular structure, which in our opinion gote space of possible graphs using thes/ nod option. This
against the “nature” ofLbpc-like codes. We believe thatprovides a path to parallelization: upmd distinct machines
parametric formulaic constructions can cover only a smalan be used to explore the space. Such parallelization requires
portion of the possible space of constructions. Our approdtte results from alhrod shards to be aggregated after the fact,
to finding the most fault-tolerant flakor-based codes is but that step is trivial. Third, the weight and connectivity of
via exhaustive computational exploration of the space of ahch node in the bipartite graph can be restrictechfut y.
possible such codes. We use the connectivity constraints to set a minimum con-
Our exhaustive computational approach to finding the masgctivity for data elements in the code. We set this minimum to
fault-tolerant flatxor-based codes is similar to the approache an estimated Hamming distance of the code, less one. Our
Hafner used to find Weaver code constructions [9]. Hafneationale is that a data element connected parity elements
discovered various regular, symmetric constructions of multiecessarily has a minimal erasure of siz¢ 1 that consists

IIl. FINDING THE MOST FAULT-TOLERANT CODES

Published in proceedings of The 45th IEEE Asilomar Conference on Signals, Systems,
and Computers (SSC 2011), November 6-9, 2011, Pacific Grove, California, USA

of itself and each parity element to which it is connected. Wermination even less effective by tracking the five most fault-
estmate the Hamming distance conservatively, i.e., we err ¢olerant codes rather than the single most fault-tolerant code.
the side of too big an estimate. If our estimate is in fact tdce., for each of the five best fault-tolerances achievable in a
big, then no codes are found and we try again with a smallesde spacerrea retains all the distinct codes that achieves
Hamming distance estimate. If our estimate is too small, thench fault-tolerance. We did this out of curiosity and so that
we still find the most fault-tolerantk(m)-code, but evaluate we could see the differences among the best few codes in a
more of the code space than strictly necessary. (k,m)-code space. Finally, a light-weight post-processing step
We have not systematically evaluated the reduction of tle required to collect the results from all shards of the code
code space due to each of our optimizations. However, we diplace into a single list of most fault-tolerat)-codes.
track how many codes we evaluated for eakhn). For the We have not systematically evaluated the efficiency of each
(9,9)-code space, we evaluated 45,706,861,459 distinct codggtimization we introduced to find the most fault-tolerant
A simplistic brute force approach could have evalua?8d codes. Two specific accomplishments put the efficiency of
codes. Our approach reduced the code space, relative tthese techniques into context though. Gaidioz et al. [12] used
simplistic brute force approach, by a factor of over 52 trillionMonte Carlo approaches to construct small codes because
o o exhaustive “techniques are not feasible for generating larger
B. Efficiently determining fault-tolerance codes, like the ones we are interested in using,” where larger
The key tool we use to determine the fault-tolerance of a fledferred tok > 3 and m > 5. We used the techniques
XOR-based erasure coderiea, our implementation of the ME described above to find a more fault-tolerant (8,6)-code than
Algorithm. The ME Algorithm, as described previously [2],Gaidioz et al. discovered in less than an hour on a laptop.
uses the structure of the Tanner graph to enumerate Weitaszek et al. [13] used a “test suite [that] contains exactly
Minimal Erasures ListNEL) for a specific code. Briefly, and 962,144,153 test cases and requires about 34 CPU days to
at a very high level, the ME Algorithm generates an initial seixecute for a single graph” to verify the fault-tolerance of
of base minimal erasures, one for each data element, and usesnall xor-based code they wanted to use; we were able
them to initialize theveL. The ME Algorithm then recursively to determine the fault-tolerance of the (48,48)-code found by
takes each minimal erasure already in keL and generates Woitaszek et al. at a greater level of detail than the authors in
additional minimal erasures to add to tiweL; it does so a few CPU hours on a laptop.
by iteratively substituting in base erasures for parity elements
in each minimal erasure. Using the structure of the code to
directly enumerate thelEL requires substantially less work The result of our effort to find the most fault-tolerant flat
than the brute force approach of testing all possible failudOR-based erasure codes for storage systems has yielded a
patterns by attempting to decode. corpus of 49,215 erasure codes that we are making public [1].
Beyond the ME Algorithm being more efficient than brut&he corpus lists the most fault-tolerant flat XOR-based erasure
force determination of fault-tolerance, we added many featuresdes for storage systems fgr < 5, m < 10), (k <9, m <
to mea to more efficiently evaluate large numbers of code$), (£ < 16, m < 5), and (k < 20, m < 4). Over all of the
One key improvement in execution speed is to permeia to (k,m)-code spaces we evaluated, the 2,670 codes that provide
terminate as soon as it discovers that the code it is evaluatthg most fault-tolerance, as measured by Ni®y, are listed.
cannot be the most fault-tolerant. There are two cases in whMile also include the 46,545 codes that provide the next four
nmea terminates early: one, it is provided with an estimate dfest fault-tolerances, as measured bymMiEe/, over these code
the expected Hamming distance (as is done for improved graggaces. We did this computational search in approximately 10
generation) and it finds a minimal erasure that is smaller thdays a few years ago on a cluster of 300 HP DL360 computers
the estimated Hamming distance; two, it tracks the st with 2.8 GHz Intel Xeon processor and 4 GB of RAM.
it has found thus far and it determines that thev of the Since our corpus will be released in its entirety [1], we
current code is worse than the best. focus on presenting summary statistics here and discussing
A computationally expensive corner-case for the ME Algadnteresting features of the code corpus. First, we note that the
rithm is confirming that a child erasure is in fact a minimgbarts of the corpus that can be easily verified by inspection
erasure and not the union of two disjoint minimal erasureate correct. For example, all replication codes, i.e., codes with
For the purposes of finding the most fault-tolerant code, this= 1, in the corpus are listed correctly. Similarly, all codes
corner case can be ignored; such child erasures are necessaitly (¢ > 1, m = 1) in the corpus correctly list RAID4 (a
longer than the smallest minimal erasures that distinguish thiagle parity element that is the XOR-sum of all data elements)
most fault-tolerant codes from the rest. as the most fault-tolerant code. These easily verified codes are
The parallelization of code space exploration has sorttee only flatxor-based codes that amDs.
costs. First, the optimization in whictmea terminates early Table | lists the Hamming distance for the best codes (as
is not as effective. This is becausea only tracks the best measured by theiev) we found for each value of and
codes per shard of the code space being generatedityy; m. Note that all the most fault-tolerant codes we found for
the variousnea instances processing different shards to nét > 4 and m > 5 stand out in so far as others thought it to
share information during execution. Second, we made the ednly prohibitive to process such codes via “brute force” [13].

IV. MOST FAULT-TOLERANT CODES

Published in proceedings of The 45th IEEE Asilomar Conference on Signals, Systems,
and Computers (SSC 2011), November 6-9, 2011, Pacific Grove, California, USA

k m=1 2 3 4 5 6 7 8 9 10 k m=1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 3 4 4 5 6 6 7 8 2 1 2 2 1 2 2 1 2 2 1
3 2 2 3 4 4 4 5 6 6 7 3 1 2 2 1 3 6 7 3 6 3
4 2 2 3 4 4 4 5 6 6 7 4 1 1 1 1 3 6 10 3 7 3
5 2 2 2 3 4 4 4 5 6 7 5 1 2 3 3 2 12 8 6 3 2
6 2 2 2 3 4 4 4 5 6 - 6 1 2 6 6 7 5 57 47 13 -
7 2 2 2 3 4 4 4 5 6 - 7 1 1 7 10 8 57 20 162 401
8 2 2 2 3 4 4 4 5 6 - 8 1 2 3 3 6 59 162 859 102
9 2 2 2 3 4 4 4 5 6 - 9 1 2 6 7 3 13 17 102 19

10 2 2 2 3 4 - - - - 10 1 1 3 3 2 - - - -

11 2 2 2 3 4 - 11 1 2 1 1 1 - - -

12 2 2 2 2 3 - 12 1 2 3 4 3 - - -

13 2 2 2 2 3 - 13 1 1 6 13 10

14 2 2 2 2 3 - 14 1 2 7 33 24

15 2 2 2 2 3 - 15 1 2 3 51 42

16 2 2 2 2 3 - 16 1 1 6 14 19

17 2 2 2 2 - 17 1 2 3 33 - - -

18 2 2 2 2 18 1 2 1 13 - - -

19 2 2 2 2 19 1 1 3 4

20 2 2 2 2 20 1 2 6 13 - - -

TABLE | TABLE Il
HAMMI NG DISTANCE OF MOST FAULFTOLERANT CODES NUMBER OF DISTINCT CODES THAT SHARE MOST FAULATOLERANT MEV.

The trend is as expected: as increases, Hamming distancecompute hardware yielded another factor of ten speedup, the
Increases. exponential nature of the size of code spaces is still a barrier
Table Il lists the number of distinct codes (i.e., nonto, for example, finding the most fault-tolerant (20,20)-code.
isomorphic Tanner graphs) that share the best. Results To reach such a goal, we believe further advances in our

like those for(k, m) = (11,3), (11,4) and(11, 5) standout be- ynderstanding of how to prune A,{r)-code space and how to

cause only one distinct code achieves the most fault-tolerarggciently determine the exact fault-tolerance ofkanf)-code
in these code spaces. Table IlI lists the number of distingt necessary.

codes that achieve the best Hamming distance for the code
space. Because we only tracked the five best for each A
code space, we list a plus sign for any code spaces in which
the five besmev all have the same Hamming distance. Some We used prior results to provide estimates of the expected
specific results stand out in this table. Férm) = (11,4) and Hamming distance to guide the code space exploration. A
(11,5), only one distinct code achieves the best Hammirgetter Hamming distance estimator could improve code space
distance. Forlk = 9, m = 9), a huge code space, only 19xploration.

distinct codes achieve the best Hamming distance. We have experimented with estimating the Hamming weight

As mentioned earlier, Plank et al. identified flAbOR- (i.e., number of edges in the Tanner graph) of the most fault-
based codes with the best read overhead [7], [8]. The (10,&)terant code in a code space. We started with an estimate of
code they identified as having optimal overhead (of 10.677the exact Hamming weight of the most fault-tolerant code.
has anmev of (0,1,27,72); compare this to thevev of We then expand the Hamming weight range, i.e., from a
the most fault-tolerant such codé), 0,28, 77). In fact, the single initial number to a range from one less to one greater
read overhead optimal code identified by Plank et al., wheman the initial number, and so on. We continue expanding
compared with our corpus of best codes, has the second kst Hamming weight range until we stop finding more fault-
fault-tolerance. tolerant codes. Unfortunately, our effort so far has not resulted
in any substantial reduction in the computation required to
explore a code space.

We believe that some engineering effort and re-running The naut y tool provides the es/ nod option that allows
this analysis on more modern computers could find the mast to parallelize code space exploration. We are not convinced
fault-tolerant flatxor-codes for even more code spaces. Thibat this feature was designed to efficiently parallelize graph
nauty tool is written in C and so likely runs efficiently. generation. l.e., there may be overheads to this parallelization
However, oumea tool set is written in python; a rewrite in C that we do not understand. If so, then reducing the degree
and more careful design of some internal data structures cotddwhich we parallelize code space exploration, or improving
yield a substantial execution speedup. Even if implementatitre means whiclmaut y uses to parallelize such work, could
re-engineering provided a factor of ten speedup, and modenake parallel code space exploration more efficient.

Efficiently exploring the code space

V. FUTURE WORK

Published in proceedings of The 45th IEEE Asilomar Conference on Signals, Systems,
and Computers (SSC 2011), November 6-9, 2011, Pacific Grove, California, USA

k m=1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 1 4 2 1 4 2 1

3 1 4+ 2 1 8 31+ 11 3 30+ 3

4 1 6+ 1 1 14 66+ 10 3 79+ 3

5 1 9+ 32+ 35+ 14 121+ 152+ 417+ 223+ 2

6 1 12+ 29+ 35 12 163+ 381+ 1633+ 565+

7 1 14+ 49+ 28 10 243+ 5386+ 4611+ 557 -

8 1 12+ 48+ 16 6 313+ 4271+ 859 102 -

9 1 12+ 70+ 7 3 370+ 366+ 102 19 -
10 1 17+ 57+ 3 2 - - - - -
11 1 12+ 53+ 1 1 - - - - -
12 1 12+ 67+ 352+ 595+ - - - - -
13 1 17+ 45+ 222+ 334+ - - - - -
14 1 12+ 70+ 417+ 630+ - - - - -
15 1 12+ 58+ 267+ 647+ - - - - -
16 1 17+ 83+ 213+ 497+ - - - - -
17 1 12+ 61+ 290+ - - - - - -
18 1 12+ 53+ 361+ - - - - - -
19 1 17+ 67+ 352+ - - - - - -
20 1 12+ 45+ 290+ - - - - - -

TABLE Il
NUMBER OF DISTINCT CODES THAT ACHIEVE THE BESTHAMMING DISTANCE.
B. Efficiently determining fault-tolerance REFERENCES

In our tool chain,mea consumes the output of a single [1]
instance ohaut y when code exploration is parallelized. The
optimizations to terminate early do not work as well in this[2]
context. Some form of communication among instances of
mea that share the currently best knowrev could improve [3]
this optimization when code exploration is done in parallel.

We have experimented with having the ME Algorithm[4]
determine a short prefix of th®ev of the code (i.e., the
first two non-zero entries in theev). The only cut off we
could determine to be correct though was the number J?]
symbol elements in the minimal erasure. l.e., for an estimated
Hamming distance of 3rea had to evaluate all child erasures 6]
up to the point that only minimal erasures with four or
more data elements in them remained. This effort has not yet
resulted in substantial reduction in code evaluation time. [7]

We believe the main way to improve the efficiency of
determining fault-tolerance though is to improve the ME Algo-8]
rithm. Any techniques that can more efficiently find minimal
erasures at the Hamming distance could significantly improvg)
our ability to analyze larger code spaces.

[10]

ACKNOWLEDGMENTS [11]

Thanks to my key collaborators on erasure codes resealch
over the last five years (Kevin Greenan, Jim Plank, Ram

Swaminathan) for feedback, ideas and discussions that lgag
to these results. Thanks to Alex Dimakis for organizing the

Distributed Storage Systems session at the 45th Asilomar Con-

ference on Signals, Systems and Computers. Finally, thanks to

the other attendees that provided me with feedback and asked

me interesting questions.

J. J. Wylie, “List of most fault-tolerant flat XOR-based erasure codes
for storage systems,” HP Labs, Tech. Rep. HPL-2011-217, November
2011.

J. J. Wylie and R. Swaminathan, “Determining fault tolerance of XOR-
based erasure codes efficiently,” DSN-2007 |EEE, June 2007, pp.
206-215.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman,
and V. Stemann, “Practical loss-resilient codes,SIROC-1997 ACM
Press, 1997, pp. 150-159.

M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codesJEEE Trans. on Inf. Theoryol. 52, no. 3, pp.
922-932, 2006.

K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure codes
in storage systems: Constructions, efficient recovery, and tradeoffs.” in
26th IEEE Symposium on Massive Storage Systems and Technologies
IEEE, May 2010.

J. S. Plank and M. G. Thomason, “A practical analysis of low-density
parity-check erasure codes for wide-area storage applicationBShr
2004 IEEE, June 2004, pp. 115-124.

J. S. Plank, A. L. Buchsbaum, R. L. Collins, and M. G. Thomason,
“Small parity-check erasure codes - exploration and observations,” in
DSN-2005 IEEE, July 2005.

J. S. Plank, “Enumeration of small, optimal and near-optimal parity-
check erasure codes,” Department of Computer Science, University of
Tennessee, Tech. Rep. UT-CS-04-535, November 2004.

J. L. Hafner, “WEAVER Codes: Highly fault tolerant erasure codes for
storage systems,” IRAST-2005 USENIX Association, December 2005,
pp. 212-224.

B. McKay, “Practical graph isomorphismCongressus Numerantiym
vol. 30, pp. 45-87, 1981.

——, “nauty version 2.2 (includinggt ool s),” http://cs.anu.edu.au/
~bdm/nauty/.

B. Gaidioz, B. Koblitz, and N. Santos, “Exploring high performance
distributed file storage using LDPC codeBdrallel Computing vol. 33,

pp. 264-274, May 2007.

M. Woitaszek and H. M. Tufo, “Fault tolerance of Tornado codes
for archival storage,” inl5th IEEE International Symposium on High
Performance Distributed Computin@006.

