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Abstract

The ideal storage infrastructure scales to meet new demands. Traditionally,
the emphasis has been on the capacity and performance scalability of a
storage infrastructure. Current trends towards massive storage infrastruc-
tures comprised entirely of commodity components demand broader forms
of scalability. The next generation of storage infrastructures must scale to
tolerate more and varied types of faults. Fault-scalability, the ability to tol-
erate large numbers of faults efficiently, is needed so that the simultaneous
failures of multiple commodity components can be tolerated. Versatility, the
ability to store objects with radically different resiliency (fault-tolerance)
and performance requirements simultaneously and efficiently, is needed so
that a deployed storage infrastructure can meet new demands as they are
identified.

This dissertation develops a set of related protocols for reading and writ-
ing data objects—called the Read/Write Protocol Family (R/W-PF)—that
enables a versatile storage infrastructure to be built. The R/W-PF provides
versatility: objects with different per-object resiliency requirements can be
stored in the same storage infrastructure. The costs (response time, num-
ber of servers required, etc.) of storing an object are commensurate with its
resiliency requirements. The R/W-PF incorporates versatile storage mecha-
nisms, such as erasure codes, witnesses, and quorums, in its design, allowing
the efficiency of read and write access to stored objects to be tuned to meet
capacity and performance requirements.

Measurements of PASIS, a prototype storage system based on the R/W-
PF, demonstrate its versatility. These measurements show that the R/W-PF
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also provides fault-scalability. Measurements show the differing performance
costs associated with various resiliency requirements and the workload-
dependent merits of the storage mechanisms incorporated in the R/W-PF.
The significant trade-offs associated with resiliency and storage mechanism
choices underscore the importance of versatility in storage infrastructures.
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1 Introduction

This chapter motivates the need for versatile storage infrastructures and
overviews the Read/Write Protocol Family (R/W-PF), the primary contri-
bution of this dissertation. It presents the thesis statement and outlines how
this dissertation proves the thesis statement.

1.1 Versatile storage infrastructures

Fault-tolerant distributed storage systems protect data by spreading it re-
dundantly across a set of servers. In the design of storage access protocols,
determining which kinds of faults to tolerate, the number of faults to tol-
erate, and assumptions to make about the system model, are important
and difficult decisions. Fault models range from tolerating crash failures to
Byzantine (arbitrary) failures, and system assumptions about delays range
from synchronous to asynchronous. These decisions affect the storage access
protocol employed, which can have a major impact on cost and performance.
A storage access protocol can be designed to provide consistency under very
weak assumptions—e.g., Byzantine failures in an asynchronous system—but
this induces potentially unnecessary costs. Making few, weak assumptions,
requires that more servers be accessed to provide a given capacity. Alterna-
tively, designers can “assume away” certain faults. Such a design decision is
made to improve performance of the storage system or to decrease its cost.

Traditionally, the fault model decision is hard-coded during the design
of the storage access protocol. This traditional approach has two significant
shortcomings. First, it limits the utility of the resulting storage system.
Either the storage access protocol incurs unnecessary costs for some stored
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objects, or it cannot be used to store other objects with more stringent
requirements. The natural consequence is distinct storage access protocols,
system designs, and system implementations for each distinct fault model.
Second, all objects stored in any given storage system must use a similar
fault model, either paying unnecessary costs for less critical data or under-
protecting more critical data.

We promote an alternative approach in which the decision of which faults
to tolerate is shifted from design time to object creation time. This shift is
achieved through the use of a family of storage access protocols that share
a common client-server interface. A protocol family supports different fault
models in the same way that most access protocols support varied numbers
of failures: by simply changing the number (set) of servers accessed and
the corresponding client logic for such accesses. A protocol family enables a
given storage infrastructure to be used for a mix of fault models and number
of faults tolerated, chosen independently for each stored object.

1.2 Thesis statement

A protocol family approach to building read/write storage enables

the construction of versatile storage infrastructures that, once de-

ployed, can be tuned to each stored object’s specific resiliency

requirements and performance requirements.

This thesis statement was validated in the following manner:

(1) The Read/Write Protocol Family (R/W-PF) was developed as was
an accompanying proof of its correctness. The R/W-PF embodies and
demonstrates the feasibility of the protocol family concept.

(2) A prototype storage system, called PASIS, was built with the R/W-PF
to illustrate versatile distributed storage and enable experimentation.

(3) Empirical and analytical results show that there are resiliency and
performance trade-offs among the member protocols of the R/W-PF.
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These trade-offs delineate the broad range of versatility that the R/W-
PF offers, in the context of the PASIS prototype.

(a) Experiments with PASIS determined the costs of the different
resiliency provided by different protocol family members—that
is, the type and number of faults tolerated as well as the tim-
ing model—in terms of client and server computation, average
response time, and average system throughput.

(b) Experiments with PASIS determined the workload-specific costs
and benefits of erasure-coding stored objects, employing quorums
to provide throughput-scalability, and employing witnesses to im-
prove network- and storage-efficiency.

(c) Experiments with PASIS determined the relationship between the
workload (e.g., block size, read/write ratio) and performance.

(d) Analysis of quorum constructions and erasure codes identified
the following characteristics of R/W-PF members: the minimum
number of servers required to store objects; the network- and
storage-efficiency of storing objects; and the fault-tolerance of
objects stored.

An R/W-PF member is specified by its resiliency model—that is, its
timing model, server failure model, and client failure model—and its versa-
tile storage mechanisms—that is, its quorum construction, erasure-coding,
and witness use. Chapter 3 describes the R/W-PF in detail and provides
comments that place it in context relative to other techniques. To ensure
the correct operation of R/W-PF members, limits are placed on their versa-
tility: Chapter 5 identifies bounds on quorum construction and witness use
based on the resiliency model and erasure-coding of the R/W-PF member.
A detailed design of the R/W-PF is presented in Chapter 4. Building on
these chapters, Chapter 6 presents a proof that R/W-PF members provide
linearizable, wait-free read and write operations. Read operations by faulty
clients and write operations that do not complete are excluded from the set
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of linearizable operations. An assumption of unbound storage capacity is re-
quired for operations to be wait-free. Taken together, Chapters 3–6 provide
a concrete example of a protocol family, demonstrating the concept and its
feasibility.

We built PASIS, a prototype storage system that employs the R/W-PF.
Chapter 7 describes the design and implementation of PASIS. The PASIS
prototype supports all of the resiliency models for R/W-PF membership
that are described in Chapter 3. Some threshold quorum systems, a broad
range of erasure codes, and space-efficient witnesses, are implemented in
the PASIS prototype. The existence of the PASIS software artifact validates
that versatile storage can be built with a protocol family.

Chapter 8 describes the evaluation of the R/W-PF. Experiments were
run with the PASIS prototype to explore, empirically, a large portion of its
“versatility-space”. Sections 8.3 and 8.4 report response time and through-
put measurements, respectively, for a large number of R/W-PF members.
Both the resiliency and the space-efficiency due to erasure coding of a
R/W-PF member is evaluated via these experiments. As such, these results
show items 3a and 3b of the thesis statement. Other experiments measured
the ability of threshold quorums to provide throughput-scalability, and of
witnesses to improve the network-efficiency, of R/W-PF members (cf. Sec-
tion 8.6). These results provide additional support of item 3b of the thesis
statement. Other experiments, described in Chapter 8, measured the impact
of object size and workload read/write ratio on the performance of R/W-PF
members. These results show item 3c of the thesis statement.

The number of servers required by an R/W-PF member, as well as its
space-efficiency, is determined analytically in Chapter 5. The analysis of uni-
verse size (number of servers) and space-efficiencies is made more concrete
for a large set of R/W-PF members in Section 8.3.1. Collectively, these anal-
yses show item 3d of the thesis statement. Overall, the experimental results
demonstrate that the R/W-PF enables the construction of versatile storage
infrastructures and that versatility is important because of the significant
inherent trade-offs among resiliency, performance, and cost in storage sys-
tems.
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Although not claimed directly as a contribution of this thesis, the per-
formance results from the PASIS prototype demonstrates that an efficient
versatile storage infrastructure can be built with the R/W-PF. If versatil-
ity came with prohibitive performance costs, the contributions of this the-
sis would be weakened. The versatility provided by the R/W-PF is not a
panacea. Stringent resiliency requirements have real costs: storage mecha-
nisms can ameliorate some such costs, but not all.

1.3 The Read/Write Protocol Family

The Read/Write Protocol Family (R/W-PF) is a family of storage access
protocols that exploit object versioning within servers to provide consistent
quorum-based access to erasure-coded objects efficiently. The R/W-PF cov-
ers a broad range of resiliency models—timing model, client failure model,
and server failure model—with no changes to the client-server interface.
R/W-PF members are distinguished by choices enacted in client logic: the
number (set) of servers accessed and the logic employed during reads and
writes. Weaker assumptions require the use of more servers and additional
client computation. A single server implementation is sufficient to build ver-
satile storage infrastructures with the R/W-PF.

Today’s storage systems are dominated by heavily engineered systems
comprised of dual ported disks and redundant internal networking that ex-
hibit limited scalability. Such systems encode stored objects via striping
(RAID 0), two- & three-fold replication (RAID 1), replicated striping (RAID
1/0), xor-based parity (RAID 3/4/5), or xor-based array codes (RAID 6).
Such systems also access stored objects under the assumptions of synchrony.
Single fail-stop failures of any components are tolerated and some multiple
component failures are tolerated. There are members of the R/W-PF that
are similar to each of these common storage configurations. However, there
are also R/W-PF members that go beyond these basic configurations. For
example, there are R/W-PF members that tolerate more numbers and types
of failures under different timing models.
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The R/W-PF incorporates versatile storage mechanisms that improve its
members’ performance and efficiency. The R/W-PF allows stored objects to
be erasure-coded. Replication and other RAID levels are special-case era-
sure codes that the R/W-PF incorporates. The inclusion of erasure codes
allow R/W-PF members to store objects that tolerate many server failures
in a space-efficient manner. The R/W-PF incorporates witnesses—the use
of space-efficient object digests in lieu of the object itself—that improve
the network- and storage-efficiency of its members. Because the R/W-PF is
quorum-based, it benefits from the throughput-scalability afforded by dif-
ferent quorum constructions. Quorum constructions are a generalization of
voting systems which are employed in some contemporary storage systems.

1.4 Example R/W-PF trade-offs

There are inherent trade-offs among resiliency, performance, and cost in
distributed storage systems. Versatile storage infrastructures built with the
R/W-PF expose these trade-offs in the form of different R/W-PF members.
To motivate the value of a versatile storage infrastructure, some trade-offs
are illustrated in this section.

Consider storing a set of objects that must tolerate two server failures.
If clients and servers may only crash and the timing model is synchronous,
then the object can be replicated across three servers. Experimental results
in Chapter 8 for the Benign, Synchronous, Replication, t = 2 R/W-PF
member correspond to these requirements. (The symbol t indicates the total
number of server failures tolerated.) To illustrate trade-offs, consider another
R/W-PF member that employs an erasure code with m = 6 rather than
replication. (The symbol m indicates the number of servers that an object
is striped over; the space-efficiency of the R/W-PF member increases with
m.) This corresponds to the Benign, Synchronous, Constant, t = 2 R/W-PF
member in Chapter 8.

Consider the trade-off in terms of cost: the usable capacity provided
by each server, i.e., the space-efficiency of the R/W-PF member. Because
three-fold replication is employed by the Replication member, each server



1.4 Example R/W-PF trade-offs · 7

provides only 33% of its storage capacity as usable capacity. If the more
space-efficient Constant member is employed, then each server provides 75%
of its storage capacity as usable capacity. Even though both members toler-
ate two server failures, each member has a different cost in terms of usable
capacity. However, to tolerate two server failures, the Replication member
requires 3 servers, whereas the Constant member requires 8 servers. The
Constant member increases space-efficiency but reduces reliability.

Consider the performance trade-off in terms of response time and
throughput. The experiments from which these performance results are
drawn are described in Chapter 8. The performance results are for
concurrency- and failure-free operations. The response time for read op-
erations is 0.6 ms for both R/W-PF members. The response time for write
operations is 1.55 ms for the Replication member, whereas for the Constant
member it is 1.95 ms. See Figure 8.10 in Section 8.3.3 for more details about
response time. Given a cluster of twelve servers, the read throughput is
380 MiB/s for the Replication member and is 500 MiB/s for the Constant
member. The write throughput is 210 MiB/s for the Replication member
and 340 MiB/s for the Constant member. The Replication member is more
responsive than the Constant member but provides less throughput.

The Replication and Constant members considered differ only in the
space-efficiency of the erasure-code employed. This single decision leads to
differences in cost, write response time, read throughput, and write through-
put.

Compare these Benign, Synchronous members with a member that tol-
erates malevolent clients and a single malevolent server in an asynchronous
timing model. This corresponds to the Malevolent+, Asynchronous, Default,
t = 1 R/W-PF member in Chapter 8. Such a member employs an erasure
code with m = 2 and requires five servers. Thus each server provides 40%
of its storage capacity as usable capacity for the Malevolent+ member. The
read response time is 1.6 ms and the write response time is 2.35 ms. These
response times are higher than the Benign members because of the costs
associated with tolerating malevolent components. Given twelve servers, the
read throughput for the Malevolent+ member is 455 MiB/s and the write
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throughput is 190 MiB/s.
The Malevolent member considered differs from the Benign members

both in terms of the resiliency provided (types of failures, number of server
faults tolerated, and timing model) and in the space-efficiency of the erasure
code employed. Again more trade-offs among cost, read and write response
time, and read and write throughput exist.

The R/W-PF allows different trade-offs among cost, resiliency, and per-
formance to be made. A storage infrastructure built using the R/W-PF is
versatile because it allows different R/W-PF members to be employed and so
different trade-offs to be made for different stored objects. A large portion
of the “versatility-space” provided by the R/W-PF in the PASIS storage
system is explored in Chapter 8—only three of the hundreds of R/W-PF
members evaluated are discussed in this section.



2 Background and related work

This chapter describes cluster-based storage infrastructures and discusses
trends that demand such infrastructures tolerate a broader range of faults
than do today’s storage servers. It overviews the operation of members of
the R/W-PF, as well as the versatility such members can provide. Finally,
prior work related to the techniques employed by the R/W-PF is discussed.

2.1 Cluster-based storage infrastructure

Today’s enterprise storage is dominated by large monolithic disk array sys-
tems, extensively engineered to provide high reliability and performance
in a single system. However, this approach comes with significant expense
and introduces scalability problems: any given storage enclosure has an up-
per bound on how many disks it can support. To reduce costs and provide
scalability, many are pursuing cluster-based storage solutions [for example:
Anderson et al., 1996; EMC Corp., 2003; EqualLogic Inc., 2003; Frølund
et al., 2003; Ganger et al., 2003; Ghemawat et al., 2003; IBM Almaden Re-
search Center, 2003; Lee and Thekkath, 1996]. Cluster-based storage elim-
inates this upper bound by replacing the single system with a collection
of smaller, lower-performance, less-reliable servers (sometimes referred to
as storage bricks). Data and work are redundantly distributed among the
bricks to achieve higher performance and reliability. The argument for the
cluster-based approach to storage follows from both the original RAID ar-
gument of Patterson et al. [1988] and arguments for cluster computing over
monolithic supercomputing. Cluster-based storage has scalability and cost
advantages, but most designs lack versatility.

9
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Figure 2.1. Cluster-based storage infrastructure.

Figure 2.1 illustrates, at a high-level, the architecture of a cluster-based
storage infrastructure. To write an object D, Client A issues write requests
to a set (quorum) of servers. To read D, Client B issues read requests to a
set of servers that intersects the set of servers to which D was last written.
This architecture can provide access to objects even when some servers have
failed. To provide reasonable storage system semantics, a read must observe
the latest value of D written. For shared storage systems, this usually means
linearizability [Herlihy and Wing, 1990] of read and write operations.

2.2 Beyond a single synchronous fail-stop failure

Today’s enterprise storage systems are typically monolithic and very ex-
pensive, based on special-purpose, high-availability components with com-
prehensive internal redundancy. These systems are engineered and tested
to tolerate harsh physical conditions and continue operating under almost
any circumstance. Cluster-based storage is a promising alternative to to-
day’s monolithic storage systems. The concept is that collections of smaller
servers should be able to provide performance and reliability competitive
with today’s solutions, but at much lower cost and with greater scalabil-
ity. The cost reductions would come from using commodity components for
each server and exploiting economies of scale. Each server would provide
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a small amount of the performance needed, but with lower reliability than
required. As with previous arguments for RAID and cluster computing, the
case for cluster-based storage anticipates that high levels of reliability and
performance can be obtained by appropriate redundancy and workload dis-
tribution across servers. If successful, cluster-based storage should be much
less expensive (per byte) than today’s enterprise storage systems [Frølund
et al., 2003], while providing similar levels of reliability and availability.

Corbett et al. [2004] motivate the need for tolerating double disk fail-
ures in traditional high-end storage servers because trends conspire to
make “whole-disk/whole-disk” and “whole-disk/media” failures more likely.
Specifically, disk capacity is increasing at a greater rate than disk bandwidth.
As such, the time required to reconstruct data after a disk failure is increas-
ing. As well, increasing capacity increases the likelihood that some disk has
a media failure. This is exacerbated by the fact that the cost of scrubbing
(i.e., validating the integrity of stored data by reading it) increases as ca-
pacity increases. Indeed, “whole-disk/media” failures dominate reliability in
the analysis. Since even enterprise storage must tolerate more than one disk
failure at a time, requirements on cluster-based storage will likely specify
that three, or even more, server faults be tolerated.

Beyond tolerating more faulty servers than today’s systems, storage in-
frastructures should tolerate faulty servers that exhibit non-fail-stop behav-
ior. Whereas enterprise storage servers have redundant internal intercon-
nects, cluster-based storage is susceptible to network partitions and servers
that crash and recover, independent of any centralized storage controller.

Two trends indicate that Byzantine failures [Lamport et al., 1982]—
arbitrary, potentially malicious failures—of components should be tolerated.
First, the amount of software involved and the consumer-quality components
that are likely to be integrated into cluster-based storage systems lead to
the real risk of faulty components taking unspecified actions. For example,
we have been told that disks occasionally write data sectors to the wrong
location [Kleiman, 2002]. Such a fault is pernicious: a disk drive returns
success codes after performing a mis-aligned write, and subsequent reads
observe seemingly well-formed data. Second, some cluster-based storage will
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be deployed in a more open, less well-administered manner. For example,
the FARSITE project intends to use desktop computers as a cluster-based
storage infrastructure [Adya et al., 2002]. For these reasons, it is important
that a storage infrastructure be versatile, so that it can “scale” up the fault
model and tolerate Byzantine failures of components.

In a high-speed local-area network context, it may be reasonable to make
synchrony assumptions. However, quality of service and isolation of network
traffic are still open problems in most LAN settings. Without the guarantees
of QoS or isolation, the asynchronous timing model avoids making assump-
tions that could lead to loss of consistency. As well, if servers are federated
in a MAN or WAN setting, it may not be feasible to engineer the storage
infrastructure to have synchronous bounds.

2.3 R/W-PF overview

The R/W-PF is designed to provide a versatile cluster-based storage infras-
tructure. Each member of the R/W-PF works roughly as follows. To perform
a write, a client sends requests to a quorum of servers. Each write request
includes a logical timestamp and a fragment. The fragment could be an ob-
ject replica, or it could be an erasure-coded fragment of the object. Servers
retain all versions of fragments they are sent.

To perform a read, a client fetches the latest fragment versions from a
quorum of servers. The client considers the timestamps of the fragments
received and determines whether they comprise a complete write. During
concurrency- and failure-free access, they do comprise a complete write.
If they do not, historical fragments are fetched until a complete write is
observed. Only in certain cases of failures or concurrency are there additional
overheads incurred to maintain consistency.

A member of the R/W-PF is distinguished by its resiliency model and
the storage mechanisms it employs. The resiliency model is specified in three
parts. First, a timing model, either asynchronous or synchronous, is spec-
ified. Second, a server failure model is specified. R/W-PF members can
tolerate a mix of Byzantine and benign failures. Both the mixture of types
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of faults tolerated, and the number of each type of fault is specified. Third,
a client failure model is specified: either benign or Byzantine.

The storage mechanisms of a R/W-PF member are also specified in three
parts. First, the erasure code is specified. The choice of erasure code is con-
strained by the server failure model since the erasure code must provide
sufficient redundancy to tolerate the specified number of server faults. The
space-efficiency of the R/W-PF member is determined by the erasure code
specified. Second, the quorum construction is specified. Again, the choice is
constrained by the server failure model. Additionally, the quorum construc-
tion is constrained by the timing model and may also be constrained by the
erasure code. Third, witness use is specified—witness use is constrained by
the server failure model, timing model, erasure code, and quorum construc-
tion for the member.

Servers export the same interface regardless of which R/W-PF member
is used to read and write objects to them. This is illustrated in Figure 2.1 by
the dashed client-server interface line. To perform reads and writes, clients
issue quorum remote procedure calls (quorum RPCs) to sets of servers. There
are four quorum RPCs that clients may invoke:

– c qprc read latest that reads the latest fragment hosted at each
server in a quorum.

– c qrpc read previous that reads the latest fragment, prior to some
specified logical time, at each server in a quorum.

– c qrpc read time that reads the latest timestamp at each server in
a quorum.

– c qrpc write that writes a timestamp–fragment pair to each server
in a quorum.

This client-server interface is sufficient to implement R/W-PF members that
meet a broad range of resiliency and performance requirements.

The resiliency models and storage mechanisms define the versatility of
the R/W-PF. The R/W-PF is able to provide such broad versatility with
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such a simple interface because the protocol logic is localized to clients. The
timing model and server failure model dictate a minimum number of servers
that a client must interact with for a given R/W-PF member. The client
failure model dictates aspects of how a client must encode and decode an
object. The erasure code dictates other aspects of how a client must encode
and decode an object. The quorum construction dictates how many (or at
least which sets of) servers a client may access to read and write an object.
The witness use dictates whether or not a client sends or requests a fragment
in its read or write request. Because all of these decisions are localized in
client logic, the R/W-PF does not require an extensive server interface.

2.4 Related work

The R/W-PF builds on a large body prior work. This section reviews the
most relevant: versatility, consistency protocols, and quorum-based proto-
cols. Additional related work pertinent to the resiliency models and versatile
storage mechanisms of the R/W-PF is discussed in Chapter 3.

The R/W-PF grew out of the PASIS project that focused on extremely
reliable storage [Wylie et al., 2000]. The original PASIS prototype used era-
sure codes to store archival data. The initial prototype lead to an interest in
understanding the performance, availability, reliability, and security trade-
offs between different data distribution schemes (methods of encoding and
decoding objects) [Wylie et al., 2001]. From there, the focus moved to under-
standing if it was possible to leverage versioning servers to build extremely
reliable, efficient read/write storage, rather than archival storage. The tech-
niques and methods for efficiently tolerating Byzantine failures for an asyn-
chronous erasure-coded storage system resulted from this effort [Goodson
et al., 2004a]. Recently, this work was extended to include lazy verification,
a mechanism that efficiently tolerates writes of erasure-coded objects by
Byzantine faulty clients with bound storage capacity [Abd-El-Malek et al.,
2005b].

In our work towards the Byzantine fault-tolerant protocol, we realized
that the quorum-based nature of the protocol lent itself to localizing nearly
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all of the resiliency decisions in the client logic. Given this insight, we began
exploring the versatility that a family of read/write protocols could provide
[Goodson et al., 2003, 2004b; Wylie et al., 2004]. The prototype implemen-
tation of the R/W-PF is a key component of the Ursa Minor storage system
currently under development [Ganger et al., 2005].

2.4.1 Versatility

Protocol families

We do not have a rigorous definition of the term “protocol family” to which
we subject ourselves or others. The R/W-PF allows for great versatility
with a simple interface to servers. This is the key characterization of the
term “protocol family” for the sake of this dissertation. However, there is
prior work on versatile or modular protocols, which this section reviews.

Hadzilacos and Toueg [1994] developed a modular approach to fault-
tolerant broadcast. They developed a reliable broadcast primitive that pro-
vides different broadcast guarantees (reliable, FIFO, causal, atomic), and
does so for various timing models.

Cristian et al. [1995] systematically derive a logical family of atomic
broadcast protocols for a range of fault models (from crash faults to a sub-
set of Byzantine faults) in the synchronous timing model. Cristian et al.,
uses the term “family” to refer to the logical construction of the protocols
rather than their implementation. Members of the R/W-PF are realized in
a common implementation as well as being logically related. Mishra et al.
[2002] extend the work of Cristian et al. to an implementation for the timed
asynchronous model [Cristian and Fetzer, 1999]. Specifically, the Timewheel
group communication system provides nine distinct semantics (one of three
atomicity guarantees paired with one of three order guarantees) on a per
broadcast granularity. The Timewheel system does not tolerate Byzantine
failures.

Hiltunen et al. [1999] developed a framework for distributed services
that are easily configured to handle different failures. The framework is
distinguished from Timewheel in that high-level protocols are built out of
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micro-protocols [Bhatti and Schlichting, 1995] that implement individual
semantic properties (e.g., an atomicity guarantee or an ordering guarantee)
or mask particular failure types. The framework provides a methodology for
building micro-protocols and for composing micro-protocols into high-level
protocols, as well as a run-time system for distributed services.

Both Timewheel and the configurable framework provide a modular
means of employing distinct protocols. The R/W-PF is distinguished from
each of these in that servers have a narrow, fixed client-server interface that
supports all members of the protocol family. Additionally, the client imple-
mentation is shared across protocol family members.

Some prior work on adaptation in distributed systems has a similar mo-
tivation as the R/W-PF. For example, distributed systems have been de-
signed that adapt—that is, change aspects of the protocol being executed—
based on observed changes in the execution environment, or on user demand
[Hiltunen and Schlichting, 1996; Renesse et al., 1998; Chen et al., 2001].
These systems tend to take a “middleware” approach to the problem, in
contrast to the narrow, client-server interface approach of the R/W-PF.

The term “family” has been used as a modifier for other ideas and tech-
niques in the computer science literature, for example, “family of hash func-
tions”. We hope no confusion follows from our use of the term “family”.

Versatility in cluster-based storage

Petal [Lee and Thekkath, 1996], xFS [Anderson et al., 1996], and NASD [Gib-
son et al., 1998] are early systems that laid the groundwork for to-
day’s cluster-based storage designs. More recent examples include FAR-
SITE [Adya et al., 2002], FAB [Saito et al., 2004], EMC’s Centera [EMC
Corp., 2003], EqualLogic’s PS series product [EqualLogic Inc., 2003], Lus-
tre [Lustre, 2004], Panasas’ ActiveScale Storage Cluster [Panasas, Inc.,
2005], and the Google file system [Ghemawat et al., 2003]. Each of these
systems hard-codes most choices about the manner in which objects are
stored. For example, Petal replicates data for fault tolerance, tolerates only
server crashes (i.e., fail-stop servers), and uses chained declustering to dis-



2.4 Related work · 17

perse data and load across nodes in the cluster; these choices apply to all
data. xFS also uses one choice for the entire system: parity-based fault tol-
erance for server crashes and data striping for dispersing load. In contrast,
the R/W-PF provides versatility on a per-object basis.

FAB [Saito et al., 2004] and RepStore [Zhang et al., 2004] offer two
erasure codes (replication or erasure coding) rather than just one. FAB al-
lows the choice to be made on a per-volume basis at volume creation time.
RepStore, which has been designed and simulated, uses AutoRAID-like al-
gorithms to select which to use for which data in an adaptive manner. Au-
toRAID [Wilkes et al., 1996] automates versatile storage in a monolithic
disk array controller. Most disk array controllers allow specialized choices
to be made for each volume. AutoRAID goes beyond this by internally and
automatically adapting the choice for a data block (between RAID 5 and
mirroring) based on usage patterns.

2.4.2 Consistency

Consistent access to cluster-based storage requires a protocol that addresses
three sources of problems: access concurrency, servers failures, and client
failures (resulting in partial or corrupt updates). Many protocols have been
proposed, implemented, and used to address various mixes of these problems.
The R/W-PF implements an atomic register [Lamport, 1985], which we refer
to as a read/write object (or, just object), that permits multiple readers and
multiple writers access.

Most storage systems assume benign crash failures by clients and servers,
simplifying the problems significantly. Under such assumptions, access con-
currency can be addressed via leases [Gray and Cheriton, 1989], optimistic
concurrency control [Kung and Robinson, 1981], or serialization through a
primary [for example: Liskov et al., 1991; Lee and Thekkath, 1996]. Partial
writes by clients that fail can be addressed by two-phase commit [Gray,
1978] or by post-hoc repair (in systems using replication).

Most systems implementing Byzantine fault-tolerant services adopt the
state machine approach [Lamport, 1978; Schneider, 1990] wherein all op-
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erations are processed by all server replicas in the same order. There is
a long tradition of building increasingly efficient, or specialized, Byzantine
fault-tolerant agreement-based systems: the protocol of Bracha and Toueg
[1985] was improved upon by Rampart [Reiter, 1995], SecureRing [Kihlstrom
et al., 2001], BFT [Castro and Liskov, 2002], SINTRA [Cachin and Poritz,
2002], and FaB [Martin and Alvisi, 2005]. An alternative to agreement-based
protocols, that provide similar semantics, are protocols based on Byzantine
quorum systems [for example: Malkhi and Reiter, 1998; Malkhi et al., 2001;
Abd-El-Malek et al., 2005a]. These approaches linearize arbitrary opera-
tions, whereas the R/W-PF only linearizes reads and writes.

The R/W-PF is optimistic and designed to place work on clients rather
than servers. The optimistic approach allows most read operations to com-
plete in a single phase of client-server communication. Only reads concurrent
to a write or a failure may incur additional phases of communication. Stud-
ies of distributed storage systems indicate that concurrency is uncommon
[Baker et al., 1991; Noble and Satyanarayanan, 1994]: for example, they in-
dicate that writer-writer and writer-reader sharing occurs in under 1% of
operations. Failures, although more common than administrators and users
would like, are still uncommon events. The client is responsible for most
of the computation costs of a R/W-PF member. This follows the the well-
known principle of shifting work from servers to clients to increase scalability
[Howard et al., 1988].

Versioning storage

The R/W-PF relies on versioning servers to provide consistency efficiently.
We contrast our use of versioning to maintain consistency with systems in
which each write creates a new, immutable version of an object [for example:
Mullender, 1985; Reed, 1983]. Such systems shift consistency problems to
the metadata mechanism that resolves object names to a version. Systems
that employ such an approach (e.g., Past [Rowstron and Druschel, 2001]
and CFS [Dabek et al., 2001]) require a version tracking service to find the
latest version, whereas, the R/W-PF does not. Some systems (e.g., FAR-
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SITE [Adya et al., 2002] and OceanStore [Kubiatowicz et al., 2000]) use
replicated state machines for such metadata functions. Another option is
to layer higher-level services, as needed, atop a base read/write service—
for example, Frangipani [Thekkath et al., 1997] provides file services atop
Petal [Lee and Thekkath, 1996]. Ivy [Muthitacharoen et al., 2002] provides
decentralized read/write access to immutable stored data in a fashion sim-
ilar to some members of the R/W-PF. Per-client update logs (which are
similar to server histories) are merged by clients at read time. Ivy differs
from the R/W-PF in that it does not provide strong consistency semantics
in the face of data redundancy, concurrent accesses, or failures.

2.4.3 Quorum-based protocols

Herlihy and Tygar [1987] were perhaps the first to apply quorums to the
problem of protecting the integrity (and confidentiality) of replicated data
against Byzantine faulty servers, as do some R/W-PF members. Their work,
however, did not focus on achieving strong data semantics in the face of
concurrent access, did not admit the full range of system models of the
R/W-PF, and did not include an implementation or performance analysis.

There are many Byzantine fault-tolerant protocols for implementing
read-write objects using quorums [for example: Herlihy and Tygar, 1987;
Malkhi and Reiter, 1998; Pierce, 2001; Martin et al., 2002]. Of these, the
“Listener’s” approach of Martin et al. [2002], in that it uses a type of ver-
sioning, is closest to members of the R/W-PF that tolerate Byzantine faulty
components. In a R/W-PF member, a read may retrieve fragments for sev-
eral versions of the object in the course of identifying the object value to
return. Similarly, a read in the Listener’s protocol “listens” for updates (ver-
sions) from servers until an object value is observed that can be returned.
Conceptually, our approach differs in that clients read past versions, rather
than listening for future versions sent by servers.

The Listener’s protocol stores only replicated objects not erasure-coded
objects. Compared with a similar member of the R/W-PF, the Listener’s
protocol tolerates a higher fraction of faulty servers. The Listener’s pro-
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tocol tolerates poisonous [Martin et al., 2002] writes by Byzantine faulty
clients. However, to do so, the Listener’s protocol requires server-to-server
broadcast: correct servers broadcast values they receive to other servers.
The self-verifying nature of replicated objects is taken advantage of, so that
servers “reach agreement” on the object value written.

Malkhi and Reiter [2000] use an echo phase in a quorum-based protocol
to protect against poisonous writes (to ensure writes are justified in their
terminology). The echo phase ensures that a Byzantine faulty client sends
the same object value to each server and relies upon the self-verifying nature
of replicated objects to do so. Perhaps the first system to employ such an
echo phase was Rampart [Reiter, 1995].

Cachin and Tessaro [2005a,b] implement AVID, which extends the Lis-
tener’s approach of protecting against poisonous writes to erasure-coded ob-
jects. Since fragments of erasure-coded objects are not self-verifying, AVID
requires each server to receive sufficient fragments to verify the erasure cod-
ing of the written object.

The R/W-PF relies on versioning servers, in conjunction with cross
checksums [Gong, 1989] embedded in timestamps, to implement self-
validating timestamps [Goodson et al., 2004a]. Self-validating timestamps
protect erasure-coded objects from poisonous writes. However, the technique
permits Byzantine faulty clients to introduce an unbound amount of work
for subsequent readers. Lazy verification is an extension to the Byzantine
fault-tolerant members of the R/W-PF that bounds the number of poisonous
writes a single Byzantine faulty client can introduce [Abd-El-Malek et al.,
2005b].



3 The Read/Write Protocol Family

We describe R/W-PF membership in terms of resiliency models and stor-
age mechanisms. Resiliency models range from restrictive assumptions to
the near absence of assumptions about the operating environment. Many
mechanisms exist to improve the efficiency of distributed protocols in gen-
eral, and additional mechanisms exist to improve the efficiency of read/write
storage access protocols in specific. Storage mechanisms are the set of such
mechanisms that are incorporated in the R/W-PF.

3.1 Resiliency models

Broadly speaking, resiliency models specify the fault-tolerance of a R/W-
PF member. Table 3.1 summarizes the specification of the resiliency model.
To specify a resiliency model, one item from each row is selected: a timing
model, a server failure model, and a client failure model. As discussed in
Section 3.1.2, network failures are not modeled directly because most such
failures can be mapped to a server failure model.

3.1.1 Timing models

Two timing models may be specified in the R/W-PF:

– Asynchronous, in which no timeliness assumptions are made.

– Synchronous, in which known bounds on delays in the system are as-
sumed.

21
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Model Specification
Timing model Asynchronous or synchronous with timeout δ.
Server failure model Benign server failure model type (crash, omis-

sion, or crash-recovery), T all sets of faulty
servers to tolerate, and B all sets of malevolent
servers to tolerate.

Client failure model Either crash or Byzantine failures.

Table 3.1. Specification of resiliency model summary.

With asynchronous members no assumptions about message transmis-
sion delays or execution rates are made, except that they are finite and
non-zero. In contrast, with synchronous members, known bounds are as-
sumed for message transmission delays between correct clients and servers,
as well as the execution rates of clients and servers. To specify a synchronous
timing model the bound on delays is specified. It is sufficient to specify a
single bound δ on the total delay. This bound accounts for the delay in a
client sending a request to a server, the delay in that server processing the
request, and the delay in sending that server’s response back to the client.

Comments

The timed asynchronous model of [Cristian and Fetzer, 1999] and the par-
tially synchronous model of [Dwork et al., 1988] are not directly included
in the R/W-PF. The timed asynchronous model allows components to have
local clocks that “proceed within a linear envelope of real-time”, restricts
channel failures to be omission faults or performance faults, and requires
services to meet timeliness guarantees. Such a model is appealing because
the FLP impossibility result [Fischer et al., 1985] can be circumvented allow-
ing many difficult problems to be solved with a deterministic protocol that
terminates. Since the R/W-PF simply implements an atomic read/write reg-
ister, the FLP impossibility result does not apply. The restrictions on failure
types and the focus on timeliness guarantees fit poorly with R/W-PF mem-
bers that tolerate malevolent components. Providing a quality of service
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guarantee (i.e., timeliness) in the face of malevolent components that may
attempt denial of service attacks is an open problem. Thus, we focus on the
safety and liveness of reads and writes in R/W-PF members but not on the
timeliness of such operations.

In the partially synchronous model, periods of synchronous operation
are assumed to occur, but they do so at unspecified times or with unknown
bounds on the delay. Although the R/W-PF does not allow a “partially syn-
chronous” timing model to be specified, a combination of synchronous timing
model and crash-recovery servers (discussed below) very closely follows one
definition of a partially synchronous system. In such R/W-PF members, the
bound on delay is specified, but the time at which the bound becomes true is
not. During periods of time when the bound is true, progress can be made.

Often, distributed systems take advantage of loosely synchronized clocks
to improve performance [Liskov, 1991]. We do not explicitly include loosely
synchronized clocks in the timing model. However, we do consider them in
the prototype implementation of the R/W-PF (see Section 7.9).

3.1.2 Server failure models

A broad range of server failure models may be specified in the R/W-PF:

– Crash failures, in which some servers crash and never respond to re-
quests again.

– Omission failures, in which some servers simply drop some received
requests or fail to send some responses [Perry and Toueg, 1986].

– Crash-recovery failures, in which all servers may crash and recover,
but there is a time after which some set of servers are guaranteed to
be up and to not crash again [Aguilera et al., 2000].

– Byzantine failures, in which some servers may exhibit arbitrary behav-
ior [Lamport et al., 1982].

In the synchronous timing model, crash failures can be reduced to fail-
stop failures, in which servers detectably crash [Schlichting and Schneider,



24 · A read/write protocol family for versatile storage infrastructures

1983; Schneider, 1984]. Omission failures are a strict generalization of crash
failures. For example, a server may receive and send messages to only a
subset of clients as if the network were partitioned: to the excluded clients,
such an omission failure is indistinguishable from a crash failure. The crash-
recovery failure model is a strict generalization of the omission failure model.
The Byzantine failure model is a strict generalization of the crash-recovery
failure model. Servers that are Byzantine faulty may act maliciously; they
may manipulate stored data, send different replies to similar requests from
distinct clients, and so on. Since the Byzantine failure model is a strict gen-
eralization of the crash-recovery failure model, another term — malevolent
— is used to categorize those servers that in fact exhibit out-of-specification,
non-crash behavior.

Aguilera et al. [2000] uses the following terminology to describe servers
(processes) in the crash-recovery model: each server can be classified as
always-up, eventually-up, eventually-down, or unstable. A server that is
always-up never crashes. A server that is eventually-up crashes at least
once, but there is a time after which it is permanently up. A server that
is eventually-down crashes at least once, and there is a time after which it is
permanently down. A server that is unstable crashes and recovers infinitely
many times.

We extend the crash-recovery terminology as follows. A server is good if
it is always-up or eventually-up. A server is faulty if it is eventually-down,
unstable, or malevolent. Each server is either good or faulty. A server is be-
nign if it is good, eventually-down, or unstable. Each server is either benign
or malevolent. Since the crash-recovery failure model is a strict generaliza-
tion of the omission and crash failure models, these terms are well defined
regardless of which failure model is specified.

In the interest of allowing the richest set of possible server failure mod-
els, the server failure model for the R/W-PF membership is a hybrid failure
model [Meyer and Pradhan, 1991; Thambidurai and Park, 1988]. To specify
a hybrid failure model, sets of faulty servers are specified, subsets of which
may be malevolent. We extend the definition of a fail prone system given by
Malkhi and Reiter [1998] to accommodate the hybrid server failure model.
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We assume a universe U of servers such that |U | = n. The system is charac-
terized by two sets: the faulty sets T ⊆ 2U and the malevolent sets B ⊆ 2U .
(The notation 2set denotes the power set of set). In any execution, all faulty
servers are included in some T ∈ T and all malevolent servers are included
in some B ∈ B. It follows from the definitions of faulty and malevolent that,
in any given execution, B ⊆ T .

The benign server failure models are the crash, omission, and crash-
recovery failure models. To specify a hybrid failure model, a specific benign
server failure model is selected and then the failure sets T and B are specified.
If only benign server failures are tolerated, then B = ∅. If all faulty servers
may be malevolent, then T = B.

Comments

As stated above, if the crash-recovery failure model is specified, all servers
may crash and recover. Clearly, if too many servers are crashed simulta-
neously, progress is not possible. However, once sufficient servers recover,
progress is again possible.

As stated above, T is the set of sets of faulty servers that are tolerated.
For a given execution, T ∈ T is the set of faulty servers. With the crash-
recovery failure model for servers there may be periods of an execution
during which servers not in T are crashed. So long as sufficient servers are
up, potentially some in T , it is possible to make progress. In practice, the
crash-recovery failure model is more general (useful) than the restriction
“there being a time after which good servers are up” may suggest. During
any period in which the set of crashed servers is in T , progress is possible.

In the server failure model, send omission failures [Perry and Toueg, 1986]
are not distinguished from receive omission failures [Hadzilacos, 1984]. The
omission failure model is a general omission failure model [Perry and Toueg,
1986] that tolerates both send and receive omission failures.

In some failure specifications, the type and number of link failures is
distinguished from the type and number of process (server) failures; we do
not make such a distinction. For a given system installation, consideration
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of network topology and the reliability of shared network hardware (e.g.,
switches and routers) could inform the specification of fault sets. (Alter-
nately, the specification of fault sets could inform network topology and
physical layout.) Regardless, little is gained by directly incorporating link
failure models in the resiliency models: such failures can be mapped to omis-
sion and crash-recovery failures.

There is a long history in distributed systems of considering servers that
crash and recover [for example, Lampson et al., 1981]. Moreover, there are
many recent formalisms [for example: Hurfin et al., 1998; Boichat and Guer-
raoui, 2000] other than that of Aguilera et al. [2000] for modeling servers
that crash and recover. The hybrid model used by Backes and Cachin [2003]
in the development of a reliable broadcast primitive tolerates Byzantine fail-
ures and processes that crash and recover.

Some failure classifications distinguish timing faults from value faults.
The benign server failure models are examples of timing faults. Malevolent
servers exhibit value faults. “Benign” value faults—for example, “bit-flips”
during transmission or in memory—are not modeled separately from mal-
evolent faults in the server failure models. The rationale is that components
can readily be hardened against such failures independently by employing
mechanisms such as checksums in the transport protocol and ECC memory.

3.1.3 Client failure models

Two client failure models may be specified in the R/W-PF:

– Crash failures, in which clients may crash.

– Byzantine failures, in which clients may exhibit arbitrary and malicious
behavior.

We refer to clients that exhibit out-of-specification, non-crash failures as
malevolent. We refer to clients that are correct or that follow their specifi-
cation except for crashing as benign. There is no bound on the number of
clients that may fail.
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Comments

Fewer client failure models may be specified than server failure models. No
useful versatility is gained by specifying omission, or crash-recovery failure
models for clients in the R/W-PF.

An authorized malevolent client can write arbitrary values to the object.
A simple data abstraction such as an atomic read/write register cannot
enforce restrictions on the stored value. R/W-PF members that tolerate
Byzantine failures of clients guarantee that such clients write a single value
to the object consistently.

In an asynchronous system, readers cannot distinguish read-write con-
currency from a client crash failure during a write operation. In a syn-
chronous system in which only benign component failures are tolerated,
readers can distinguish read-write concurrency from a crash failure during a
write operation (by issuing multiple read requests separated in time by δ).
The ability to distinguish crash clients from concurrent clients provides no
obvious performance benefits in the R/W-PF. Even though there is the po-
tential to take advantage of such information in benign synchronous systems,
we do not.

3.2 Storage mechanisms

Each member of the R/W-PF specifies a set of storage mechanisms to employ
when reading and writing objects. In some cases, these mechanisms enhance
the versatility of the R/W-PF, in others these mechanisms simply improve
its efficiency. Whereas the range of interesting and useful resiliency models is
clear given the extensive distributed systems and fault-tolerance literature,
a near endless list of mechanisms and techniques have been proposed in the
context of distributed protocols. Limiting the scope to read/write objects,
we have identified a set of storage mechanisms that integrate nicely in the
R/W-PF:

– Quorum system, which dictates the sets of servers that a client can
interact with to read and write an object.
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– Encoding, which dictates how objects are encoded by a client on a
write and decoded by a client on a read.

– Witnesses, which dictates which sets of servers must store data and
metadata pertaining to an object and which sets of servers need only
store metadata.

3.2.1 Quorum system

We extend the definition of a quorum system given by Malkhi and Reiter
[1998] to facilitate the discussion of objects stored in different quorum sys-
tems on a common set of servers. We assume a universe U of servers. A
quorum system employed by a R/W-PF member is based on a sub-universe
U ⊆ U, such that |U | = n. A quorum system Q ⊆ 2U is a non-empty set of
subsets of U , every pair of which intersect. Each Q ∈ Q is called a quorum.
The rationale for defining quorum systems in terms of sub-universes is to
allow different R/W-PF members to employ different quorum systems com-
prised of potentially disjoint sets of servers. This is desirable in the context
of cluster-based storage.

To specify the quorum system for an R/W-PF member, either the quo-
rum construction method must be specified, or a specific quorum system Q
must be specified. The failure models, specifically T and B, place restrictions
on the construction of the quorum system. The timing model places addi-
tional restrictions on the construction of the quorum system. We develop
constraints on quorum system construction, given the server failure model
and timing model, in Section 5.1.

Comments

Quorum systems are a generalization of majority voting systems [Gifford,
1979; Thomas, 1979]. The construction of a quorum system affects its load
and availability [Naor and Wool, 1998; Malkhi et al., 2000]. In the con-
text of quorum systems, load has a specific meaning: load is the fraction of
time the busiest server (process) is used, given some quorum access strat-
egy. Although quorum constructions with ideal load and availability have
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been identified [Naor and Wool, 1998; Malkhi et al., 2000], quorum systems
must be very large before the asymptotic nature of the analysis holds. This
is especially true when tolerating multiple faults and/or Byzantine server
failures.

In some sense, quorum constructions implicitly define additional sets of
faulty servers that can be tolerated. For example, for some Q ∈ Q, all of the
servers in U\Qmay crash (i.e., T ⊆ U\Q). Malkhi et al. [2000] consider these
faulty sets in their evaluation of the crash probability of different quorum
constructions that tolerate malevolent failure sets. However, they do not
explicitly construct quorums that tolerate a hybrid server failure model.

Beyond picking a quorum to access initially, the strategy also specifies
how to probe for quorums [Peleg and Wool, 1996; Hassin and Peleg, 2001].
We do not explicitly list the quorum access strategy and probing policy in
the quorum model, but these too could differentiate R/W-PF members.

From a “system’s perspective”, quorum construction provides different
throughput–availability trade-offs. Since load is an overloaded term in sys-
tems, we refer to the throughput-scalability of quorum constructions. The
experience of database practitioners suggests that it may be difficult to take
advantage of quorum-based throughput-scalability. For example, Jiménez-
Peris et al. [2003] conclude that a write-all read-one approach is better for a
large range of database applications than a quorum-based approach. Their
analysis ignores concurrency control and is based on two phase commit-based
data replication with fail-stop failures in a synchronous model. In response
to some criticisms of quorum-based approaches, Wool argues that quorum-
based approaches are well-suited to large scale distributed systems that tol-
erate Byzantine failures [Wool, 1998]. Recent work (pardon the self-citation)
demonstrates that quorum-based protocols can be fault-scalable [Abd-El-
Malek et al., 2005a]: throughput of quorum-based protocols does not degrade
significantly as the number of faults tolerated increases.

Operation types (e.g., read vs. write) are not considered in the theoretical
evaluations of quorum constructions. For the case of read-write storage, a
write-all policy (i.e., send to all servers in U) merits consideration, especially
if reliability is a priority.



30 · A read/write protocol family for versatile storage infrastructures

The nature of read/write storage lends itself to partitioning: different
objects can be stored in different quorum systems. Quorum constructions
for throughput-scalability are interesting only in the context of individual
objects. Whereas, for cluster-based storage systems, throughput-scalability
by distributing objects over a larger universe of servers is quite efficient.

The quorum-based nature of the R/W-PF localizes protocol family logic
to the client, simplifying the construction of the R/W-PF. Read-write stor-
age ought to tolerate many failures (some not benign), and so the fault-
scalability of quorum-based approaches is important to the R/W-PF. Fi-
nally, the R/W-PF gets some throughput-scalability “for free” simply by em-
ploying quorum constructions that tolerate many (potentially malevolent)
failures.

There are probabilistic quorum constructions that, in theory, provide bet-
ter throughput-scalability than traditional quorum constructions [For exam-
ple: Malkhi et al., 1997; Yu, 2004]. However, such constructions necessarily
reduce the consistency guarantee that corresponding quorum-based proto-
cols can achieve. There are also quorum constructions that adapt quorum
size, within some range, in response to the known set of failures [Alvisi
et al., 2000; Martin and Alvisi, 2004]. Such approaches assume a mechanism
to detect server failures.

3.2.2 Encoding

A client encodes an object during a write and decodes an object during a
read. Of primary concern for the R/W-PF is encoding objects redundantly
so that they can be written to sets of servers. The fault-tolerant nature
of the R/W-PF requires that objects can be decoded given responses from
only a subset of servers to which they were written. As such, objects must
be encoded in an erasure-tolerant manner. For encode, we refer to an object
being erasure-coded into fragments.

For every quorum Q ∈ Q, there are a set of decodable sets. Every de-
codable set M ∈ M(Q) is decodable so long as all fragments from M are
correct. The primary encoding mechanism in the R/W-PF is an m-of-n
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Figure 3.1. An example of an object being erasure-coded with an m-of-n
threshold erasure code. In this example, m = 2 and n = 5. To illustrate
stripe-fragments, the object is shown as having two halves (since m = 2).
Any m of the n fragments can be used to decode the object.

threshold erasure code which encodes an object into n fragments such that
any m is sufficient to decode. Note that m ≤ n. For m-of-n threshold era-
sure codes,M(Q) = {∀M ⊆ 2Q : |M | = m}. Figure 3.1 illustrates an object
being erasure-coded. That is, correct fragments from any m servers in any
quorum are sufficient to decode the object.

There are many specialized threshold erasure codes. For example,
replication, Reed-Solomon codes [Berlekamp, 1968], Shamir’s secret shar-
ing [Shamir, 1979], ramp schemes [Blakley and Meadows, 1985], RAID
3/4/5/6 [Patterson et al., 1988], Rabin’s information dispersal (IDA) [Rabin,
1989], and Krawczyk’s short secret sharing [Krawczyk, 1994] are all thresh-
old erasure codes. Different erasure codes provide different space-efficiencies.
We define blowup as the ratio of the total size of all fragments to the object
size1. The space-efficiency of an erasure code determines the network band-
width required to read and write, as well as the disk capacity required to
store encoded objects. Different erasure codes require different amounts of
client computation to encode and decode. For example, replication requires
effectively no client computation, whereas all other threshold erasure codes

1The rate of an erasure or error correcting code is a commonly used metric of its
(space-)efficiency. Blowup is the inverse of the rate. Blowup is positively correlated with
the increase in response time measured for R/W-PF members with poor space-efficiency
and thus more useful for understanding the empirical results in this dissertation.
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Erasure code (m,n) Description
Replication (1, n) Each fragment is an identical replica of the

original object.
RAID 4 (n− 1, n) A single parity fragment is calculated: the

object is “striped” over m fragments, all of
which are xored together to produce the
parity fragment.

IDA (m,n) Rabin’s information dispersal: the object is
“striped” over m fragments and n −m re-
dundant fragments are calculated.

Table 3.2. Specification of encoding.

require client computation to calculate redundant fragments. Table 3.2 lists
the threshold erasure codes that can currently be specified for an R/W-PF
member.

Comments on threshold erasure codes

We use RAID 4, which constructs parity at the fragment level, in the R/W-
PF rather than RAID 3, which constructs parity at the code-word level,
because RAID 4 is a systematic code. In a systematic code, some m of
the fragments are simply portions of a replica of the encoded object. For
example, the “first” stripe-fragment consists of the first 1

m

th of the object.
As such, it is possible, by reading the appropriate m fragments, to decode an
object encoded with a systematic code without performing any computation.

RAID 5 specifies that parity fragments for different encoded objects are
rotated among servers. Such a layout policy allows systematic reads and
RAID read-modify-writes to be dispersed among all servers. Since we con-
sider layout an orthogonal systems issue to redundancy, we include RAID
4 rather than RAID 5 in the set of erasure codes. However, a simple layout
policy that rotates parity is incorporated in the implementation. Such a lay-
out policy coupled with the RAID 4 encoding implements RAID 5. Layout
policies are described in Section 7.5.
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RAID 6 tolerates two erasures, whereas RAID 3/4/5 each tolerate one
erasure. Whereas other RAID levels mean (roughly) the same thing to ev-
ery storage engineer, RAID 6 is an enigma. So long as a scheme tolerates
two erasures and does not require too much computation—ideally only per-
forming xor operations—then it may be “RAID 6”. Regardless, all “RAID
6” schemes of which we are aware intermingle fragment layout and redun-
dancy calculation. As such, we do not consider RAID 6. The general class of
schemes that specify both layout and redundancy so that only xor opera-
tions are required are called array codes [Blaum, 1987]. EVENODD [Blaum
et al., 1995] and Row-Diagonal Parity [Corbett et al., 2004] are examples
of array codes that tolerate two erasures. Hafner et al. [2004] survey many
array codes that tolerate two erasures.

The means of generating redundancy for IDA is not explicitly specified
as part of the encoding model. In Section 7.11, we describe the implemen-
tation of IDA in the prototype. Different implementations result in different
compute costs depending on m.

Comments on other erasure codes

Recently, low-density parity-check (LDPC) codes [Gallager, 1963; Luby
et al., 2001] have received much attention. LDPC codes compute redun-
dant fragments via xor of subsets of “stripes” of the object. LDPC codes
trade-off being perfect—being able to decode given exactly as many bytes as
are in the object—for reduced encode/decode computation. LDPC codes are
probabilistic in nature and are best-suited to applications involving thou-
sands of fragments. Digital Fountain [Byers et al., 1998] applied LDPC codes
to multicast streams. Plank and Thomason [2004] applied LDPC codes to
storage for grid-based computing. In my opinion, the probabilistic nature
of the number of fragments required to decode does not lend LDPC codes
to “small” storage systems of tens or even hundreds of servers. A variant
of LDPC codes, rateless erasure codes [Luby, 2002], has also received some
attention. Rateless erasure codes do not require the number of redundant
fragments, or the exact method of constructing such fragments, to be speci-
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fied a priori. Again, the major application is in bulk network transfer rather
than fault-tolerant storage.

In addition to tolerating erasures, some threshold erasure codes pro-
vide confidentiality guarantees. For example, Shamir’s secret sharing as
well as ramp schemes provide information-theoretic confidentiality, whereas
Krawczyk’s short secret sharing provides cryptographic confidentiality. An-
other option for confidentiality, given some channel for managing crypto-
graphic keys among clients, is to encrypt an object prior to erasure-coding
the object.

Often, secret sharing schemes are paired with access structures [for ex-
ample, Blundo et al., 1996]. Access structures allow specific sets of frag-
ments to recover specific objects (secrets). Access structures can be tailored
to a specific quorum system. Exploring the utility of access structures in
cluster-based storage, in conjunction with access control may be interesting,
however, it is outside the scope of the R/W-PF. Our focus on threshold
erasure codes is due to the simplicity of integrating such erasure codes with
threshold quorum constructions.

Comments on the integrity of erasure codes

As suggested by the name, erasure codes tolerate erasures, not errors: mal-
evolent servers can corrupt fragments. If corrupt fragments are used to de-
code an object, then the decoded “object” is incorrect. Error correcting codes
could be employed to protect against corrupt fragments, however error cor-
recting codes are more compute intensive and less space-efficient than era-
sure codes. Tompa and Woll [1988] proposed an information-theoretic con-
struction for detecting corrupt fragments in Shamir’s secret sharing. How-
ever, it is even more computationally expensive and less space-efficient then
error correcting codes (but it maintains confidentiality).

Gong [1989] developed cross checksums to detect corrupt erasure-coded
fragments. A cryptographic digest of each fragment is computed, and the
set of n digests are concatenated to form the cross checksum of the object.
The cross checksum is stored with each fragment. Since the cross checksum
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is essentially replicated, comparing cross checksums across fragments during
decode is sufficient to determine the correct cross checksum. The correct
cross checksum is then used to validate the integrity of fragments before
they are used to decode the object.

Krawczyk [1993] improved the space-efficiency of cross checksums by
applying error correcting codes to the cross checksum; Krawczyk referred to
this technique as distributed fingerprints. Alon et al. [2002] applied aspects
of LDPC codes and error correcting codes to protect against malevolent
servers in very large systems [cf., addendum Alon et al., 2004]. Krohn et al.
[2004] used homomorphic hashes to detect servers sending corrupt fragments
during the read and decode process for a rateless erasure code.

Malevolent clients can write arbitrary fragments to servers. For example,
malevolent clients could write different object “replicas” to different servers.
The value a client subsequently reads then depends on which servers the
client contacts. This is unacceptable for a storage system. The value re-
turned by a read operation can not depend on which servers reply. Martin
et al. [2002] termed such an attack a poisonous write. Since replicated ob-
jects are self-verifying, a collision-resistant cryptographic hash of the object
can protect against poisonous writes. For example, such a hash could be
embedded in the name of the object [for example, Mazieres et al., 1999]
or agreed upon by servers prior to accepting object replicas [for example,
Martin et al., 2002].

Poisonous writes of erasure-coded objects are more difficult to detect
and tolerate than poisonous writes of replicated objects. For example, a
malevolent client can generate random fragments such that any m frag-
ments decode to a different value. Such a poisonous write results in

(
n
m

)
values being written simultaneously. Protecting against poisonous writes of
erasure-coded objects could be cast as verifiable secret sharing [for example,
Chor et al., 1985; Feldman, 1987; Pedersen, 1991]. However, such techniques
incur unnecessary computational and space costs for encoded objects that
are not confidential. Cachin and Tessaro developed verifiable information
dispersal based on verifiable secret sharing techniques [Cachin and Tessaro,
2005a,b]. Such techniques require a verification phase in which servers ex-
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change sufficient fragments to determine if all servers received a fragment
consistent with a non-poisonous write. Unfortunately, the space-efficiency of
verifiable information dispersal on the network is the same as replication.

We developed self-validating timestamps to protect erasure-coded ob-
jects from poisonous writes [Goodson et al., 2004a]. Self-validating time-
stamps combine aspects of cross checksums with self-verifying data, and
rely on versioning servers to retain the latest non-poisonous version of the
object. Verification of self-validating timestamps is performed at read-time
by clients during decode. Section 4.8 describes self-validating timestamps in
detail. Servers can lazily verify self-validating timestamps during idle time
prior to a client performing a read or on demand when a read request is
received [Abd-El-Malek et al., 2005b].

3.2.3 Witnesses

Figure 3.2 illustrates witnesses in the R/W-PF. We use the term write wit-
ness to denote a client write request that includes only a timestamp to a
server, rather than a timestamp and an erasure-coded fragment (i.e., a can-
didate). We use the term read witness to denote a server read response that
includes only a timestamp, rather than a timestamp and an erasure-coded
fragment. A server that hosts a timestamp and an erasure-coded fragment
can reply with either a candidate or a read witness. Whereas a server that is
sent a write witness can only reply to read requests with a read witness. The
number of write requests and read responses that can make use of write and
read witnesses is limited by the timing model, server failure model, quorum
system, and threshold erasure code.

Comments

Witnesses are used in replica voting protocols to avoid sending or receiving
entire replicas to/from every server [Pâris, 1986]. For example, only version
numbers or replica digests need be exchanged. Witnesses can reduce the
network and storage bandwidth required for replica-based protocols. De-
pending on the context in which they have been used, witnesses have also
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Figure 3.2. An illustration of witnesses. For a read witness, a server simply
returns the timestamp of a candidate. For a write witness, a client only sends
a server the timestamp of the candidate.

been called bystanders [Pâris, 1989], ghosts [van Renesse and Tanenbaum,
1988], and likely other names as well.

In the R/W-PF, self-validating timestamps [Goodson et al., 2004a] are
used as witnesses. These serve as witnesses for erasure-coded fragments even
in the face of malevolent components.
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4 Design

4.1 Overview

At a high level, R/W-PF members proceed as follows. To perform a write
operation on an object, a client first constructs a logical timestamp. Logical
timestamps are used to totally order all write operations. Logical timestamps
also identify erasure-coded fragments pertaining to the same write operation
across a set of servers. To construct a logical timestamp, a client queries a
quorum of servers for the latest candidate timestamp they host. The client
identifies the highest timestamp in the quorum of responses it receives. It
then constructs a higher timestamp. The client then sends each server in
a quorum a write request. The write request includes the new timestamp
and the erasure-coded fragment of the object. Together, the timestamp and
fragment pair is called a candidate.

To perform a read operation on an object, a client issues read-latest
requests to a quorum of servers. Once a quorum of servers replies, the client
identifies the candidate with the highest timestamp in the response set.
The set of server responses that share the same timestamp as the identified
candidate are the candidate set. The client performs classification on the
candidate set. Classification determines whether the candidate is complete,
repairable, or incomplete.

If the candidate is classified complete, the fragments are decoded and
validated. Validation protects against malevolent components. If validation
is successful, the object is decoded and returned. Otherwise, the candidate
is reclassified as incomplete.

39
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If the candidate is classified repairable, it is validated. If validation is
successful, the candidate is repaired. To repair a candidate, the client per-
forming the read issues write requests so that a quorum of servers host the
candidate. Once a quorum of servers host the candidate, the decoded object
is returned. Otherwise, the candidate is reclassified as incomplete.

If the candidate is classified incomplete (or reclassified as incomplete),
the candidate is discarded by the client. The client issues read-previous re-
quests to a quorum of servers, requesting candidates with a lower timestamp
than that of the discarded candidate. Once the client has another response
set, it identifies a new candidate and classification begins anew. So that
clients can traverse as many candidates as necessary to find a complete can-
didate, servers retain all candidates they ever accept.

4.1.1 High-level examples

This section presents a series of high-level examples to illustrate the actions
a client takes in the course of read and write operations. Figure 4.1 shows
the setup for these examples. This setup is based on the smallest threshold
quorum construction for an asynchronous R/W-PF member that tolerates
a single malevolent server (i.e., n = 5, q = 4, r = 2, t = b = 1,m = 2). These
simple examples elide the details of tolerating such malevolent components.

Figure 4.2 illustrates a write operation. First, the client issues read time
requests to a quorum of servers. Second, each server responds with the time-
stamp of the latest candidate in its history. The client constructs a response
set and identifies “1” as the latest timestamp. It constructs a higher time-
stamp, “2”. Third, the client sends write requests to a quorum of servers
baring the timestamp “2”. The details of sending erasure-coded fragments
in each write request are elided. Each of the servers that receives a write
request accepts the candidate sent by the client. Each server adds the ac-
cepted candidate to its history. At this point, the candidate is established.
Fourth, the servers reply to the client. Once the client receives responses
from a quorum of servers, it knows that its write operation is complete, and
it returns.
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Figure 4.1. Setup for a series of examples for an R/W-PF member. A client
on the left with an empty response set. Five servers on the right with their
initial histories. Only timestamps of candidates are listed in each server’s
history.

Figure 4.2 effectively illustrates a simple read operation as well. The
steps taken by a client to read a timestamp in Figures 4.2a and 4.2b are the
same as in a read operation that issues read-latest requests rather than read
time requests. The response set in Figure 4.2b is identical to the candidate
set, and the candidate with timestamp “1” is classified complete. The client
decodes the object corresponding to timestamp “1” and returns. For read
operations that are not concurrent to write operations, a read operation that
returns after a single round of client-server communication is the expected
common case.

Figure 4.3 illustrates a read operation that is concurrent to a write op-
eration. Notice the state of the server histories in Figure 4.3a—only the first
two servers have accepted write requests for the candidate with timestamp
“2”. First, a client issues read-latest requests to a quorum of servers. Sec-
ond, once the client receives a quorum of responses, it identifies the latest
candidate. The candidate with timestamp “2” is the latest candidate. The
candidate set has only two members. In this illustrative example r = 2 and
m = 2 so the client classifies candidate “2” repairable. Third, the client
generates fragments for those servers that do not have “2” in their histories,
and then sends repair (write) requests to those servers. The third and fourth
servers accept the write requests. Fourth, the client receives responses to its
repair requests. The client classifies candidate “2” as complete and returns
the decoded object.
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(a) Read-time requests

(b) Read-time responses

(c) Write requests

(d) Write responses

Figure 4.2. Example write operation.
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(a) Read-latest requests

(b) Read-latest responses

(c) Repair (write) requests

(d) Repair (write) responses

Figure 4.3. Example read operation that requires repair.
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(a) Read-latest requests

(b) Read-latest responses

(c) Read-previous request

(d) Read-previous response

Figure 4.4. Example read operation that requires reading previous.
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Figure 4.4 illustrates a different read operation that is concurrent to a
write operation. This example is similar to the prior, except that the client
accesses a different quorum of servers. After the client receives responses to
its read-latest requests, it identifies candidate “2” as the latest. However,
as Figure 4.4b shows, the candidate set has only one member. As such, the
client classifies “2” incomplete. The client issues a read-previous request,
requesting a candidate with an earlier timestamp than “2”. After the client
receives a response, it identifies a new latest candidate “1”. Given the can-
didate set, the client classifies candidate “1” complete. The client returns
the decoded object.

4.2 System model

The protocol family concept applies to systems comprised of many clients
and many servers in which clients interact with sets of servers. Clients do
not communicate directly with other clients and servers do not communicate
directly with other servers. We assume all channels are authenticated: clients
can verify server responses and servers can verify client requests. With regard
to access control, clients are authorized or not, and if authorized may read
or write the object.

We assume point-to-point authenticated channels with properties similar
to those defined by Aguilera et al. [2000]: channels do not create messages
(no creation), channels may experience finite duplication, and channels are
fair loss. The finite duplication property ensures that if benign process p1

sends a message to benign process p2 only a finite number of times, then p2

receives the message only a finite number of times. The fair loss property
ensures that if benign process p1 sends infinitely many messages to good
process p2, then p2 receives infinitely many messages from p1. For R/W-PF
members with synchronous timing models, we further assume timeliness:
repeatedly sending requests over such channel ensures that a correct server
will respond within δ delay of the first request.

We assume that servers have stable storage that persists throughout the
crash and recover process. Benign servers retain all requests ever accepted
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in persistent storage.
We assume that clients and servers are computational bound such that

cryptographic primitives are effective. Specifically, we assume the existence
of collision-resistant hash functions.

4.3 Notation and data structures

We present the design of the R/W-PF for an individual object (i.e., atomic
read/write register). The implementation details regarding storing many
objects are discussed in Chapter 7

The notation used in the pseudo-code is listed in Table 4.1. Both clients
and servers make use of the well-known zero time 0 and the null value ⊥.

Constants, data types, enumerations, and data structures used through-
out the pseudo-code are defined in Figure 4.5. As used in the pseudo-
code, the “flags” asynchronous flag, malevolent clients flag, and
malevolent servers flag are effectively “global constants” for a given
R/W-PF member. In practice, an R/W-PF specification is passed from
clients to servers with each request.

The equality (=) and less than (<) operators are well-defined for time-
stamps. Less than is based on comparing LogicalTime, ClientID , and then
CrossChecksum (lexicographic comparison).

4.4 Encoding

Figure 4.6 lists functions used to encode and decode objects. Server Server
is implicitly mapped to some unique identifier in the range 1 through n.

The functions decode and generate fragments rely on the determin-
istic nature of the threshold erasure code. The function decode is for a
systematic erasure code in which the first m fragments are stripe-fragments
(see line 404). The pseudo-code for function decode is inefficient. It calls the
function generate fragments (see line 403), which generates n fragments,
even though only m are needed by decode. In fact, because of the system-
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Notation Description
VariableName Denotes variable name.

function name Denotes function name.
constant name Denotes constant name.

〈a, b〉 Angle brackets denote tuples (e.g., the pair a and b).
{a, b} Curly braces denote a set (e.g., a set with two ele-

ments: a and b).
(a) Parentheses are occasionally used to denote a single-

ton set (i.e., a set with a single element).
a.b The ‘dot’ operator denotes members of a structure

(e.g., element b of variable a); it may be applied to
every member of a set.

a | b The pipe operator denotes concatenation of a and b.
|a| Magnitude of a; context distinguishes magnitude bars

from concatentation.
a = b The equality operator (e.g., true if a equals b).
a := b The assignment operator (e.g., a equals b after this

assignment).
0 Well-known “zero time” for logical timestamps.
⊥ Well-known “null” value.

Table 4.1. Notation used in pseudo-code.

atic erasure code, if the fragments 1 through m are passed into decode, no
computation is required.

The function hash provides a digest of whatever value is passed in.
However, it only performs a collision resistant hash if malevolent components
are tolerated by the R/W-PF member. If malevolent components are not
tolerated, then hash is essentially a no-op.

4.5 Server

The server pseudo-code is shown in Figure 4.7. Servers expose the same
interface, regardless of R/W-PF member.

A server retains candidates from write requests it accepts. A server stores
accepted candidates in its history History . We refer to servers as being
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100: /∗ Classifications. ∗/
101: ClassificationType ∈ {incomplete,repairable,complete}
102: /∗ Flags describing salient aspects of the resiliency model of R/W-PF. ∗/
103: asynchronous flag ∈ {true, false}
104: malevolent clients flag ∈ {true, false}
105: malevolent servers flag ∈ {true, false}

106: /∗ Cross checksum. ∗/
107: CrossChecksum ≡ Digest [U ] /∗ Array of digests indexed by server. ∗/

108: /∗ Logical timestamp structure. ∗/
109: Timestamp ≡ {
110: LogicalTime /∗ Major component of logical time. ∗/
111: ClientID /∗ Client ID. ∗/
112: CrossChecksum /∗ Cross checksum. ∗/
113: }

114: /∗ Candidate structure. A candidate is initialized to 〈0,⊥〉. ∗/
115: Candidate ≡ {
116: Timestamp /∗ Logical timestamp. ∗/
117: Fragment /∗ Erasure-coded fragment. ∗/
118: }

119: /∗ Server history. ∗/
120: History ≡ {Candidate} /∗ Set of accepted requests. ∗/

Figure 4.5. Constants, data types, enumerations, and structures.

versioning servers because they retain each accepted candidate. Each server
initializes its history to the well-known initial value for a candidate, 〈0,⊥〉
(see line 700). The History is kept in stable storage such that it persists
during a server crash and subsequent recovery.

Servers receive four different types of requests from clients:
time request, write request, read latest request, and
read previous request. A server responds to a read-latest request
by returning the latest candidate in its history. A server responds to a
read-previous request by returning the latest candidate in its history that
has a timestamp less than that specified by the client. A server responds
to a time request by returning the timestamp of the latest candidate in its
history. If the R/W-PF tolerates malevolent clients, then a server validates
the integrity of a candidate in a write request before accepting it. The check
performed on line 824 protects a benign server from accepting a corrupt
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encode(Object) :

200: /∗ Encode Object into n erasure-coded fragments. ∗/
201: {Fragment1, . . . ,Fragmentn} := erasure code(Object)
202: return ({Fragment1, . . . ,Fragmentn})

generate fragments({Fragment i, . . . ,Fragmentj})
300: /∗ Generate n fragments given m fragments. ∗/
301: if (|{Fragment i, . . . ,Fragmentj}| < m) then
302: return (⊥)
303: end if
304: {Fragment1, . . . ,Fragmentn} :=
305: erasure code({Fragment i, . . . ,Fragmentj})
306: return ({Fragment1, . . . ,Fragmentn})

decode({Fragment i, . . . ,Fragmentj})
400: /∗ Perform systematic decode of fragments. ∗/
401: /∗ (Actually only need to generate m fragments.) ∗/
402: {Fragment1, . . . ,Fragmentn} :=
403: generate fragments({Fragment i, . . . ,Fragmentj})
404: Object := Fragment1 | . . . | Fragmentm
405: return (Object)

make cross checksum({Fragment1, . . . ,Fragmentn})
500: /∗ Construct cross checksum given fragment set. ∗/
501: for all (Server ∈ U) do
502: CrossChecksum[Server ] := hash(FragmentServer )
503: end for
504: return (CrossChecksum)

hash(X):

600: if (malevolent clients flag ∨ malevolent servers flag) then
601: Digest := f(X) /∗ Collision-resistant hash f(X). ∗/
602: else
603: Digest := ⊥ /∗ No need for cryptography. ∗/
604: end if
605: return (Digest)

Figure 4.6. Functions for encoding and decoding objects.
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candidate from a malevolent client. If benign servers did not validate
candidates before accepting them, then malevolent clients could make
benign servers look malevolent to another client. If the write candidate is
well-formed, or if the R/W-PF does not tolerate malevolent clients, then
the candidate is accepted. After accepting a candidate, a server sends a
response to the client.

The manner in which timestamps are constructed, precludes distinct
writes from having the same timestamp. As such, if a server receives the
same write request multiple times, it must be for the same write. Therefore,
it is safe for a server to “accept” the same candidate multiple times. This is
necessary so that clients can repeatedly send the same request in an effort
to establish a reliable channel to servers.

4.6 Client-server quorum RPCs

All of the quorum RPC functions have a similar structure. Requests are re-
peatedly broadcast to servers until a quorum of responses is received. There
are more efficient quorum probing strategies than broadcasting requests to
all servers, however, broadcast is the simplest to describe. Clients must re-
peatedly send requests to tolerate servers that crash and recovery. However,
only a single response from each server is added to the response set.

R/W-PF members that specify a synchronous timing model and a crash
or omission benign server failure model, may make use of timeouts. Once
δ has elapsed after a client sends a request to server Server , if no response
has been received from Server , then a timeout response is received. This
is illustrated on lines 916-919 of c qprc read latest.

Shown in Figure 4.8, the quorum RPC c qprc read latest collects the
latest candidate stored at each server in a quorum. Shown in Figure 4.9, the
quorum RPC c qrpc read previous collects the latest candidates stored
at each server in a quorum that has a timestamp less than that specified by
the client. These read RPCs allow clients to collect a partial observation of
global system state and then, if need be, to traverse back in logical time.
To protect against malevolent servers, clients validate the integrity of the
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s initialize() :

700: Server .History := (〈0,⊥〉) /∗ Store in stable storage. ∗/

s receive request() :

800: loop
801: /∗ Poll for each type of request and reply accordingly. ∗/
802: if (poll for request(read latest request) = true) then
803: LatestTimestamp := max(Server .History .Timestamp)
804: LatestCandidate := (Candidate ∈ Server .History :
805: Candidate.Timestamp = LatestTimestamp) /∗ Singleton set. ∗/
806: reply(read latest response,Server ,LatestCandidate)
807: end if
808: if (poll for request(read previous request) = true) then
809: Timestamp := receive request()
810: Prehistory := {Candidate ∈ Server .History :
811: Candidate.Timestamp < Timestamp}
812: LatestTimestamp := max(Prehistory .Timestamp)
813: LatestCandidate := (Candidate ∈ Prehistory :
814: Candidate.Timestamp = LatestTimestamp) /∗ Singleton set. ∗/
815: reply(read previous response,Server ,LatestCandidate)
816: end if
817: if (poll for request(time request) = true) then
818: LatestTimestamp := max(Server .History .Timestamp)
819: reply(time response,Server ,LatestTimestamp)
820: end if
821: if (poll for request(write request) = true) then
822: 〈Timestamp,Fragment〉 := receive request()
823: if (malevolent clients flag) then
824: if (hash(Fragment) 6= Timestamp.CrossChecksum[Server ]) then
825: goto loop /∗ Ignore requests from malevolent clients. ∗/
826: end if
827: end if
828: /∗ Accept candidate and store it in local history. ∗/
829: Server .History := Server .History ∪ (〈Timestamp,Fragment〉)
830: reply(write response,Server)
831: end if
832: end loop

Figure 4.7. Pseudo-code for server Server .
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c qprc read latest() :

900: ResponseSet := ∅
901: repeat
902: for all (Server i ∈ U \ ResponseSet .Server) do
903: send(read latest request,Server i,Timestamp)
904: end for
905: if (poll for response(read latest response) = true) then
906: 〈Server ,Response〉 := receive response()
907: if (Server /∈ ResponseSet .Server) then
908: Digest = hash(Response.Fragment)
909: if (Digest 6= Response.CrossChecksum[Server ]) then
910: /∗ Ignore responses from malevolent server. ∗/
911: else
912: ResponseSet := ResponseSet ∪ (〈Server ,Response〉)
913: end if
914: end if
915: end if
916: if (¬asynchronous flag ∧ (elapsed(δ) = true)) then
917: ResponseSet := ResponseSet ∪
918: {〈Server ,timeout〉 : Server ∈ U \ ResponseSet}
919: end if
920: until (∃Q ∈ Q : Q ⊆ ResponseSet)
921: return (ResponseSet)

Figure 4.8. Quorum RPC c qprc read latest for client ClientID .

server response before adding it to the response set (see lines 909 and 1009).
In the case of reading back in logical time, the client also makes sure the
candidate has a timestamp less than that specified (see line 1012).

The quorum RPC c qrpc read time, shown in Figure 4.10, collects
the latest timestamp stored at each server in a quorum. Once a quorum
of responses is received, the logical component of the largest timestamp in
the response set is identified. This logical time is incremented and returned.
The quorum RPC c qrpc write issues write requests to servers until a
quorum of servers have replied. This implies that a quorum of servers, less
any malevolent servers in the quorum, have accepted the candidate sent in
the write request.
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c qrpc read previous(Timestamp) :

1000: ResponseSet := ∅
1001: repeat
1002: for all (Server i ∈ U \ ResponseSet .Server) do
1003: send(read previous request,Server i,Timestamp)
1004: end for
1005: if (poll for response(read previous response) = true) then
1006: 〈Server ,Response〉 := receive response()
1007: if (Server /∈ ResponseSet .Server) then
1008: Digest = hash(Response.Fragment)
1009: if (Digest 6= Response.CrossChecksum[Server ]) then
1010: /∗ Ignore responses from malevolent server. ∗/
1011: else
1012: if (Response.Timestamp < Timestamp) then
1013: ResponseSet := ResponseSet ∪ (〈Server ,Response〉)
1014: end if
1015: end if
1016: end if
1017: end if
1018: if (¬asynchronous flag ∧ (elapsed(δ) = true)) then
1019: ResponseSet := ResponseSet ∪
1020: {〈Server ,timeout〉 : Server ∈ U \ ResponseSet}
1021: end if
1022: until (∃Q ∈ Q : Q ⊆ ResponseSet)
1023: return (ResponseSet)

Figure 4.9. Quorum RPC c qrpc read previous for client ClientID .

4.7 Client

Pseudo-code for client functions is listed in Figure 4.11. The majority of
protocol logic resides on the client.

The c write function consists of determining the greatest logical time by
performing a c qrpc read time quorum RPC, encoding the object to store
into erasure-coded fragments, constructing the cross checksum, constructing
the timestamp for the write candidate, and then issuing write requests to
servers by performing a c qrpc write quorum RPC. The cross checksum
couples the value of the object being written with its encoding and with the
timestamp.

The c read function iteratively identifies and then classifies candidate
sets until either a complete or repairable well-formed candidate set is found.
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c qrpc read time() :

1100: ResponseSet := ∅
1101: repeat
1102: for all (Server i ∈ U \ ResponseSet .Server) do
1103: send(time request,Server i)
1104: end for
1105: if (poll for response(time response) = true) then
1106: 〈Server ,Timestamp〉 := receive response()
1107: if (Server /∈ ResponseSet .Server) then
1108: ResponseSet := ResponseSet ∪ 〈(Server ,Timestamp〉)
1109: end if
1110: end if
1111: if (¬asynchronous flag ∧ (elapsed(δ) = true)) then
1112: ResponseSet := ResponseSet ∪
1113: {〈Server ,timeout〉 : Server ∈ U \ ResponseSet}
1114: end if
1115: until (∃Q ∈ Q : Q ⊆ ResponseSet)
1116: return (max(ResponseSet .Timestamp.LogicalTime) + 1)

c qrpc write(Timestamp, {Fragment1, . . . ,Fragmentn}) :

1200: ResponseSet := ∅
1201: repeat
1202: for all (Server i ∈ U \ ResponseSet .Server) do
1203: send(write request,Server i, 〈Timestamp,Fragment i〉)
1204: end for
1205: if (poll for response(write response) = true) then
1206: 〈Server〉 := receive response()
1207: if (Server /∈ ResponseSet .Server) then
1208: ResponseSet := ResponseSet ∪ (〈Server〉)
1209: end if
1210: end if
1211: if (¬asynchronous flag ∧ (elapsed(δ) = true)) then
1212: ResponseSet := ResponseSet ∪
1213: {〈Server ,timeout〉 : Server ∈ U \ ResponseSet}
1214: end if
1215: until (∃Q ∈ Q : Q ⊆ ResponseSet)
1216: return () /∗ Could return ResponseSet to track which servers replied. ∗/

Figure 4.10. Quorum write RPCs for client ClientID .
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The term candidate set refers to the set of candidates in the quorum of re-
sponses received from servers that have the same specified logical timestamp
(usually the highest logical timestamp). Once such a candidate set is found,
its fragments are decoded, and the object is returned.

The read begins by performing a c qprc read latest quorum RPC.
The response set returned from c qprc read latest is used to identify the
candidate set. Next, the candidate set is classified. The rules for classifying
a candidate set as incomplete, repairable, or complete differ among R/W-
PF members. The function classify, which returns one of incomplete,
repairable, complete, is defined in Figure 4.12. It closely follows con-
straint 5.11, developed in Section 5.1. For asynchronous R/W-PF mem-
bers, and synchronous members with the crash-recovery benign server failure
model, the set TimeoutSet will always be empty.

If the candidate set is classified as complete or repairable, the client
determines if the candidate set is well-formed. The client calls c validate

which constructs a cross checksum for the candidate set. The pseudo-code
for c validate is in Figure 4.12. If the cross checksum for the candidate set
differs from the cross checksum in the timestamp for the candidate set, then
this is a poisonous candidate set (i.e., the candidate in the candidate set
corresponds to a poisonous write by a malevolent client). We refer to this
method of protecting against malevolent clients as self-validating timestamps
and discuss it in more detail in Section 4.8. If an R/W-PF member does not
tolerate malevolent clients, then c validate is effectively a no-op; it returns
true immediately. If the candidate set passes validation, then the object
can be decoded from the fragments in the candidate set and be returned.

If validation of a repairable or complete candidate set fails, or the candi-
date set is classified as incomplete, then the client reads back in logical time.
The client calls the c qrpc read previous quorum RPC to read back in
logical time. Candidate classification begins again with the new (refreshed)
response set.

The read returns a pair: a logical timestamp and an object. The client
likely only makes use of the object. Including the logical timestamp in the
return value simplifies discussion of return values.
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c write(Object) :

1300: LogicalTime := c qrpc read time()
1301: {Fragment1, . . . ,Fragmentn} := encode(Object)
1302: CrossChecksum := make cross checksum({Fragment1, . . . ,Fragmentn})
1303: Timestamp := 〈LogicalTime,ClientID ,CrossChecksum〉
1304: c qrpc write(Timestamp, {Fragment1, . . . ,Fragmentn})
1305: return

c read() :

1400: ReadResponseSet := c qprc read latest()
1401: loop
1402: CandidateTimestamp := max(ReadResponseSet .Timestamp)
1403: CandidateSet := {Candidate ∈ ReadResponseSet :
1404: Candidate.Timestamp = CandidateTimestamp}
1405: if (classify(CandidateSet ,ReadResponseSet) = incomplete) then
1406: /∗ Must read back in time. ∗/
1407: else if (c validate(CandidateSet)) then
1408: if (classify(CandidateSet ,ReadResponseSet) = complete) then
1409: Object := decode(CandidateSet .Fragment)
1410: else
1411: /∗ classify(CandidateSet ,ReadResponseSet) = repairable ∗/
1412: {Fragment1, . . . ,Fragmentn} := generate fragments(CandidateSet)
1413: c qrpc write(CandidateTimestamp, {Fragment1, . . . ,Fragmentn})
1414: Object := decode({Fragment1, . . . ,Fragmentn})
1415: end if
1416: return (〈CandidateTimestamp,Object〉)
1417: end if
1418: /∗ incomplete or validation failed. ∗/
1419: ReadResponseSet := c qrpc read previous(CandidateTimestamp)
1420: end loop

Figure 4.11. Client pseudo-code for read and write operations.

4.8 Self-validating timestamps

As shown in the pseudo-code, a number of steps are taken to protect against
malevolent components. Cross checksums are employed to protect against
malevolent servers [Gong, 1989]. Cross checksums are the set of n collision-
resistant hashes of the n erasure-coded fragments. A client can compare
the hash of a fragment returned to it with the corresponding hash in the
cross checksum. Replicating the cross checksum at all servers ensures that
the client can identify a correct copy of the cross checksum to which to
compare a fragment’s hash. Cross checksums prevent a malevolent server
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classify(CandidateSet ,ReadResponseSet) :

1500: S := {CandidateSet .Server}
1501: TimeoutSet := {〈Server ,Response〉 ∈ ReadResponseSet :
1502: Response = timeout}
1503: St := {Server ∈ TimeoutSet .Server}
1504: if (∃Q ∈ Q : Q ⊆ S ∪ St) then
1505: return (complete)
1506: else if ((∀Q ∈ Q : Q 6⊆ S ∪ St) ∧ (∃Q ∈ Q, R ∈ R(Q) : R ⊆ S)) then
1507: return (repairable)
1508: end if
1509: return (incomplete)

c validate(CandidateSet)

1600: if (malevolent clients flag = true) then
1601: CandidateCrossChecksum := CandidateSet .Timestamp.CrossChecksum
1602: {Fragment1, . . . ,Fragmentn} :=
1603: generate fragments(CandidateSet .Fragment)
1604: ValidatedCrossChecksum :=
1605: make cross checksum({Fragment1, . . . ,Fragmentn})
1606: if (ValidatedCrossChecksum 6= CandidateCrossChecksum) then
1607: return (false)
1608: end if
1609: end if
1610: /∗ Candidate is well-formed. ∗/
1611: return (true)

Figure 4.12. Pseudo-code for client functions called by c read.

from undetectably corrupting the integrity of a fragment it hosts.
Self-validating timestamps1 are employed to protect against malevolent

clients [Goodson et al., 2004a]. Self-validating timestamps are an extension
of cross checksums.

The cross checksum is part of a logical timestamp (see line 112). Em-
bedding the cross checksum in the logical timestamp makes it impossible
(assuming collision-resistant hash functions) to write different erasure-coded
fragments to some server that have the same logical timestamp. Servers val-
idate the candidates sent to them by clients (see line 824). Such validation
ensures that benign servers only accept fragments that match their entry

1In Goodson et al. [2004a], we referred to aspects of self-validating timestamps as
validating timestamps, storage-node (server) verification, and validated cross checksums,
but did not name the overall technique.
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in the cross checksum. These two measures ensure that at most some set of
B ∈ B servers respond to reads with requests that lack integrity.

The final step for self-validating timestamps occurs during a read. Once
a repairable or complete candidate set is identified, it is validated (see
c validate in Figure 4.11). Validation consists of generating the cross check-
sum for the fragments that are in the candidate set, and comparing it to
the cross checksum that is actually in the logical timestamp. If the cross
checksum of the candidate set does not match the cross checksum in the
logical timestamp, then a malevolent client performed a poisonous write.
All benign clients detect that the candidate set for the given timestamp is
due to a poisonous write; this is true regardless of which m fragments are
used to generate the other n −m fragments. Clients treat candidates that
are not well-formed like they do incomplete candidates and read back in
logical time.



5 Constraints and classification

Although the R/W-PF offers much versatility, there are constraints on R/W-
PF members. Given the timing model, server failure model, and erasure
code, there are constraints on quorum construction and on witnesses. The
client failure model does not affect the constraints. The constraints could
be formulated in a somewhat different manner, by selecting different “de-
pendent” parameters. For example, given the resiliency models and quorum
constructions, the erasure code and witnesses are constrained. Classification
of a candidate, a fundamental step in R/W-PF members, is tightly coupled
to the quorum construction. As such, the rules for classifying a candidate
are presented in this chapter. This chapter also presents specific constraints
and classification rules for threshold quorums that are used in PASIS, the
prototype implementation.

5.1 Constraints

5.1.1 Asynchronous timing model

Under the asynchronous timing model, the crash-recovery, omission, and
crash benign server failure models are indistinguishable. As such, the benign
server failure model does not affect quorum construction or classification.

Live quorum exists

To guarantee that a live quorum exists in the asynchronous timing model,

∀T ∈ T ,∃Q ∈ Q : Q ⊆ U \ T (5.1)

59
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This constraint ensures that even if all of the faulty servers in an execution
do not reply to requests, there still exists a quorum of live servers that do
respond.

Byzantine masking quorum

Malkhi and Reiter [1998] define the intersection constraint for Byzantine
masking quorums:

∀Qi, Qj ∈ Q,∀Bi, Bj ∈ B : (Qi ∩Qj) \Bi 6⊆ Bj . (5.2)

This constraint ensures that all quorums intersect so that there are sufficient
benign servers in the intersection to “out vote” any malevolent servers in
the intersection.

Repairable sets

If an erasure code is used such that the benign servers in the intersection
due to the masking quorum are a decodable set, then the masking quorum
is sufficient. However, to includeM, the decodable sets, in the specification
of a R/W-PF member, we define repairable sets for every quorum. Each
quorum Q ∈ Q, in conjunction with M, defines a set of repairable sets
R(Q) ⊆ 2Q. Essentially, a repairable set is sufficient to “out vote” any
malevolent responses and to decode the erasure-coded object:

R(Q) = {R ∈ 2Q : (∀B ∈ B, R 6⊆ B) ∧ (∃M ∈M(Q),M ⊆ R)} (5.3)

Note that some repairable sets are subsets of other repairable sets.

Byzantine masking m-quorum

Constraint (5.2) is modified to accommodate erasure-coded objects, by in-
corporating repairable sets. In so doing, we define Byzantine masking m-
quorums:

∀Qi, Qj ∈ Q,∀B ∈ B,∃R ∈ R(Qi) : (Qi ∩Qj) \B ⊇ R. (5.4)
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The concept of an m-quorum1 was developed simultaneously by Frølund
et al. [2004]. However, Frølund et al. considered only a benign failure model
in their development of m-quorums.

Witnesses

Additional constraints are required for read and write witnesses. Read wit-
nesses allow a subset of a quorum of servers to reply with a witness (i.e., a
logical timestamp). Write witnesses allow a subset of a quorum of servers to
receive only a witness, rather than a witness and a fragment.

For read witnesses, a quorum Q of replies can be separated into a subset
of servers Qr that replied with read witnesses and a subset of servers Q\Qr
that replied with candidates (i.e., timestamp and fragment pairs). As such,
to decode a response,

∃M ∈M(Q) : Q \Qr ⊇M. (5.5)

The constraint on read witnesses is not important for safety, since if too few
fragments are requested, additional fragments can be read.

For write witnesses, a quorum Q of requests can be separated into a
subset of servers Qw that are sent write witnesses and a subset of servers Q\
Qw that are sent fragments. The constraint on write witnesses is important
for safety, since if too few fragments are stored, it may not be possible to
read the object. To ensure that an object can always be decoded, sufficient
fragments must be in the intersection between the quorum written to and
the quorum read from to decode. Thus for some quorum Q ∈ Q,

∀Qi ∈ Q,∀B ∈ B,∃M ∈M(Q) : ((Q \Qw) ∩Qi) \B ⊇M. (5.6)

Note that write witnesses are necessarily more restricted than read witnesses:
a server that hosts only a write witness can only respond with a read witness.

1Frølund et al. coined the term m-quorum. We originally referred to such quorums, as
“quorums that are big enough to allow data to be erasure-coded,” which lacks elegance.
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Classification

A candidate is established if all of the benign servers in a quorum have the
candidate in their history. The intuition behind established candidates is
that any read that begins after a candidate is established will return the
established candidate, or some other established candidate with a higher
timestamp.

With perfect global information, it would be possible to observe directly
whether or not a candidate is established. Candidates are classified as com-
plete, repairable, or incomplete. The constraints on the quorum system, in
conjunction with classification rules, ensure that established candidates are
classified as repairable or complete. Repairing a candidate, i.e., complet-
ing the write that generated the candidate, is a fundamental aspect of the
R/W-PF.

Given a set of server responses S that share the same candidate, the
classification rules for that candidate are as follows:

classify(S) =


complete if ∃Q ∈ Q : Q ⊆ S,
repairable if (∀Q ∈ Q : Q 6⊆ S)∧

(∃Q ∈ Q, R ∈ R(Q) : R ⊆ S),
incomplete otherwise.

(5.7)

Remember that the repairable sets R(Q) for quorum Q define the inter-
section property between Q and other quorums which includes a subset of
benign servers that are a decodable set. Therefore, the classification rule is
inter-related with the quorum system construction and the erasure coding
scheme.

5.1.2 Synchronous timing model

Synchronous members of the R/W-PF may wait for responses from all
servers. However, some responses may simply be timeout. The effect of
timeout responses on classification and on system constraints depends on
the benign server failure model (i.e., crash, omission, or crash-recovery).
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For the crash-recovery benign server failure model, quorum system con-
straints and classification are the same as for the asynchronous timing model.
Given the crash-recovery failure model for benign servers, requests to servers
that timeout are retried until a quorum of responses, none of which are
timeout, is received.

A distinguishing feature of the omission and crash benign server failure
models, relative to the crash-recovery server failure model, is that only a
subset of the servers may ever crash. That is, in an execution in which a
set of servers T are faulty, U \T servers are always-up. There are no benign
servers that crash and then recover (i.e. that are eventually-up). As such, in
the synchronous timing model, it is possible to wait for responses from more
than a quorum of servers. For example, once δ has elapsed, responses, even
if some are timeout, are received from all servers to which requests were
sent. In such cases, read classification has more information with which to
classify candidates.

Live quorum exists

For omission and crash benign server failure models, it is possible to use
a smaller universe for R/W-PF members with a synchronous timing model
than with an asynchronous timing model. Since all servers can respond,
albeit some set of servers T ∈ T with timeout, the existence of a live
quorum requires only that

∀Q ∈ Q : Q ⊆ U. (5.8)

Comparing (5.8) with (5.1) implies that synchronous R/W-PF members
that tolerate crash or omission benign server failures require smaller quo-
rums than asynchronous members and members that tolerate crash-recovery
benign server failures.
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Byzantine non-blocking m-quorum

For the omission and crash benign server failure models, a candidate is
established if all of the correct servers in a quorum have the candidate in
their history. The rationale for defining established candidates in terms of
correct servers for synchronous R/W-PF members, is so that it is a pure
property [Charron-Bost et al., 2000]: a candidate is established (or not)
irrespective of the set of servers which are currently failed.

This definition of established leads to the following quorum intersection
constraint:

∀Qi, Qj ∈ Q,∀T ∈ T ,∃R ∈ R(Qi) : (Qi ∩Qj) \ T ⊇ R. (5.9)

This constraint is subtly different than (5.4). Since responses from all servers
in a quorum are expected, faulty servers are “subtracted” from the intersec-
tion, rather than malevolent servers. Synchronous Byzantine quorum sys-
tems [Bazzi, 2000] permit non-blocking quorum access [Bazzi, 1999, 2001].
As such, quorum probing is unnecessary for the synchronous R/W-PF mem-
bers, because responses from a quorum of servers is guaranteed, albeit some
may be timeout responses.

Witnesses

For read witnesses in synchronous members, the constraint for asynchronous
members, (5.5), applies. For write witnesses, the constraint for asynchronous
members, (5.6), does not apply. The constraint on write witnesses must
account for the non-blocking nature of synchronous quorums:

∀Qi ∈ Q,∀T ∈ T ,∃M ∈M(Q) : ((Q \Qw) ∩Qi) \ T ⊇M. (5.10)

Classification

Given that no more than T ∈ T servers are faulty in an execution, a client
is guaranteed to receive responses from a quorum Q of servers, of which no
more than T ⊂ Q are timeout. Given a set of server responses S that share
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the same candidate and a set of server responses St that are timeout, the
classification rules for that candidate are as follows:

classify(S, St) =


complete if ∃Q ∈ Q : Q ⊆ S ∪ St,
repairable if (∀Q ∈ Q : Q 6⊆ S ∪ St)∧

(∃Q ∈ Q, R ∈ R(Q) : R ⊆ S),
incomplete otherwise.

(5.11)

Fail-stop servers and repairable sets

A server that experiences a fail-stop failure crashes in such a manner that
it takes no further action and its failure is detectable [Schneider, 1984]. In
a synchronous system, a timeout response from a server can be used to
transform crash failures into fail-stop failures. Although clients can detect
that a server has failed, malevolent servers may appear crashed to some
clients and alive to other clients.

If sufficient timeout responses are received, it is possible to deduce that
some non-timeout responses are not from malevolent servers. It is thus pos-
sible to formulate the repairable sets as a function of the timeout responses
received. Given the set of server responses St that are timeout, (5.3) be-
comes,

R(Q,St) = {R ∈ 2Q :(∃M ∈M(Q),M ⊆ R)∧

(∀B ∈ B,∃T ∈ T , B ⊆ T,R 6⊆ (T \ St) ∩B)} (5.12)

If ∃B ∈ B : St ⊆ B, then timeouts do not change the repairable sets.
However, each additional timeout response beyond this reduces the number
of responses in S that may be from a malevolent server. For classification,
R(Q,St) could replace R(Q) in (5.11). However, we have not identified any
tangible benefits to doing so. We include these details though, because they
suggest that, in other protocol families, there may be substantive differences
between the crash/fail-stop and omission benign server failure models.
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5.2 Threshold quorum systems

This section reproduces the general constraints developed Section 5.1, but
specialized for threshold quorum systems. It also describes the threshold
quorum construction used in the prototype implementation.

Threshold quorum systems are parameterized as follows:

– all quorums Q ∈ Q are of size q;

– all repairable sets R ∈ R(Q) are at least of size r;

– all faulty server sets T ∈ T are of size t;

– all malevolent server sets B ∈ B are of size b and b ≤ t;

– all decodable sets M ∈M(Q) are of size m and m ≤ r;

– and the universe of servers U is of size n.

5.2.1 Asynchronous timing model

For threshold quorums, the existence of a live quorum guaranteed by (5.1),
becomes,

q + t ≤ n. (5.13)

From (5.3), it follows that any subset of a quorum that share the same
candidate and that is at least of size r is repairable:

r = max(b+ 1,m). (5.14)

And so, from (5.4), threshold Byzantine masking m-quorums must obey the
constraint,

2q − n ≥ b+ r. (5.15)

Letting qr be the number of read witness responses, then, from (5.5), it
follows that,

q − qr ≥ m. (5.16)
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Letting qw be the number of write witnesses written, then, from (5.6) and
(5.15),

r − qw ≥ m. (5.17)

From (5.13) and (5.15), it follows that 2q − r − b ≥ n ≥ q + t, and thus
that,

r + t+ b ≤ q. (5.18)

And, from (5.13) and (5.18), it follows that,

r + 2t+ b ≤ n. (5.19)

Finally, from (5.7), it follows that the classification rule for a set of
responses S, is,

classify(S) =


complete if q ≤ |S|,
repairable if r ≤ |S| < q,

incomplete otherwise.

(5.20)

Threshold quorum construction

Consider a threshold quorum system parameterized by ∆. The intention
of this construction is to provide throughput-scalability. The (∆, t, b,m)-
threshold quorum construction is as follows:

r = max(m, b+ 1);

q = ∆ + t+ b+ r;

n = 2∆ + 2t+ b+ r;

qr = q −m;

qw = max(b+ 1−m, 0). (5.21)

Notice that, for some fixed t, b, and m, as ∆ increases, the per-server load q
n

asymptotically approaches 1
2 . Table 5.1 lists example (∆, t, b,m)-threshold

quorum constructions, based on (5.21). This threshold quorum construction
is simply a majority voting construction.
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∆ t b m r q n qr qw
0 1 1 1 2 4 5 3 1
0 1 1 2 2 4 5 2 0
0 1 1 3 3 5 6 2 0
0 2 1 1 2 5 7 4 1
0 2 1 2 2 5 7 3 0
0 2 1 3 3 6 8 3 0
1 1 1 1 2 5 7 4 1
1 1 1 2 2 5 7 3 0
1 1 1 3 3 6 8 3 0
2 3 3 1 4 12 17 11 3
2 3 3 2 4 12 17 10 2
2 3 3 3 4 12 17 9 1
2 3 3 4 4 12 17 8 0
2 3 3 5 5 13 18 8 0

Table 5.1. Example (∆, t, b,m)-threshold quorums for asynchronous timing
model.

5.2.2 Synchronous timing model

The synchronous timing model with crash-recovery benign server failure
model uses the threshold quorum construction (5.21) for the asynchronous
timing model.

The existence of a live quorum given by constraint (5.8), for omission
and fail-stop benign server failure models, becomes,

q ≤ n, (5.22)

and the Byzantine non-blocking m-quorum constraint (5.9) becomes,

2q − n ≥ t+ r. (5.23)

From (5.22) and (5.15), it follows that 2q − r − t ≥ n ≥ q, and thus,

t+ r ≤ q ≤ n. (5.24)
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Previously, Goodson et al. [2004b] identified a looser bound, 2t + 1 ≤ n,
for such R/W-PF members2. Whereas, for m ≤ b + 1, (5.24) reduces to
t+ b+ 1 ≤ n.

For the crash and omission benign server failure model, classification of
a candidate given a set S of responses that share the same candidate, and
a set of St of timeouts, is as follows:

classify(S, St) =


complete if q − |St| ≤ |S|,
repairable if r ≤ |S| < q − |St|,
incomplete otherwise.

(5.25)

The general constraint differs for write witnesses in (5.6), the asyn-
chronous timing model, and (5.10), the synchronous timing model. However,
for threshold quorums, witnesses are constrained like in the asynchronous
timing model (cf. (5.16) and (5.17)). The salient differences are captured by
the differences in the bounds on quorum size.

Analogous synchronous threshold quorum constructions to those given
for asynchronous R/W-PF members are as follows. The (∆, t, b,m)-threshold
quorum construction for the synchronous timing model is as follows:

r = max(m, b+ 1);

q = ∆ + t+ r;

n = 2∆ + t+ r;

qr = q −m;

qw = max(b+ 1−m, 0). (5.26)

2The notation in the cited paper uses N , not n, for the universe size. Moreover, the
cited paper considers only constraints for m ≤ b+ 1.
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6 Correctness

The client failure model for an R/W-PF member dictates the safety guaran-
tee achieved. The desired safety property for the R/W-PF is linearizability
of read and write operations. Operations are linearizable if their return re-
sults are consistent with an execution in which each operation is performed
instantaneously at a distinct point in time between its start time and its
completion time. Members of the R/W-PF that do not tolerate malevolent
clients achieve linearizability as originally defined Herlihy and Wing [1990].

It is necessary to adapt linearizability for members of the R/W-PF that
tolerate malevolent clients. The adaptations necessary to interpret lineariz-
ability in our context arise from the fact that malevolent clients may not
follow the R/W-PF member specification. We exclude reads by malevolent
clients from the set of linearizable operations. Poisonous writes by mal-
evolent clients are ignored by benign clients. As such, only non-poisonous
writes that complete are included in the set of linearizable operations.

Write operations by malevolent clients do not have a well-defined start
time. We consider that all writes by malevolent clients begin at the start
of the execution. As such, writes by malevolent clients are concurrent to all
operations that begin before they complete.

For all R/W-PF members, reads and writes performed by correct clients
are wait-free [Herlihy, 1991; Jayanti et al., 1998]. Informally, achieving wait-
freedom means that each client can complete its operations in finitely many
steps regardless of the actions performed or failures experienced by other
clients. For a formal definition of wait-freedom, see Herlihy [1991]. The live-
ness guarantee of wait-freedom requires unbound storage capacity.

71
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6.1 Proof of safety

Before defining the duration of write operations, it is necessary to define
what it means for a server to accept a write request.

Definition 6.1.1 (accept). Server Server , accepts a write request with frag-
ment Fragment and timestamp Timestamp only if the hash of the fragment
(hash(Fragment)) equals the corresponding entry in the cross checksum
(Timestamp.CrossChecksum[Server ]).

See line 824 of function s receive request in Figure 4.7 for more details
about server logic. Remember that hash is a collision-resistant hash func-
tion, if the R/W-PF member tolerates malevolent components. An accepted
write request is stored, as a candidate, in the history of a benign server. A
benign server retains its history over the course of a crash and subsequent
recovery.

Definition 6.1.2 (write begin, wTimestamp). A write operation wTimestamp ,
begins when a benign client invokes the c write operation locally that issues
a write request bearing timestamp Timestamp.

We use the label wTimestamp as a shorthand for the write operation with
timestamp Timestamp for the remainder of this section.

Since malevolent clients may not follow their specification, it is difficult
to state when a write operation by such a client begins. We avoid making
such a statement. Instead, we assume that all write operations by malevolent
clients begin at the start of the execution.

It may be possible to state when a write operation by a malevolent client
is in progress. For example, “if a benign server accepts a write request from a
malevolent client, then ...”. However, such definitional deftness is unneeded.
A definition of when write operations complete is sufficient.

Definition 6.1.3 (established). For the asynchronous timing model and
for the synchronous timing model with crash-recovery benign server fail-
ure model, a candidate 〈Timestamp,Fragment〉 is established once all the
benign servers in a quorum have accepted a write request with timestamp
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Timestamp. Whereas, for the synchronous timing model with crash/fail-stop
or omission benign server failure model, a candidate 〈Timestamp,Fragment〉
is established once all the correct servers in a quorum have accepted a write
request with timestamp Timestamp.

Definition 6.1.4 (well-formed). A write operation wTimestamp and the cor-
responding candidate are well-formed if the timestamp is self-validating.
That is, the function c validate returns true for any decodable set of the
fragments sent with timestamp Timestamp that could be accepted at the
corresponding benign servers.

Definition 6.1.5 (write complete). A write operation wTimestamp completes
once a well-formed candidate with timestamp Timestamp is established.

Definition 6.1.5 applies to write operations by benign clients as well as
by malevolent clients. A poisonous write by a malevolent client does not
complete, since it is not well-formed.

Because return values of reads by malevolent clients obviously need not
comply with any correctness criteria, we disregard read operations by mal-
evolent clients in reasoning about linearizability, and define the duration of
reads only for those executed by benign clients only.

Definition 6.1.6 (read begin). A read operation executed by a benign client
begins when the client invokes c read locally.

Definition 6.1.7 (read complete). A read operation executed by a benign
client completes when the invocation c read returns 〈timestamp, value〉.

Clearly, a benign client that crashes during a read operation does not
complete the read.

Lemma 6.1.8. Let c be a benign client. If c performs a read operation that
returns 〈Timestamp, v〉, then the candidate 〈Timestamp, v〉 is established
and well-formed.

Proof. Only an established candidate is classified as complete, therefore
〈Timestamp, v〉 is established. See classification rules (5.7) and (5.11) in
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Chapter 5. Only a candidate with a self-validating timestamp is returned
from a benign client, therefore 〈Timestamp, v〉 is well-formed.

Lemma 6.1.9. Let c1 and c2 be benign clients. If c1 performs a read opera-
tion that returns 〈Timestamp1, v1〉, c2 performs a read operation that returns
〈Timestamp2, v2〉, and Timestamp1 = Timestamp2, then v1 = v2.

Proof. Lemma 6.1.8 proves that 〈Timestamp1, v1〉 and 〈Timestamp2, v2〉
are established and well-formed. Since Timestamp1 = Timestamp2 (and
thus Timestamp1.CrossChecksum = Timestamp2.CrossChecksum), v1 and
v2 must be the same (assuming the existence of collision-resistant hash func-
tions).

Definition 6.1.10 (precedes, →). Let o1 denote an operation that com-
pletes (a read operation by a benign client, or a write operation), and let
o2 denote an operation that begins (a read or write by a benign client).
o1 precedes o2 if o1 completes before o2 begins. The precedence relation is
written as o1 → o2.

Lemma 6.1.11. If wTimestamp → wTimestamp′, then Timestamp <

Timestamp′.

Proof. By definition, wTimestamp completes and so there exists a candidate
〈Timestamp, v〉 that is well-formed and established. Since wTimestamp →
wTimestamp′ , and because of the quorum intersection constraints, the
quorum RPC c qrpc read time for wTimestamp′ receives at least one
time response response from a benign server that hosts a candidate with
timestamp Timestamp (i.e., from a benign server that accepted wTimestamp .
The quorum intersection constraints of interest are (5.4) and (5.9) in Chap-
ter 5. As such, wTimestamp′ observes some timestamp greater than or equal
to Timestamp and constructs Timestamp′ to be greater than Timestamp.
See c qrpc read time in Figure 4.10 and c write in Figure 4.11 for more
details of timestamp construction.
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A malevolent server can return a logical timestamp greater than that of
the preceding write operation; however, this still advances logical time and
Lemma 6.1.11 holds. Timestamps and malevolent components are discussed
in Section 7.8.

Observation 6.1.12. Timestamp order is a total order on write operations.
The timestamps of write operations by benign clients respect the precedence
order among writes.

Definition 6.1.13 (rTimestamp). Let vTimestamp denote the value written
by wTimestamp . We use rTimestamp to denote a read operation by a benign
client that returns 〈Timestamp, vTimestamp〉. By Lemma 6.1.8, wTimestamp is
established and well-defined.

Lemma 6.1.14. If wTimestamp is complete, and if wTimestamp → rTimestamp′,
then Timestamp ≤ Timestamp′.

Proof. Since wTimestamp is complete, there exists an established well-formed
candidate 〈Timestamp, v〉. By Lemma 6.1.8, read operations only return val-
ues from complete write operations. As such, rTimestamp′ must either return
the value with timestamp Timestamp or a value with a greater timestamp.
Therefore, Timestamp ≤ Timestamp′.

Observation 6.1.15. It follows from Lemma 6.1.14, that for any read
rTimestamp , either wTimestamp → rTimestamp and wTimestamp is the latest
complete write that precedes rTimestamp , or wTimestamp 6→ rTimestamp and
rTimestamp 6→ wTimestamp (i.e., wTimestamp and rTimestamp are concurrent).

Observation 6.1.16. It also follows from Lemmas 6.1.8 and 6.1.14 that
if rTimestamp → rTimestamp′ , then Timestamp ≤ Timestamp′. As such, there
is a partial order ≺ on read operations by benign clients defined by the
timestamps associated with the values returned (i.e., of the write oper-
ations read). More formally, rTimestamp ≺ rTimestamp′ ⇐⇒ Timestamp <

Timestamp′.

Since Lemma 6.1.11 ensures a total order on write operations, ordering
reads according to the timestamps of the write operations whose values they
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return yields a partial order on read operations. Lemma 6.1.14 ensures that
this partial order is consistent with precedence among reads. Therefore, any
way of extending this partial order to a total order yields an ordering of
reads that is consistent with precedence among reads. Thus, Lemmas 6.1.11
and 6.1.14 guarantee that this totally ordered set of operations is consis-
tent with precedence. This implies the natural extension of linearizability to
R/W-PF members that tolerate malevolent clients (i.e., ignoring reads by
malevolent clients and assuming writes by malevolent clients begin at the
start of the execution). In particular, it implies linearizability as originally
defined by Herlihy and Wing [1990] if all clients are benign.

6.2 Proof of liveness

Lemma 6.2.1. All quorum RPCs eventually return.

Proof. The quorum RPCs are c qprc read latest,
c qrpc read previous, c qrpc read time, and c qrpc write. For
the asynchronous timing model and for the crash-recovery benign server
failure model with synchronous timing model, there is at least one quorum
comprised exclusively of good servers. See Section 3.1.2 for a definition of
good and constraint (5.1) for the constraint on quorum system construction
that ensures this property. Quorum probing and repeated sends of requests
therefore ensures a quorum of responses will be received, thus allowing the
quorum RPC to return eventually. For the crash and omission benign server
failure models with synchronous timing model, because of the non-blocking
quorums employed, a quorum of responses will be received, of which Q \ T
are from correct servers; the reminder may be from malevolent servers
and/or timeout. Such a quorum of responses ensures that the quorum
RPC returns.

Lemma 6.2.2. A write operation by a correct client completes.

Proof. A write operation by a correct client performs two quorum RPCs:
one to retrieve the latest timestamp (c qrpc read time) and one to write
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the value (c qrpc write). Lemma 6.2.1 proves that both quorum RPCs re-
turn. For a write operation to complete it must establish a well-formed can-
didate. A correct client constructs the self-validating timestamp correctly,
therefore the resulting candidate is well-formed. For the asynchronous tim-
ing model and crash-recovery benign server failure model with synchronous
timing model, a quorum of responses to the c qrpc write quorum RPC,
implies that all of the benign servers in a quorum accepted the candidate
and it is therefore established. For the crash and omission benign server
failure models with synchronous timing model, a quorum of responses to
the c qrpc write quorum RPC, implies that all of the correct servers in a
quorum accepted the candidate and it is therefore established.

Lemma 6.2.3. A read operation by a correct client completes.

Proof. A read operation by a correct client performs one quorum RPC
to read the latest candidate (c qprc read latest) and, if needed, ad-
ditional quorum RPCs to read candidates with earlier timestamps
(c qrpc read previous) and/or a quorum RPC to repair a candidate
(c qrpc write). Lemma 6.2.1 proves that all such quorum RPCs return.

A read returns once it identifies a well-formed candidate that it classifies
as complete. (A read operation that identifies a well-formed candidate that
it classifies as repairable performs a c qrpc write and the candidate is
then classified complete.) A read operation reads candidates with earlier
timestamps given a candidate it classifies as incomplete or not well-formed.
At the start of the system execution, there exists a well-formed established
candidate 〈0,⊥〉. There can only be a finite number of candidates with higher
timestamps then 0, and so the read operation eventually completes.

The R/W-PF members achieve a strong liveness property, namely wait-
freedom [Herlihy, 1991; Jayanti et al., 1998]. Informally, each operation by
a correct client completes with certainty, even if all other clients fail, pro-
vided that client, server, and network failures are within the resiliency model
specified. Wait-freedom was originally defined for an asynchronous timing
model. However, the definition applies in the synchronous timing model
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without modification. Note that write operations require a finite number of
client steps (two) to complete, whereas read operations require a finite but
unbounded number of client steps. Given a finite number of clients in the
system, the number of steps required to complete a read operation could be
bound (see Section 7.7.1 for more detailed discussion).

To achieve wait-freedom R/W-PF members with an asynchronous tim-
ing model require unbound storage capacity. Servers must retain the can-
didate for every request they accept indefinitely. In practice, such versions
are garbage collected (see Section 7.7). This weakens the liveness guarantee
achieved.

Garbage collection removes well-formed established candidates once later
well-formed established candidates exist. “Slow” clients that perform read
operations concurrent to write operations and garbage collection may reach
the earliest candidate still in each server’s history without classifying any
candidate as complete. Such a read operation could either abort or retry; a
retried read may also not complete.

With bound storage capacity, R/W-PF members with an asynchronous
timing model achieve obstruction-freedom [Herlihy et al., 2003]. Lemma 6.2.3
relies on all well-formed established candidates existing indefinitely. For ex-
ample, the initial candidate, 〈0,⊥〉 is relied upon to ensure read operations
complete.

So long as a client performs a read operation in isolation (i.e., no other
concurrent read or write operations by other clients take any steps) or no
server performs garbage collection during the read operation, the read oper-
ation completes. For R/W-PF members with a synchronous timing model,
so long as garbage collection delays δ before deleting “unneeded” candidates
from its history, read operations complete.

6.3 Discussion of malevolent components

The linearizability provided by R/W-PF members that tolerate malevolent
clients does not guarantee that such clients write valid object values. Lin-
earizability ensures that malevolent clients write a single value to the object
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(i.e., poisonous writes are masked). However, malevolent clients can write
arbitrary values to the object. Read/write objects do not provide stronger
semantics.

A replicated state machine [Lamport, 1978; Schneider, 1990] ensures that
object values transition based on specified functions. Moreover, a replicated
state machine may expose a narrow interface that limits the manner in which
a client may manipulate an object’s value. Replicated state machines require
an atomic broadcast primitive. Read/write objects provide weaker semantics
than replicated state machines and so malevolent clients may modify the
object value arbitrarily.

An application that stores data using R/W-PF objects can perform in-
tegrity or semantic checks on object values. Such checks could provide some
protection from malevolent clients. The comprehensive versioning performed
by R/W-PF members also provides an audit trail of client actions that may
be useful in detecting aberrant values written by malevolent client.

The wait-freedom guarantee with unbounded storage capacity and the
obstruction-freedom with bounded storage capacity does not guarantee good
performance. Malevolent clients can perform intentionally incomplete writes
that require additional round trips by subsequent correct clients to read.
Server verification of writes can provide a bound on the number of such
writes a malevolent client performs (see Section 7.7.1 for more discussion).
Malevolent clients and servers can make timestamps extremely large thus
incurring additional network and storage costs. Protecting against such time-
stamp attacks is discussed in Section 7.8. Malevolent components may even
perform denial of service attacks on specific objects by issuing an inordinate
number of requests to specific servers.

The Byzantine failure model is characterized by a lack of assumptions
about actions faulty components may take, whereas estimating performance
in the face of malevolent components requires assumptions about the fre-
quency and type of attacks. Such models of malevolent components are
outside of the scope of this work; the performability of Byzantine fault-
tolerant systems seems to be an open research topic. In practice, intrusion
tolerance techniques based on statistical models of “normal” behavior may
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be necessary to provide timeliness in the face of malevolent components.



7 Prototype design and implementation

This chapter describes salient aspects of the prototype system implementa-
tion of the R/W-PF. The prototype system implementation is called PASIS1.
PASIS is implemented in C/C++ and runs on the Linux operating system.
Some mechanisms and optimizations in the implementation that are not de-
scribed in the design of the R/W-PF given in Chapter 4 are described in
this chapter.

7.1 Client and server implementation

The majority of the client implementation resides in a client library. The
client library routines are implemented such that different objects may have
different universes of servers and different R/W-PF membership. For the
sake of evaluating the prototype implementation, a client program, that
links with the client library, was developed to read and write objects with
different R/W-PF membership.

Servers expose the same interface, regardless of the protocol member be-
ing employed—write and read requests for all R/W-PF members are serviced
by a single interface. In PASIS, the interface given for servers in Figure 4.7
is extended to include an object ID.

Each write request that is accepted results in a fragment being stored.
A fragment is indexed by its object ID and by its logical timestamp. To
be clear, fragments are not over-written, every “version” is retained. If a
server receives a write request for an object it does not yet host locally, it
creates the object automatically. Upon creation, the server inserts 〈0,⊥〉 into

1In Wylie et al. [2000] PASIS was an acronym—it is now simply a state of mind.
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its local history of the object. The server then processes the write request
normally. If a server receives a read request for an object it has not created
locally, it simply replies with 〈0,⊥〉. Object creation is discussed further in
Section 7.4.

Servers expose additional interfaces that allow clients to specify the num-
ber of timestamp entries from the local history to return with read requests.
In the implementation, a server includes the two latest timestamps in its
reply to a read-latest request, as well as the fragment corresponding to the
latest timestamp (witnesses are discussed in Section 7.5). In a failure-free
execution, isolated read operations identify a complete candidate in a single
phase of client-server communication. If there is read-write concurrency, the
additional timestamp from server histories provides more information with
which to classify a complete candidate. If a client classifies a candidate as
complete from this additional information, the client may still have to re-
trieve fragments to actually decode the object. Servers support an interface
for reading a specific fragment by its timestamp. Clients can also specify the
number of timestamp entries from the history to return in a read-previous
request.

For correctness in the crash-recovery benign server-failure model, a server
must store a candidate it accepts in stable storage before responding to the
client. Disks are slow relative to many other components in computer sys-
tems. Waiting for candidates to be stored to disk is not desirable. If servers
employ non-volatile RAM, then servers can respond much more quickly.
Volatile RAM that is battery-backed can serve as non-volatile RAM. Com-
puters with uninterruptible power supplies (UPS) that store their memory
contents to disk when they switch to the backup power also have non-volatile
RAM.

The PASIS server is based on the Comprehensive Versioning File System
(CVFS) code base [Soules et al., 2003]. The CVFS code base is based on
the Self-Securing Storage Systems (S4) code base [Strunk et al., 2000]. The
PASIS server has two modules: the back end and the front end. The back end
server implementation uses a log-structured organization to reduce the cost
of comprehensive data versioning [Rosenblum and Ousterhout, 1992]. The
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back end server has not been significantly modified from CVFS for PASIS.
The PASIS front end server is heavily modified from CVFS for PASIS.

The PASIS front end exports the PASIS server interface rather than an NFS
interface. In addition, there are specialized caches for object histories in the
front end that include only timestamps.

In the code base, the client library is called pasisio (in the Ursa Mi-
nor code branch, it is called ssio). The client program is called pasi-

sio benchmark. The PASIS server front end program is called pasis fe s4

and the back end is called s4 drive.

7.2 Reliable channels

Client-server communication is implemented over TCP/IP sockets via re-
mote procedure calls (RPCs). For R/W-PF members with a synchronous
timing model, a timeout δ is specified. In the prototype implementation, δ
is set at compile time and has a default value of 1 s. A short timeout facil-
itates experimentation and demonstrating the system; in practice δ should
be set to be tens of seconds. However, δ is currently also used for the retry
frequency for quorum probing. The PASIS prototype could be extended to
allow the timeout to be specified on a per-object basis (and potentially even
per-access basis), and to have different parameters for δ and for quorum
probing.

Using TCP/IP for client-server communication in the implementation is
an imperfect match for the asynchronous timing model and for the crash-
recovery benign server failure model. TCP/IP uses timers to control the flow
of network traffic and to define a period after which it stops retransmitting
packets. The former use of a timer is safe, since it is a performance hint.
The latter use of a timer is problematic for asynchronous R/W-PF mem-
bers. There is a background process in PASIS that attempts to re-establish
connections to servers that timeout once a second. This mechanism is re-
lied upon by asynchronous R/W-PF members to retry indefinitely. However,
such an implementation, at best, only meets a partially synchronous timing
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model [Dwork et al., 1988]. Only during periods of relative synchrony will
responses be received.

To handle the crash-recovery benign server failure model, reliable chan-
nels are achieved by repeatedly sending requests to servers until sufficient
responses are received. TCP/IP retransmits dropped packets, and so imple-
ments a reliable unidirectional channel in the crash-recovery failure model.
Client-server RPCs, as implemented, retry sending packets until TCP indi-
cates that all packets comprising a request have been delivered. If the server
does not send a response to the request (via a separate RPC), the client does
not resend a request until a timeout expires. The PASIS prototype wraps
TCP/IP with another level of timeouts and retries to implement the reliable
channel.

The channels implemented by the PASIS prototype are close enough to
the timing and failure models that empirical measurements of PASIS are
meaningful. However, there is room for additional engineering in the design
and development of a network stack that meets the needs of all members
of the R/W-PF while providing stable throughput and good responsiveness.
Specifically, full compliance with the asynchronous timing model and a more
refined timeout and retry policy would improve the prototype implementa-
tion.

7.2.1 Quorum remote procedure calls

Quorum-based techniques are often advocated for their ability to disperse
load among servers and their throughput-scalability [for example: Naor and
Wool, 1998; Wool, 1998; Malkhi et al., 2000]. In storage systems, however,
there are performance benefits gained by locality of access. In the context
of the R/W-PF, locality of quorum access may be beneficial: a read opera-
tion serviced by the same quorum of servers that serviced the most recent
write operation will likely complete in a single round of communication.
We implement quorum access locality by mapping object IDs to preferred
quorums.
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An access strategy based on preferred quorums does not directly offer
the load dispersal or throughput-scalability associated with quorum sys-
tems. If many objects are accessed over the entire universe of servers, load
can be balanced among the servers. Indeed, we do not expect quorum ac-
cess strategy to be used to disperse load or provide throughput-scalability.
Because different objects can be placed in different quorum systems that do
not share servers, we expect the placement of objects on servers to be the
primary means of balancing load among servers.

The PASIS prototype ignores corrupt responses from malevolent servers.
This matches the client pseudo-code for c qprc read latest in Figure 4.8
and for c qrpc read previous in Figure 4.9, that ignores replies with cor-
rupt fragments (cf. lines 909 and 1009). By ignoring the response, the client
effectively transforms the malevolent fault to a crash. For asynchronous tim-
ing models, additional servers are probed, and for synchronous timing mod-
els, such servers return timeout once δ expires.

If the client “detects” that a server is malevolent, it could safely stop
sending requests to that server in the future. Moreover, it could log the
information for the purposes of system administration (although if clients
may be malevolent, such information may not be trustworthy). The PASIS
prototype implements neither of these features.

The quorum probing policy implemented in PASIS is fairly simple. Re-
quests are initially sent to the servers in an object’s preferred quorum. Pre-
ferred quorums are a deterministic function of object ID. If a server in the
preferred quorum does not respond in a timely manner (i.e., δ), requests
are broadcast to all servers in the object’s universe. For asynchronous R/W-
PF members, this means that probing is retried every δ. For synchronous
R/W-PF members, this means that a timeout response is assigned to any
pending server requests once δ has elapsed.

7.3 Authorized channels and access control

Clients and servers have pair-wise shared secrets. We assume some infras-
tructure is in place to distribute shared secrets among clients and servers.
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The PASIS prototype supports an existing Kerberos [Steiner et al., 1988]
infrastructure.

Each RPC request and response is authenticated. Authenticated chan-
nels for R/W-PF members that tolerate malevolent components incur some
additional compute cost because an HMAC [Bellare et al., 1996] is used.
For such R/W-PF members, we rely on the hash in the timestamp to vouch
for the fragment. This means that each byte of the request is only hashed
once. For R/W-PF members that do not tolerate malevolent components,
the HMAC is replaced with the client ID.

Clients are either authorized, or not. If authorized, clients can perform
reads and writes of an object. Access control is considered orthogonal and
so is not implemented. However, we note that requiring that a client be able
to repair a candidate during the course of a read operation could complicate
access control: should a client authorized only to read an object be able to
repair the object? If read and write privileges are differentiated, then a client
that can only perform read operations can not perform repair and thus may
not be able to complete a read operation.

To limit client access, but retain strong liveness guarantees, additional
mechanisms may be employed. Two such mechanisms are servers digital
signing the candidates they return in response to client read requests or
servers being authorized to perform repair on behalf of under-privileged
clients. The former allows a client to prove to a server that there exists
a repairable candidate at some timestamp. This is similar to the use of
authenticators with replica histories in the Query/Update protocol [Abd-El-
Malek et al., 2005a]. If malevolent clients are tolerated, then this approach is
only effective for replicated objects. The latter authorizes servers to contact
other servers to directly determine if a repairable candidate indeed exists at
the timestamp sent by the client. This is similar to on-demand verification
which is discussed in Section 7.7.1.
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7.4 Object metadata

For simplicity and modularity of the implementation, metadata as to where
objects are stored is assumed to be the responsibility of another component
(e.g., the client application, a directory service, etc.). In PASIS, all clients
have full knowledge of the entire universe of servers U and of every object
they read and write.

Every object is uniquely identified by an object ID. For an object, its
universe of servers U , R/W-PF member, and object ID is static and set at
object creation time. The client that performs the first write operation to an
object creates the object and determines its universe, R/W-PF membership,
and object ID.

Malevolent client actions during create are not tolerated by the PASIS
prototype. For example, a malevolent client could re-use an object ID and
create the “same” object with different R/W-PF membership at different
servers. Extending the prototype so that object names are self-verifying—for
example, by including the universe, membership, and object ID in the object
name—would protect against malevolent object creates. However, protecting
against malevolent object creation could be done, in some other fashion, by
another component in a complete storage system (e.g., a volume manager
or directory service). We did not implement any specific mechanisms in the
prototype.

The PASIS prototype does, however, include a structure that lists the
object’s universe and its R/W-PF membership in each write request. This
structure, because it describes the object’s universe, is similar to a linkage
record [Amiri et al., 1999]. Linkage records, as used by Amiri et al., list the
set of servers that accepted the most recent write.

7.5 Quorums, witnesses, and the universe

In the PASIS prototype each server in the universe U has an ID. As well,
each server in a sub-universe (i.e., an object’s universe) has an ID. Fragments
written by a client have an index in the range (1, . . . , q, . . . , n). The frag-
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ments with indices 1, . . . , q are stored in the preferred quorum. The PASIS
prototype supports read and write witnesses. Timestamps serve as witnesses
in the implementation.

Read witnesses are selected by the client at the time of a read opera-
tion. The client sets a flag in each request it sends indicating whether the
server should respond with a candidate (timestamp and fragment pair) or
just a timestamp. Clients select the servers that host fragments with indices
1, . . . ,m to return candidates and the remaining q −m to return read wit-
nesses. For erasure-coded data, the “first” m servers correspond to those
that host stripe-fragments. For R/W-PF members that support only client
crash failures these fragments require no computation to decode. Otherwise,
if the self-validating timestamp must be checked, it does not matter which
m servers return fragments.

Whereas each client can select which servers act as read witnesses in-
dependently, the set of servers that host only write witnesses (timestamps)
are specified as part of the R/W-PF member. This is necessary to ensure
correctness for R/W-PF members that tolerate malevolent clients. If clients
independently select which servers host write witnesses, a malevolent client
could select too many servers for hosting write witnesses. Subsequently, some
clients may complete a read operation of the candidate so “established”,
while others may not. As such, linearizability would be compromised. This
is a variant of a poisonous write. To protect against malevolent clients, in
the implementation, the only servers that can host write witnesses are those
servers that host fragments with the indices q− qw + 1, . . . , q. Entries in the
cross checksum for such fragments are assigned the null value ⊥.

The solution implemented limits the ability to employ write witnesses if
additional quorums are probed. A solution that allows clients to select the
servers that host write witnesses at the time of the write operation is to
embed a write witness flag (bit) in the cross checksum. The client cannot
change the set of servers that host write witnesses after it has constructed
the timestamp (cross checksum). However, this at least allows a client to
select servers that it believes are up to host write witnesses; in the face of
server failures, this may be useful.
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Many quorum constructions can be used in conjunction with the R/W-
PF [for example: Malkhi and Reiter, 1998, 2000]. We have implemented
the threshold (majority) quorum constructions described in Section 5.2. We
have also implemented aspects of recursive threshold quorum constructions
based on these threshold quorums [Malkhi and Reiter, 2000]. The recursive
threshold quorums are sufficient for evaluating common case performance,
but quorum probing is not implemented. (The probing implementation ex-
clusively works with threshold quorums currently because it simply probes
for a specific number of responses, without consideration of whether the set
of responses is from a quorum.) To handle general quorum constructions,
the quorum probing implementation must be revised to consider the quorum
membership servers that respond.

For a single object, only its U of servers matters. However, since many
objects are stored in a storage system, there are interesting questions of
layout policy. This is true for a set of objects that share the same U and for
sets of objects that span all servers U.

Consider RAID 5 which “rotates” a parity fragment among a fixed set
of servers. To achieve a similar layout using the R/W-PF, consider a set
of n objects with the same U and with server IDs in the range (1, . . . , n).
Each object stores its fragment with index 1 on a different server, and then
its fragment with index 2 on the next server, with the nth server wrapping
around to the first. Given the access policy for reads, that selects the “first”
m servers to return candidates, this layout disperse the load among all the
servers in the universe (assuming a uniform object load).

This approach to “rotating parity” extends to the case of multiple ob-
jects with distinct overlapping universes. To be concrete, consider 10 ob-
jects, each with its own sub-universe of 5 servers, in an entire universe of
10 servers. If each object’s universe consists of 5 “consecutive” servers and
starts with a different server, then each of the 10 servers hosts 5 objects.
Moreover, the load is dispersed among all 10 servers (again, assuming uni-
form object load). There are similarities between this layout policy and
chained declustering [Lee and Thekkath, 1996; Thekkath et al., 1997]. The
prototype implementation supports these rotation layout policies.
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Although M is general enough to describe RAID schemes that con-
flate layout and redundancy (i.e., RAID 1/0, RAID 5, and RAID 6), such
specifications unnecessarily complicate quorum construction. The prototype
implementation treats the layout of erasure-coded fragments as a separate
task. This works well for m-of-n threshold erasure codes and results in a
flexible system design.

Some researchers have considered the merit of random layout policies
versus partition layout policies. That is, should the number of distinct uni-
verses be minimized? or, maximized? The former decreases the likelihood
that failures beyond the minimum tolerated result in data loss, but it in-
creases the amount of data lost if such an event occurs. Douceur and Wat-
tenhofer [2001] considered such a layout problem in the context of a de-
centralized file system, and van Renesse and Schneider [2004] considered
a similar layout problem in the context of establishing Chain Replication
server groups. The PASIS prototype can be configured to implement many
layout policies. Layouts that rotate redundant fragments can be specified as
part of the R/W-PF member. However, random layouts must be specified
in configuration files.

7.6 Extensions for experimentation

The PASIS prototype includes extensions to facilitate testing and evalua-
tion. Much of the code is instrumented and the data collected is printed out
once programs complete. In instrumenting the code, we have avoided un-
necessary slowdown of the code path. We use the Pentium register counter
(rdtsc) to measure the duration of various events in the system. We also
avoid instrumenting inner-most loops of compute-intensive functions (e.g.,
encoding and decoding functions).

Features are added to both the client and server code so that faults
can be injected. To experiment with crash servers, servers can be forced to
“crash” with a sig int command. Servers that receive such a signal shut
down cleanly: they close open connections and they print out statistics. By
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closing the connections, client-side timeout code is circumvented. As such,
this is more like a fail-stop failure than a crash failure.

Servers have command line options for omission faults and malevolent
faults. Servers run with omission faults enabled respond as though they
accept write requests but never insert them into their history. Such servers
return 〈0,⊥〉 in response to every read request. Servers run with malevolent
faults enabled accept write requests but respond to all read requests with a
random fragment. Such a fragment does not match the cross checksum in
the timestamp. Clearly, such command line options should not be part of a
production version of the R/W-PF.

Clients have command line options for stuttering failures and for poi-
sonous writes. A client specified to stutter performs writes that do not com-
plete. The command line option allows the type of stutter (incomplete or
repairable) and the number of such writes to be specified. A client spec-
ified to perform poisonous writes generates fragments by randomly filling
in the fragment buffer. Such a client “correctly” constructs the timestamp,
including the cross checksum. The number of poisonous writes to perform
is specified on the command line.

7.7 Garbage collection

Garbage collection is necessary to prevent capacity exhaustion at servers.
Servers can delete a candidate from their local history, if the candidate has
a timestamp that is less than that of the well-formed established candidate
with the highest timestamp—referred to as the latest complete candidate.
However, a server, in isolation, cannot determine which candidates in its
local history meet this requirement. To determine the timestamp of the
latest complete candidate, servers perform a read operation.

Garbage collection is implemented in the current prototype and it re-
quires no additional RPCs. There are optimizations in the interface though
to make garbage collection more efficient. For R/W-PF members that do
not tolerate malevolent clients, there is no need to read candidates. Servers
can perform garbage collection by exclusively reading timestamp histories.
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The cost of sending garbage collection requests is amortized by batching
such requests together: a range of object IDs is specified in the read request.
For R/W-PF members that do not tolerate malevolent clients or servers, only
a single server need perform a read; it can then notify other servers of the
timestamp of the latest complete candidate. The responsibility for garbage
collecting specific object IDs is distributed among servers. This reduces the
potential for redundant work being done by servers.

In the prototype, garbage collection is triggered during idle time and
on-demand by memory exhaustion. A simple idle-time detector [Golding
et al., 1995] is used to detect idle periods, during which garbage collection is
initiated. If the front end is low on memory, it must either move candidates
from memory to disk, or garbage collect candidates in memory. The front
end maintains a high write count table that tracks how many candidates
(versions) each object has in memory. Such objects are prioritized by garbage
collection, because they free up the most capacity when successfully garbage
collected.

Garbage collection requires server-to-server communication. Most
quorum-based protocols avoid such communication. However, the alterna-
tives are to rely on a trusted “client” that identifies versions that are safe
to garbage collect or to introduce verifiable information dispersal techniques
that are not network-efficient. Garbage collection requests ought to be amor-
tized over many versions and potentially many objects. Moreover, garbage
collection can be scheduled during otherwise idle periods. For these reasons,
server-to-server communication seems like the right approach in practice.

7.7.1 Lazy verification

For R/W-PF members that tolerate malevolent clients, determining the lat-
est complete candidate is more cumbersome. Servers must perform normal
read operations so that they can see if the timestamp is self-validating. How-
ever, the PASIS prototype implements lazy verification for such R/W-PF
members [Abd-El-Malek et al., 2005b]. Laziness refers to the fact that servers
do not verify write operations until there is idle time or memory exhaustion.
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For R/W-PF members that tolerate malevolent clients and servers, mul-
tiple servers are assigned responsibility for each object ID. For threshold
quorums, b+ 1 servers are assigned primary responsibility, and b additional
servers secondary responsibility. So long as the primary servers send noti-
fication messages in a timely fashion that are consistent with one another,
the secondary servers do nothing. Otherwise, secondary servers also perform
verification, until b+ 1 matching notify messages are sent. This co-operation
reduces the expected number of messages for verification, relative to each
server performing verification independently.

Once a candidate is verified, candidates with prior timestamps can be
garbage collected. Moreover, servers set a flag in subsequent read responses
indicating that a candidate has been verified. If a client classifies a candi-
date as complete and observes that at least b + 1 servers have flagged the
candidate as verified, the client concludes that the candidate is well-formed.
This reduces the client compute for decoding such candidates. Servers also
garbage collect candidates that are not well-formed; this potentially reduces
the number of clients that perform verification on the candidate. Finally, to
bound the number of poisonous writes in the system at any one time, or the
number of intentionally incomplete candidates, servers can be set to limit
the number of unverified candidates on a per client basis.

Note that erasure codes that provide confidentiality from servers (e.g.,
secret sharing or short secret sharing) cannot be garbage collected using
these techniques: to perform garbage collection, some servers must decode
the object. Some other trusted entity is necessary to perform garbage col-
lection of such objects and maintain server confidentiality.

7.8 Timestamps and chronological chicanery

The PASIS prototype reserves 8 bytes for Timestamp.LogicalTime. In the-
ory, 264 write operations is a lot. In practice, malevolent clients can generate
arbitrary-sized values for Timestamp.LogicalTime and exhaust the time-
stamp space. Moreover, malevolent servers can reply to correct clients with
arbitrary-sized timestamps, forcing correct clients to write arbitrary-sized
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timestamps. Even if Timestamp.LogicalTime was of some large integer type
that did not have a fixed size, arbitrary-sized timestamps are still problem-
atic. Arbitrary-sized timestamps impact network- and space-efficiency; such
timestamps could be many factors larger than the fragments being stored.

Bazzi and Ding [2004] identified a solution to arbitrary-sized timestamps
in Byzantine fault-tolerant storage systems: non-skipping timestamps. To im-
plement such non-skipping timestamps in the R/W-PF an additional quo-
rum RPC that establishes the timestamp before the write is necessary. More-
over, to tolerate malevolent clients, servers would need to digitally sign time-
stamps returned to clients in response to c qrpc read time requests. An
additional phase of communication and the use of asymmetric cryptography
are not desirable. Cachin and Tessaro [2005c] identify a similar technique
for constructing timestamps that exhibit bound growth via a threshold sig-
nature scheme.

The PASIS implementation does not implement any mechanisms to pro-
tect against arbitrary-sized timestamps. However, we believe that the tech-
niques implemented for lazy verification (See Section 7.7.1) with a minor
modification can provide protection efficiently. Bazzi and Ding [2004] ig-
nore the b highest responses to read timestamp requests when constructing
the timestamp. This ensures that malevolent servers cannot force a correct
client to construct an arbitrary-sized timestamp. A minor modification of
c qrpc read time can provide this feature. To protect against malevolent
clients, servers could perform timestamp verification on-demand if they re-
ceive a write request with “too large” a timestamp. The concept of “too
large” could be based simply on the highest timestamp in a server’s local
history. Allowing the timestamp element Timestamp.LogicalTime to incre-
ment by more than 1 at a time may avoid additional, unnecessary, server
messages during periods of contention.

Malevolent servers can also attack the performance of read operations
via the timestamp. A malevolent server can respond to a read-latest request
with a forged candidate that has a high timestamp. In the pseudo-code
for c read, a client issues read-previous requests if the candidate set is
classified incomplete. The malevolent server can then respond with a forged
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candidate that has an incrementally smaller timestamp. Because timestamps
include cryptographic digest in the low bits, a malevolent server has a large
timestamp range with which to forge candidates.

A client can protect itself from this attack by selecting the timestamp
for read-previous requests differently. Instead of basing the read-previous
timestamp on the candidate classified incomplete, the client bases the time-
stamp on another candidate in the response set. As is done for non-skipping
timestamps, the b highest timestamps are ignored. This is safe, because
the candidates corresponding to such timestamps are classified incomplete.
Responses to such read-previous requests actually return candidates with
timestamps equal to or less than the specified timestamp.

7.9 Synchronized clocks

Loosely synchronized clocks can often be used as performance hints in dis-
tributed systems [Liskov, 1991]. To reduce the number of quorum RPCs a
write operation that synchronous R/W-PF members require, such members
use loosely synchronized clocks to generate timestamps for writes. However,
the use of loosely synchronized clocks weakens the linearizability guarantee.

In the synchronous timing model, client clocks may be synchronized
using the Network Time Protocol [Mills, 1992, 1995]. Given loosely synchro-
nized client clocks, there is no need to perform a c qrpc read time quorum
RPC. Therefore, line 1300 of the of the function c write in Figure 4.11 be-
comes LogicalTime := C LOCAL READ TIME().

In practice, client clocks drift—each client’s local clock may progress at
(slightly) different rates—which is why they must be continuously synchro-
nized, and why they are considered only loosely synchronized. As such, at
any time, every client clock may exhibit a different amount of drift relative
to global time. We define clock skew τ to be the maximum difference be-
tween the local clocks for any two correct clients. Note that τ is not directly
observable; it is an assumption about the efficacy of the clock synchroniza-
tion protocol. Because of clock skew, the definition of when a write operation
begins (cf. Definition 6.1.2) is modified.
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Definition 7.9.1 (synchronized write begin). A write operation wTimestamp ,
that uses the function C LOCAL READ TIME to determine its logical time-
stamp, begins τ before when a benign client invokes the c write operation
locally that issues a write request bearing timestamp Timestamp.

Revising the begin time weakens the safety guarantee. Consider two
clients, A and B, whose clocks differ in that A’s clock is τ less than B’s clock.
It is necessary to extend the begin time of a write operation to accommo-
date the case when B invokes a write operation less than τ before A invokes
a write operation. If B establishes a candidate before A invokes its write
operation, then B’s write operation should precede that of A. Lemma 6.1.11
proved that the timestamp order is a total order on write operations. How-
ever, A’s write operation is ordered before B’s write operation. Extending
the begin time of the write operation into the past, as Definition 7.9.1 does,
“fixes” this problem by allowing write operations that begin within τ of one
another to be linearized.

In many systems, such as cluster-based storage in a high-speed LAN,
clock skew is expected to be much less than one millisecond. Weakening
linearizability in this fashion, halves the number of phases of client-server
communication for write operations. The “right” decision depends on the
object/system in question. If the R/W-PF is being used in the context of a
system that serializes access to objects, i.e., its failure-atomicity is utilized,
but not its concurrency atomicity, then using a local clock to construct time-
stamps may not weaken the linearizability guarantee. The implementation
supports either using local clocks or using a quorum RPC on a per-object
basis (i.e., it is specified as part of R/W-PF membership).

As discussed in Section 7.8, malevolent clients can write “into” the fu-
ture. Timestamps based on local clocks introduce another concern regarding
malevolent clients. Correct clients that base timestamps on the local clock
will write behind candidates with arbitrarily high timestamps.

To protect against such a malevolent fault, a correct client can ignore
(classify as incomplete) a candidate with a timestamp that is τ greater than
its local clock. If servers, as well as clients, have synchronized clocks, then
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servers can reject write requests that are “in the future”. Given this feature,
clients do not need to perform additional logic to classify “future” writes as
incomplete. Note that a server or client with an unsynchronized clock (i.e.,
its drift is more than τ from real time) is malevolent.

7.10 Encode and decode

The IDA implementation and a number of cryptographic primitives are
based on publically available code collected in the Crypto++ library [Wei
Dai, 2005]. In PASIS, the erasure code implementation is separated from the
specification of m and n. However, there are default erasure codes selected
depending on m and n: if m = 1, replication is used; if m = n− 1, RAID 4
is used; otherwise, IDA is used. These defaults can be over-ridden, so that,
for example, IDA is used with m = 1. For IDA, the implementation of the
Galois Field used may also be specified (see Section 7.11).

For replicated objects, cross checksums are constructed in a special man-
ner. Since replicated data is self-verifying, it is sufficient for a single collision
resistant hash to be used in lieu of one for each fragment. This reduces the
computation and space required to protect against poisonous writes.

Beyond the IDA implementation, Shamir’s secret sharing [Shamir, 1979],
Krawczyk’s short secret sharing [Krawczyk, 1994], and Blakley’s ramp
schemes [Blakley and Meadows, 1985] are also implemented. Various ciphers
are implemented for use with short secret sharing: DES, 3DES, and AES.
The DES and 3DES implementations are based on the Crypto++ library
and the AES implementation is based on publically available code [Glad-
man, 2004a]. A pseudo random number generator based on ANSI X9.17C
is implemented for use with secret sharing and is based on the Crypto++
library.

Various cryptographic digests are implemented for constructing cross
checksums: MD5 [Rivest, 1992] and SHA1 [NIST, 1995], as well as some
other SHA variants. We note that MD5 is showing its age [Wang et al.,
2004], however, it is useful for comparing performance trends across cryp-
tographic primitives. The implementation of MD5 is based on publically
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available code [Rivest, 1992]. The implementation of SHA is also based on
publically available code [Gladman, 2004b].

The PASIS prototype can use any of these cryptographic digests in the
construction of cross checksums. However, the implementation currently uses
compile time flags to select which cryptographic digest to use. Run-time
specification, for example as part of R/W-PF membership, would facilitate
experimentation. Different cryptographic digests are of different lengths, for
example, MD5 digests are 16 B and SHA1 digests are 20 B. The functions
that serialize data structures for client-server RPCs need to know the exact
size of structures. To make cross checksums based on smaller digests more
network-efficient, the digest is selected at compile time. The compile time
default is for SHA1 and that is the hash function used by R/W-PF members
that require collision-resistant hashes.

Because hashes become less secure over time, archival data stored via the
R/W-PF may need to be migrated to stronger hashes over time. Although
the R/W-PF does not directly support such an action, performing a read
with the “old” hash and then a write with the “new” hash should be easy to
implement in most storage systems. Selection of the collision resistant hash
could also be part of the R/W-PF member specification. Weaker hashes
could be used for short-lived data and stronger hashes for long-lived data.

In the implementation, because timestamps are used as indices at servers
and witnesses in read and write requests, the cross checksum is not actually
part of the timestamp. Only a collision resistant hash of the cross check-
sum is in the timestamp: the element Timestamp.CrossChecksum in the
implementation is actually hash(CrossChecksum). The cross checksum is
sent with write requests because servers must validate the integrity of the
fragment against its entry in the cross checksum. In addition, servers must
validate that the hash of the cross checksum matches the digest for it in the
timestamp. In the implementation, servers that respond to read requests
with candidates also return the cross checksum. Servers that return only
read witnesses return the timestamp without the cross checksum. A client
receives sufficient cross checksums in this manner.
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7.11 IDA implementation

The implementation of IDA in the prototype is based on polynomial inter-
polation in a Galois Field. This conceptually follows Rabin’s Information
Dispersal Rabin [1989] and Shamir’s Secret Sharing Shamir [1979]. The im-
plementation of polynomial interpolation is loosely based on the Crypto++
library of Wei Dei Wei Dai [2005]. The source is modified to use stripe-
fragments (i.e., like RAID 4 rather than RAID 3) and more efficient imple-
mentations of Galois Fields of size 28 were added.

7.11.1 Example of polynomial interpolation in Z7

To illustrate erasure coding as polynomial interpolation, consider the prime
field of integers of size seven Z7. To perform a 3-of-6 erasure-coding of an
object comprised of three elements {3, 4, 0} from Z7, these three elements
are considered three points in Z7×Z7: {(0, 3), (1, 4), (2, 0)}. Three points in
a space with distinct x coordinates define a polynomial of order two. More
generally, m elements define a polynomial of order m−1. The three points in
this example define the polynomial y = x2 +3 in Z7. This polynomial is used
to generate the redundant n−m (i.e., 6−3) fragments: {(3, 5), (4, 5), (5, 0)}.
Figure 7.1 illustrates this process graphically.

7.11.2 Lagrange polynomial interpolation

Given m points on a polynomial, Lagrange’s polynomial interpolation can
efficiently generate additional (redundant) points:

P (x) =
n−1∑
j=0

Pj(x)

Pj(x) = yj

n−1∏
k=0
k 6=j

x− xk
xj − xk
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Figure 7.1. Illustration of a 3-of-6 erasure coding of the three element object
{3, 4, 0} via polynomial interpolation in Z7.

For the example from Section 7.11.1, this expands to,

P (x) = y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)

+ y1
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

+ y2
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

P (x)(x0,x1,x2)=(0,1,2) = 3
(x− 1)(x− 2)
(0− 1)(0− 2)

+ 4
(x− 0)(x− 2)
(1− 0)(1− 2)

+ 0
(x− 0)(x− 1)
(2− 0)(2− 1)

P (x)(x0,x1,x2)=(0,1,2) =
3
2

(x− 1)(x− 2)− 4x(x− 2)
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And so, interpolating three redundant fragments results in the following:

P (3) =
3
2

(2)(1)− 12(1) = −9 ≡ 5 mod 7

P (4) =
3
2

(3)(2)− 16(2) = −23 ≡ 5 mod 7

P (5) =
3
2

(4)(3)− 20(3) = −42 ≡ 0 mod 7

To erasure code objects “in bulk”, objects are broken into m stripes.
Each stripe-fragment is the same size (the mth stripe-fragment is padded if
necessary). Each stripe-fragment is broken into elements from some field (in
this example Z7). Each stripe-fragment is essentially an array of elements.
Polynomial interpolation is performed across elements with the same off-
set into the different stripe-fragment “arrays”. Each such interpolation is
based on elements with the same ordinal positions (x intercepts) and gener-
ates redundant elements for the same set of ordinal positions (x intercepts).
Constants that are a function solely of the ordinal positions of object data
and redundant data are pre-computed for efficiency.

Consider the object {3, 1, 4, 2, 0, 5}. It is broken into stripe-fragments
{3, 1}, {4, 2}, {0, 5}. To generate three redundant fragments, the elements
{3, 4, 0} and {1, 2, 5} are interpolated. The pre-calculation of constants is
based on these elements having the ordinals {0, 1, 2} and the redundant
fragments having the ordinals {3, 4, 5}. There are m constants for each re-
dundant fragment. The three constants for the first redundant fragment with
ordinal 3 are:

P (3) = y0
(3− x1)(3− x2)

(x0 − x1)(x0 − x2)

+ y1
(3− x0)(3− x2)

(x1 − x0)(x1 − x2)

+ y2
(3− x0)(3− x1)

(x2 − x0)(x2 − x1)

P (3) = y0
(3− 1)(3− 2)
(0− 1)(0− 2)

+ y1
(3− 0)(3− 2)
(1− 0)(1− 2)

+ y2
(3− 0)(3− 1)
(2− 0)(2− 1)

P (3) = 1(y0)− 3(y1) + 3(y2)
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x{1,...,7} mod x3 + x+ 1 Binary
x1 x 010
x2 x2 100
x3 x+ 1 011
x4 x2 + x 110
x5 x2 + x+ 1 111
x6 x2 + x+ 1 101
x7 1 001

Table 7.1. Galois Field (23) based on generator x and irreducible polynomial
x3 + x+ 1.

As such,

P (3)(y0,y1,y2)=(3,4,0) = 1(3)− 3(4) + 3(0) = −9 ≡ 5 mod 7

P (3)(y0,y1,y2)=(1,2,5) = 1(1)− 3(2) + 3(5) = 10 ≡ 3 mod 7

The pre-calculation of such constants requires O(m2) operations. Each
redundant fragment generated via polynomial interpolation given such con-
stants requires O(m) operations. Lagrange’s polynomial interpolation is cov-
ered in detail by Knuth [1997].

7.11.3 Example of multiplication in GF(23)

In this section, we review and extend an example, developed by Stinson,
of the construction of and multiplication in GF(23) [Stinson, 1995, page
182]. A finite field is constructed from a generator. A Galois Field requires
a generator and an irreducible polynomial. The irreducible polynomial for
this example is x3 +x+ 1 and x is the generator. Additional background on
finite fields and Galois Fields can be found in Menezes et al. [1996]. Table 7.1
shows the field defined by this irreducible polynomial.

In Galois Fields, addition is based on logical xor which is computation-
ally very efficient. There are many distinct techniques for efficiently imple-
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000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

Table 7.2. Full lookup table for multiplication in GF(23).

menting multiplication in a Galois Field. The appropriate technique depends
both on the size of the Galois Field and on the type of processor being used.

Lookup tables are used to implement multiplication efficiently There are
two options for lookup tables: a full lookup table (e.g., 23 × 23), or log and
anti-log lookup tables. Table 7.2 illustrates the full lookup table for this ex-
ample, and is taken almost directly from Stinson [1995, page 182]. Tables 7.3
and 7.4 illustrate the log and anti-log lookup tables for this example. The
log lookup table follows from Table 7.1 except for the log of zero. The log of
zero is set to 15 so that the anti-log table can be constructed to account for
multiplication by zero. This construction of the anti-log table avoids check-
ing for multiplication by zero inline in the code, so that multiplication by
zero does not require special case code.

7.11.4 Multiplication in GF(28), GF(216) and GF(232)

The implementation of information dispersal can operate in GF(28). Either
a full lookup table or a log lookup table can be used. The irreducible poly-
nomial x8 + x7 + x6 + x5 + x4 + x2 + 1 is used to generate the field. The
full lookup table is 64 KiB in size. By performing the multiplication required
for polynomial interpolation in a specific order only some rows of the full
lookup table, each of which is 256 B in size, must be in memory. At most,
one row for each of the pre-computed constants must be in memory. To



104 · A read/write protocol family for versatile storage infrastructures

Index Log
000 15
001 7
010 1
011 3
100 2
101 6
110 4
111 5

Table 7.3. Log lookup table for multiplication in GF(23).

Index Log−1 Index Log−1 Index Log−1 Index Log−1

0 - 8 010 16 000 24 000
1 - 9 100 17 000 25 000
2 100 10 011 18 000 26 000
3 011 11 110 19 000 27 000
4 110 12 111 20 000 28 000
5 111 13 101 21 000 29 000
6 101 14 001 22 000 30 000
7 001 15 000 23 000 - -

Table 7.4. Anti-log lookup table for multiplication in GF(23).
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erasure-code an object, at most (n − m) × m rows of the table must be
in memory, since n −m redundant fragments are generated, each of which
requires m pre-computed constants. The memory footprint of the log and
anti-log tables is smaller: 256 B for the log table and 1023 B for the anti-log
table. The full lookup table requires fewer instructions than the log/anti-log
tables to perform multiplication.

For small n, we have found the full lookup table to be most efficient,
and for larger n the log and anti-log tables to be most efficient. We have
found that unrolling a loop of the bulk polynomial interpolation four times
and aligning addition (logical xor) to four byte word boundaries helps some
compilers optimize the code for the class of processors we use.

Information dispersal can also be performed in larger fields: GF(216) and
GF(232) in the implementation. The irreducible polynomials used for these
fields are x16 + x5 + x3 + x + 1 and x32 + x7 + x3 + x2 + 1 respectively.
Lookup tables in such fields are not efficient because they are too large to
be accessed efficiently in current processors (just the log table is 64 KiB
in size for GF(216)). Multiplication in a Galois Field greater than 28 is
implemented via a tight loop from 16 or 32 down to 0. Only shift, logical
and, logical xor, addition, and lookup in a small table of pre-computed
values (the modulus of the irreducible polynomial, the multiplier shifted left
by one, and the multiplier shifted left by one added to the modulus of the
irreducible polynomial) are used in the loop.

We have found that polynomial interpolation in GF(28) is more efficient
than in Galois Fields with a higher degree. However, the degree of the Galois
Field places a limit on n, the number of unique erasure-coded fragments. In
GF(28), only 256 unique erasure-coded fragments can be generated.
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8 Evaluation

This chapter describes the results of experiments performed with the PASIS
prototype. Sections 8.3 and 8.4 present the empirical results that demon-
strate that the PASIS prototype is a versatile storage infrastructure. Differ-
ent R/W-PF members provide substantially different performance, depend-
ing on their specified resiliency model and storage mechanisms.

The R/W-PF is optimistic and so offers best performance for
concurrency- and failure-free accesses. Performance results of accesses in the
face of concurrency and failures are described in this chapter. The R/W-
PF is quorum-based and so, in theory, can benefit from the throughput-
scalability offered by quorum constructions. Experiments were performed to
investigate the throughput-scalability of quorums and witness use in the pro-
totype. The performance of the IDA implementation used in the prototype
is also described in this chapter.

8.1 Experimental setup

8.1.1 Testbed

All experiments are performed on a rack of 76 Intel Pentium 4 2.80 GHz
computers, each with 1 GiB of memory, and an Intel PRO/1000 NIC. The
computers are connected via an HP ProCurve Switch 4140gl that has a
specified internal bandwidth of 18.3 Gbps/35.7 mpps. The computers run
Linux kernel 2.6.11.5 (Debian 1:3.3.4-3).

On a computer that acts as a server, a single server process pasis fe s4 is
run in most experiments. On a computer that acts as a client, a single client
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process pasisio benchmark is run. The client process is allowed to have
multiple operations outstanding at any time. For response time experiments,
we limit client processes to a single outstanding operation. For throughput
experiments, we allow client processes to have multiple outstanding oper-
ations. It is necessary to allow multiple outstanding requests per client so
as to saturate the network or servers in throughput experiments. The limit
on the number of outstanding operations allowed is described in each ex-
periment. We do not allow client processes “think time”. However, because
client computation is required to encode and decode objects, scheduling at
client processes with multiple operations has the effect of acting like client
“think time”.

8.1.2 Repeatability

Unless otherwise noted, experiments are run for 15 seconds and measure-
ments are taken during the middle 5 seconds. Experiments are run 5 times
and the mean is reported. Some experiments do not use this procedure (e.g.,
the fault injection experiments in Section 8.5). The procedures for such ex-
periments are described with the results.

To ensure that experiments can be consistently re-run, we developed a
set of perl scripts that start the servers, start the clients, wait for the clients
to finish, stop the servers, and collate results. The control script runs on a
single computer, but it initiates client and server processes on many other
computers. Indeed, some experiments involve up to sixty computers.

First, the control script starts all of the server processes for an experi-
ment. After sleeping for three seconds, the control script starts client pro-
cesses. The sleep period allows all servers to start before clients begin issuing
requests. In most cases, the sleep step is unnecessary. However, the sleep step
tolerates the occasional jitter observed when forking tens of processes that
connect via ssh to server machines.

Second, the control script starts all of the client processes for an experi-
ment. The control script waits for all client processes to return. Each client
runs for the specified 15 second experiment duration. This time is broken
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into three phases: warmup, measurement, and cooldown. The intention of
the warmup and cooldown phases is to ensure that all clients are operating
during the measurement phase. The measurement phases for every client
mostly overlap, but some start earlier (end later) than others based on the
delay between the control script starting the first client process and the last
client process. Experiments that involve only a single client (for example,
response time experiments) do not require such long warmup and cooldown
phases. However, to keep the experimental method consistent, such experi-
ments are run in the same manner as experiments with multiple clients.

Finally, once all of the clients return, the control script stops all of the
server processes. Client and server processes print statistics for the experi-
ment to log files that the control script collates and synthesizes. The control
script analyzes log files for error messages and collates any such messages in
another file.

We ran a set of experiments designed to ensure that the duration of the
experiment and of each experiment phase was sufficient to produce mean-
ingful results. We ran experiments in which each phase of the experiment
was ten times longer than the standard (i.e., 50 seconds). We also ran exper-
iments in which individual phases were ten times longer than the standard.
In all cases the results matched within one percent of the response time and
throughput measures from the standard setup. This gives us confidence that
the experiments are being run for long enough to collect valid data.

A client takes additional measurements during the last two seconds of
the warmup phase. From these measurements, the client identifies a mean
and standard deviation. It uses these to construct “bins” for data collected
during the measurement phase. The “bins” provide a simple histogram of the
data collected during the measurement phase. Such a histogram was found
to be useful during performance tuning/debugging of the implementation
(and of some experimental setups).

We use the Pentium register counter (rdtsc) to measure the duration of
various events in the system. The number of processor clock cycles measured
by the register counter is converted to wall clock time. The conversion factor
is based on an initialization function that calls gettimeofday. To deter-
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mine the consistency (repeatability) of this conversion factor, we perform
the initialization function one hundred times. To determine the maximum
range of the conversion factor resulting from the initialization function, we
divide the difference between the maximum observed conversion factor and
the minimum observed conversion factor by the minimum observed con-
version factor. This gives a range in seconds per second for the conversion
factor. We did this experiment five times. The consistency of the conversion
factor was found to be 0.0000321 (i.e., 32.1µs/s). What this measurement
means, is that if two experimental runs were identical in every aspect except
for the initialization of the conversion factor, we would expect the reported
measurements to be within 0.003%.

8.1.3 Methodology

Almost all experiments focus on in-memory performance. Timestamps and
fragment versions are not synced to disk. Disk performance is highly depen-
dent on workload (e.g., locality of access) and hardware (e.g., the number
and type of disks at each server). The focus of this thesis is not the perfor-
mance of a specific storage system implementation for a specific workload
on specific hardware: the focus is versatility.

Unless otherwise noted, the working set for each experiment fits in mem-
ory. In-memory performance allows us to measure the performance of differ-
ent R/W-PF members without having to account for workload effects that
change with the R/W-PF member. Garbage collection (and lazy verification)
is also workload dependent and so is suppressed for most experiments.

To allow experiments to run for long enough to collect statistically sig-
nificant results, servers must delete versions during an experiment. Other-
wise, many experiments would exhaust server memory. Servers are run with
the oracle garbage collection option enabled: servers only retain the latest
two versions of any fragment. This allows common case (concurrency- and
failure- free) performance measurements to be taken.

In most experiments a fixed object of 32 KiB is specified. In some ex-
periments a fixed fragment size is specified. In such experiments, the object
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size is calculated from the fragment size. Specifying a fixed fragment size
makes the network traffic and server load generated by R/W-PF members
with different space-efficiencies (i.e., different m) more alike.

Most experiments, perform either exclusively read operations or exclu-
sively write operations. Note that there is a “format” phase that creates
objects in both cases, so that read operations have objects to read, and
write operations are performed on previously created objects. Since read
operations are different than write operations, performing separate experi-
ments allows the costs specific to each type of operation to be measured.

In theory, the performance for a workload that mixes read and write
operations is simply the weighted sum of the performance of each individual
type of operation. In practice, a “feature” of the Ethernet driver throttles
the number of interrupts it can generate for bi-directional TCP flows1. Such
throttling of bi-directional traffic results in lower performance for mixed
workloads than for homogeneous workloads. We compiled a series of custom
kernels with different constants for the Ethernet driver. Circumventing the
adaptive algorithm and setting a constant interrupt limit provided the antic-
ipated performance: the performance of a mixed workload was observed to
simply be the sum of the parts. However, the custom kernels achieved poor
throughput stability under load (i.e., throughput peaked and then dropped
as more load was added). We decided to run experiments with the stock
kernel: we appreciate that we got what we paid for, but have faith that the
Ethernet driver in future Linux kernels will exhibit better behavior.

Given the nature of the R/W-PF, read operations that are concurrent
to write operations may require multiple quorum RPCs to complete. Ad-
ditionally, server failures may trigger timeouts and quorum probing, and
malevolent components can attack performance. However, the majority of
experiments are performed concurrency- and failure-free. As such, best-
case performance is reported. For many workloads and deployments though,

1Search for the variable itr in the code module e1000main.c. The adaptive algorithm
that throttles the number of interrupts the driver can generate can range from 8000 to
2000. We are indebted to James V. Hendricks and Gregg Economou for their assistance.
James had previously identified this feature and Gregg compiled many kernel variants for
us to explore this feature.



112 · A read/write protocol family for versatile storage infrastructures

Policy Description
Benign Tolerates clients that crash and benign server failures (i.e.,

b = 0).
Hybrid Tolerates clients that crash, a single malevolent server, and

possibly additional faulty servers (i.e., b = 1).
Malevolent Tolerates clients that crash and malevolent servers (i.e.,

b = t).
Malevolent+ Tolerates malevolent clients and servers (i.e., b = t).

Table 8.1. Failure models for R/W-PF members evaluated. The failure mod-
els are listed in order of increasing generality.

concurrency- and failure-free access to read/write objects is expected. Spe-
cific experiments are performed to quantify the cost of access during con-
currency and failures.

8.1.4 Exploration of the “versatility-space”

To focus the exploration of R/W-PF versatility, we limit the set of R/W-PF
members evaluated. Unless otherwise specified, the R/W-PF member for
an experiment employs the smallest sized threshold quorum construction
given the resiliency model and erasure code specification. In many sets of
experiments, measurements are reported for different values of t, the number
of faulty servers tolerated. For a given t, we identified three axes of freedom
on which to focus the evaluation of R/W-PF versatility:

– Failure model policies. Table 8.1 lists the different policies used
to select client and server failure models for the R/W-PF members
evaluated.

– Timing model policies. Table 8.2 lists the different policies used to
select timing models for the R/W-PF members evaluated.

– Space-efficiency policies. Table 8.3 lists the different policies used
to select m for the R/W-PF members evaluated.
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Policy Description
Synchronous Synchronous timing model with crash benign

server failures. Message delays and processing are
assumed to be bound. Faulty servers are either
malevolent or crash. Loosely synchronized client
clocks are used to construct logical timestamps.

Synchronous&CR Synchronous timing model with crash-recovery
benign server failures. Message delays and pro-
cessing are assumed to be bound. Faulty servers
are either malevolent, unstable, or eventually
down. Even though message delays are bound, the
client may have to repeatedly probe until a quo-
rum of servers is live. However, synchrony allows
for loosely synchronized client clocks that are used
to construct logical timestamps.

Asynchronous No assumptions about timeliness are made. Log-
ical timestamps are constructed by reading the
latest time from a quorum of servers.

Table 8.2. Timing models for R/W-PF members evaluated. The timing mod-
els are listed in order of increasing generality. For the synchronous timing
model, two policies are listed. The policies differ in the benign server failure
model, which affects the size of quorums.
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Policy Description
Default For the default space-efficiency, m is selected based on n.

Given the value of n for the R/W-PF member, the largest
value of m permitted is selected. This policy generates the
most space-efficient R/W-PF member for the specified n.

Replication Regardless of how large m could be, this police always se-
lects replication for the R/W-PF member (i.e., m = 1).
This policy uses the same value of n as for the Default
policy.

Constant An erasure code with m = 6 is selected for the R/W-PF
member. In some cases, this necessitates that n be increased
beyond what the resiliency model demands. In other cases,
this results in the same value of n as for the Default policy.

Fault-based This policies selects the space-efficiency for the R/W-PF
member based on the number of faulty servers tolerated:
m = t+ 1. This policy is interesting because the number of
servers n increases as t increases. As such, this policy im-
proves the space-efficiency of the R/W-PF member as more
servers are needed. In some cases, this necessitates that n
be increased beyond what the resiliency model demands. In
other cases, this results in the same value fo n as for the
Default policy.

Table 8.3. Space-efficiencies for R/W-PF members evaluated.
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These policies are selected to provide an intuitive framework for explor-
ing the inherent trade-offs in performance and cost resulting from differ-
ent resiliency model choices and storage mechanism choices. These inherent
trade-offs motivate the need for a versatile storage infrastructure. The abil-
ity to explore these trade-offs in a single storage infrastructure demonstrates
that the R/W-PF provides versatility.

The failure policies cover the range of failure models likely to be em-
ployed. Moreover, the failure policies are selected to highlight interesting
costs. For example, comparing Hybrid and Benign shows the cost of tol-
erating any malevolent servers; comparing Malevolent and Hybrid shows
the cost of tolerating all malevolent servers; and comparing Malevolent and
Malevolent+ shows the cost of tolerating malevolent clients. The timing
policies cover the range of interesting timing models. The Synchronous and
Asynchronous policies are the two extremes. The Synchronous&CR policy
represents an interesting middle ground: a Synchronous&CR member has
the same bounds as an Asynchronous member but completes writes in a
single round trip.

The space-efficiency policies are selected to illustrate interesting inter-
actions between the erasure coding specification and other aspects of the
R/W-PF member. For example, comparing other space-efficiency policies
with Replication shows the value of erasure codes. Comparing Replication
with Constant is especially effective, because both maintain a constant value
for m as the number of faults tolerated increases. As more faults are toler-
ated, both policies yield higher blowup. However, the blowup for Constant
increases at a lower rate than Replication. Replication is also interesting be-
cause data is self-verifying which simplifies ensuring its integrity against mal-
evolent clients (i.e., the Malevolent+ failure model). Comparing the Default
and Fault-based space-efficiency policies is interesting, because for Benign
and Hybrid failure models, Default requires fewer servers than Fault-based
and is less space-efficient.

The versatility-space is explored using the cross product of all of these
policies. Both response time and throughput are explored. The results of
the exploration, in some sense, are not “surprising” and the exploration
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does not identify which R/W-PF member is “right” for a given task. The
exploration simply demonstrates that different resiliency model and space-
efficiency policy choices result in different performance. The important re-
sults of this exploration are that different choices have different resiliency,
performance, and cost, and that all experiments are performed using a sin-
gle storage infrastructure, demonstrating that the storage infrastructure is
versatile.

The results of the versatility-space exploration would be different on a
different testbed. For example, the ratio of network bandwidth to client
CPU and to server CPU could lead to different valuations of the merit
of space-efficient erasure codes. This does not change the result that the
R/W-PF enables the construction of a versatile storage infrastructure. The
hardware used in a specific deployment determines the expected performance
of specific R/W-PF members. This is no different than hardware determining
the performance of any other deployed storage system.

The versatility-space is explored in the absence of any other storage
system services (e.g., directory service, volume management, etc.). Other
services in a complete storage system influence the overall performance and
resiliency of the storage system. There are a myriad of ways to implement
other services and to combine a number of such services into a complete
storage system. Such system-level decisions may limit the amount of useful
versatility provided by the R/W-PF or impact the performance of R/W-PF
members. For example, a lock service that tolerates only benign client fail-
ures cannot usefully exploit an R/W-PF member that tolerates malevolent
clients. Moreover, such a lock service requires additional messages that influ-
ence overall performance. However, other storage services do not necessarily
reduce the performance or versatility of the R/W-PF. Exploring the versa-
tility of the R/W-PF in isolation demonstrates the potential versatility that
can be exploited rather than that which a specific complete storage system
realizes.
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8.2 Encode and decode

Encoding and decoding objects requires client computation. This section
reports the measured cost of performing cryptographic primitives on clients
and servers. It also reports the measured cost of erasure-coding objects with
the IDA implementation.

8.2.1 Cryptographic primitives

Table 8.4 lists the measured throughput of various cryptographic primitives
on the testbed computers. Experiments are run 100 times on objects that
are 8 KiB in size.

Basic memory operations memcpy and xor are listed to provide context
for the other results. Next, the measured throughput for random number
generation is listed. The throughput for encryption primitives are based
on encryption measurements, not decryption measurements. Finally, the
throughput of various hash/checksum mechanisms are listed.

Even though some of these cryptographic primitives are not used by
R/W-PF members directly, these results provide context for the costs of
erasure coding. Moreover, erasure codes such as Shamir’s secret sharing
[Shamir, 1979] and Krawczyk’s short secret sharing [Krawczyk, 1994], that
require random number generation or encryption methods.

8.2.2 Erasure coding

We performed a series of three experiments to illustrate the performance
trends of the IDA implementation as n and m vary. In these experiments,
we report the minimum measured value based on running each IDA encod-
ing 250 times. Reporting the minimum measured value clearly shows the
salient compute cost trends, which is the intention of this experiment. The
implementation of IDA we measured is described in Section 7.11. We report
results for performing IDA in two different implementations of GF(28). In
one implementation, a full lookup table is used for multiplication, and in
the other, log and anti-log lookup tables are used for multiplication.
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Encoding Response time Throughput
primitive (ms) (MiB/s)
memcpy 0.0017 4565.05

xor 0.0037 2085.13
x9.17c rng 0.9968 7.84

des 0.1767 44.22
3des 0.5261 14.85
aes 0.1983 39.40

crc32 0.0207 377.88
md5 0.0276 283.12
sha1 0.0530 147.29

sha256 0.0948 82.39

Table 8.4. Throughput of encoding primitives.

In the first experiment, we measured the increase in the cost of perform-
ing IDA as n increases. In this experiment, we held m constant at 5, and
increased n from 6 to 30. An object that is 5 KiB in size is erasure-coded.
This object size is chosen to yield five stripe-fragments 1 KiB in size each.
Each increase of n by one requires an additional 1 KiB redundant fragment
to be generated. Figure 8.1 presents the result. The cost of erasure coding
grows linearly as n increases. IDA based on full table lookup performs better
than log table lookup in this experiment.

As described in Section 7.11.2, constants for Lagrangian polynomial in-
terpolation can be pre-computed. These constants depend on the value of
m and on which erasure-coded fragments are being generated. As such,
they are pre-computed before each IDA encode or decode. In this first ex-
periment, we measured the amount of the total IDA cost that was due to
pre-computing these constants. Figure 8.2 shows the results. In all cases,
the cost of the pre-computation is less than 3% of the total encode cost. We
draw two conclusions from these measurements. First, the impact of pre-
computing constants for every IDA encode and decode is not prohibitive.
Some performance improvement would accrue from caching previous con-
stants or hard-coding constants for common R/W-PF members. Second,
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Figure 8.1. IDA encode time as fault-tolerance increases (m = 5).

pre-computing constants is clearly beneficial: computing the constants for
each byte encoded with IDA would be expensive.

In the second experiment, we measured the increase in the cost of gener-
ating a single redundant fragment as m increases (i.e., we set n = m+ 1 in
this experiment). We increased m from 1 to 29 as the object size increased
from 1 KiB to 29 KiB. As such, IDA encodes a single redundant fragment
1 KiB in size for each value of m.

Figure 8.3 shows the results. The cost of performing IDA increases lin-
early as m increases. This relationship was expected, since each byte of
redundancy is generated as a function of m stripe-fragment bytes. There is
an irregularity (“bump”) in the linear relationship apparent from m = 18 to
m = 20. We ran additional experiments to see if larger or smaller object sizes
shifted this irregularity to lower or higher m; it did not. We suspect that
this irregularity is is due to CPU cache efficacy decreasing as m increases.

In the third experiment, we measured the cost of IDA encoding as m
increases for a fixed size 64 KiB object. We increased m from 1 to 29 and we
set n = m+ 2. As shown in the second experiment, as m increases, the per
byte cost of erasure coding increases. However, as m increases, fragment size
decreases and consequently the number of bytes of redundancy that must
be generated decreases.
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Figure 8.2. Cost of pre-computing Lagrange constanst. Percentage of to-
tal compute time for IDA encode that is due to pre-computing Lagrange
constants as n increases.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Space-efficiency (m)

C
om

pu
te

 ti
m

e 
(m

s)

Full table lookup
Log table lookup

Figure 8.3. IDA encoding 1 KiB of redundancy as space-efficiency increases.
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Figure 8.4. IDA encoding a 64 KiB object (n = m+ 2).

Figure 8.4 shows the results. For m > 5, the cost of performing IDA
remains reasonably constant. This means that the benefit due to increased
space-efficiency is close to the increased cost of IDA due to increased m. For
small m, the benefit of increased space-efficiency outweighs the increased
cost of IDA. In practice, for m = 1 and m = 2 specialized erasure codes
such as replication and raid4 are used in the implementation. Notice that
the “bump” from the second experiment is also in these results.

8.3 Resiliency and response time

We ran a series of experiments to determine how response time changes
as more faults are tolerated. We ran experiments for t = 0 up to t = 6.
We ran experiments for all of the possible combinations of failure model
policy, timing model policy, and space-efficiency policy. We ran experiments
to measure the response time of read operations and of write operations for
32 KiB objects.

We also ran a response time experiment for t = 0 with an object size of
4 B for the Benign/Synchronous/Replication R/W-PF member. This setup
measures the cost of a single client sending a single request to a single server.
We observed a mean response time of 247µs for both read and write oper-



122 · A read/write protocol family for versatile storage infrastructures

ations. This experiment effectively measures the “ping time” for the PASIS
code base—any client-server communication takes at least this amount of
time.

8.3.1 Fault-scalability, universe size, and blowup

The number of servers an R/W-PF member must contact, as well as its
space-efficiency affect its response time. As such, we present graphs of n (the
size of the universe) for the R/W-PF members evaluated in the remainder
of the section. We also present graphs of n

m (the blowup) for each member.
These graphs are based on the specification of the R/W-PF members (i.e.,
these are not empirical measurements).

Figure 8.5 shows how the universe size increases as the number of faults
tolerated increases for the various R/W-PF members. The Synchronous&CR
timing model policy has the same trend as the Asynchronous timing model
policy, and so is not shown. The Malevolent+ failure model policy has the
same trend as the Malevolent failure model policy, and so is not shown. The
results are separated by space-efficiency policy.

The universe size trends for the Default and Replication space-efficiency
policies are identical (Figures 8.5a and 8.5b respectively). As follows from
the constraints on quorum construction, the universe size required by Asyn-
chronous R/W-PF members increases at a higher rate than for Synchronous
R/W-PF members. Also following from the constraints on quorum construc-
tion, the universe size for R/W-PF members that tolerate the Hybrid failure
model increases at a higher rate than for the Benign. And, the universe size
for those that tolerate the Malevolent failure model increases at a higher
rate then for the Hybrid. For t = 1, the Hybrid failure model is identical to
the Malevolent failure model.

The Constant space-efficiency policy, shown in Figure 8.5c, provides
space-efficiency for m = 6 regardless of how many faults are tolerated. As
such, relative to the other space-efficiency policies, Constant requires a larger
universe size for small values of t.
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Figure 8.5. Space-efficiency policy: Universe size vs. faults tolerated.
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Figure 8.6 shows how the blowup changes as the number of faults tol-
erated increases for the various R/W-PF members. The blowup for each
space-efficiency policy has a distinct trend as the number of faults toler-
ated increases. For the Default policy, shown in Figure 8.6a, m = b + 1, as
such, the blowup is n

b+1 . This results in Benign R/W-PF members having
a higher blowup than Hybrid, which has a higher blowup than Malevolent.
The blowup for the Replication policy depends exclusively on n. As such,
Figure 8.6a is identical to Figure 8.5b which shows the universe size.

The Constant and Fault space-efficiency policies are more interesting.
The blowup for the Constant space-efficiency policy, shown in Figure 8.6c,
increases slowly relative to the Default and Replication policies. This is be-
cause m = 6 regardless of the value of t or n. The blowup for the Fault
space-efficiency policy, shown in Figure 8.6d, approaches an asymptote as
t increases. This is because the blowup for the Fault policy is n

t+1 and t

is a linear function of t. The value of the asymptote depends on the tim-
ing model and failure model. Based on the quorum constructions, for all
Synchronous R/W-PF members, the blowup approaches 2, regardless of the
failure policy. For Asynchronous members that are Benign or Hybrid, the
blowup approaches 3; whereas, for Malevolent members, the blowup ap-
proaches 4.

8.3.2 Response time and failure model policy

Response time measurements for the Default space-efficiency policy are
shown in Figure 8.7. All combinations of timing model policy and failure
model policy are shown. Response time measurements are shown for read
and write operations. Notice the y-axis scale is different for read and write
operations.

Read operation response times are shown in Figures 8.7a, 8.7c, and 8.7e.
Consider the read response time at t = 0. In all of these experiments, this
corresponds to a single server returning a 32 KiB fragment to the client. In
theory, it takes 240µs to transfer 32 KiB on a gigabit per second network
link. The measurements match our expectations: 240µs of bandwidth delay
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Figure 8.6. Space-efficiency policy: Blowup vs. faults tolerated.
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in addition to the 247µs latency yields the observed ∼500µs response time
for Benign members. Hybrid and Malevolent members incur client compute
costs in addition to this.

The response time of read operations for all R/W-PF members increases
linearly as the number of faults tolerated increases. Indeed, for most R/W-
PF members shown, the response time of read operations is relatively con-
stant as t increases. All R/W-PF members employ read witnesses. As such,
all read operations have near “perfect” space-efficiency: m fragments are
read, totalling 32 KiB of data transferred over the network. Only read op-
erations for Malevolent+ R/W-PF members increase significantly in cost
as t increases. This is because such members must validate the timestamp.
The difference in read response time between Malevolent and Malevolent+

members is client decode time.
Write operation response times are shown in Figures 8.7b, 8.7d, and 8.7f.

The response time of write operations for Synchronous members, shown
in Figure 8.7b, all increase at a similar rate regardless of the failure pol-
icy. Remember, for the Default space-efficiency policy, m = b + 1, and so
the blowup of Synchronous, Malevolent and Malevolent+ members increases
more slowly than the Hybrid and Benign members (cf. Figure 8.6a). How-
ever, the network-efficiency gains of more space-efficiency erasure coding,
comes at the cost of additional compute to perform IDA. As such, the Be-
nign, Malevolent, and Malevolent+ members have similar response times.
The Hybrid member incurs additional compute cost, but is not as network-
efficiency as the Malevolent members for more than one fault tolerated. As
such, it exhibits the highest response time.

The response time of write operations for the Synchronous&CR and
Asynchronous members exhibit very similar trends. The difference between
Figures 8.7d, and 8.7f is the quorum RPC required by the Asynchronous
members to read the logical time. Within either of these graphs, the write
operation response time increases more slowly for the Benign failure policy,
than the other failure policies, as the number of faults increases. The client
compute required to generate cross checksums increases as the number of
faults tolerated increases, as does the cost of erasure coding.
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Figure 8.7. Timing model policy: Response time vs. faults tolerated.



128 · A read/write protocol family for versatile storage infrastructures

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Faults tolerated (t)

R
es

po
ns

e 
tim

e 
(m

s)

Sync
Sync&CR
Async

(a) Benign.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Faults tolerated (t)

R
es

po
ns

e 
tim

e 
(m

s)

Sync
Sync&CR
Async

(b) Hybrid.
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Figure 8.8. Failure model policy: Write response time vs. faults tolerated.

Figure 8.8 reproduces the write operation response time results from
Figure 8.7. However, the results are plotted on distinct graphs for each of the
failure model policies. This more clearly illustrates the costs associated with
the choice of timing model. For all numbers of faults tolerated, and all failure
policies, the Synchronous&CR and Asynchronous members are separated
by a constant amount—approximately one quarter of a millisecond. Logical
timestamp requests and responses are small, so this difference being close
the minimum network latency is expected.

8.3.3 Response time and space-efficiency policy

In Section 8.3.2, only results for the Default space-efficiency policy are
shown. Figure 8.9 shows the measured response times for read operations for
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(c) Malevolent.
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Figure 8.9. Space-efficiency policy: Read response time vs. faults tolerated.

different space-efficiency policies. As pointed out in Section 8.3.2, all R/W-
PF members employ read witnesses and so are network-efficient. As such,
the only R/W-PF members that experience an increase in read response
time, as the number of faults tolerated increases, are Malevolent+ members.
The difference in read response time between Figures 8.9c and 8.9d is the
compute cost of self-validating timestamps.

Notice how efficient the Replication Malevolent+ member is relative to
the other space-efficiency policies. As mentioned in Section 7.10, replicated
objects are self-verifying, and so cross checksums are not used with replicated
objects. The hash of the object is placed in the timestamp in lieu of the
cross checksum. To validate such a read operation, it is necessary only to
take the hash of the object. This is less compute-intensive than generating
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all n erasure-coded fragments and validating the timestamp.
Figure 8.10 shows the measured response times for write operations for

different space-efficiency policies. As expected, write operations for Benign
members, which do not compute any cross checksums, have lower response
times than other members. The difference between the Malevolent+ and
Malevolent models, is the need to validate timestamps. This cost is incurred
by read operations, and so Figures 8.10c and 8.10d are identical.

For write operations, the Hybrid failure policy has the most interesting
relationship with the space-efficiency policy. The Default members have the
highest write response times: they incur the cost of constructing the cross
checksum to tolerate malevolent components, but do not become more space-
efficient as t increases. For all values of t > 0, the space-efficiency is m = 2 for
Hybrid members. The space-efficiency of Fault members increases with t and
Constant members have m = 6. These lead to write response time increasing
less slowly for such members. The increase in Replication members write
response time is accounted for in network bandwidth delay rather than client
compute.

8.3.4 Response time, universe size, and versatility

To draw attention to macroscopic trends, all of the unique write response
time measurements are shown in Figure 8.11. Instead of plotting the write
operation response time against the number of faults tolerated though, it
is plotted against the size of the universe n. The Synchronous members,
shown in Figure 8.11a, have lower response times and require fewer servers,
then Synchronous&CR and Asynchronous members. As stated previously,
regarding response time, the only substantive difference between the Syn-
chronous&CR and Asynchronous members, is the round trip required by
Asynchronous members to construct the timestamp.

8.4 Resiliency and throughput

The response time measurements we present in Section 8.3 include client
compute time, network delay, and server compute time. The throughput
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Figure 8.10. Space-efficiency policy: Write response time vs. faults tolerated.
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Figure 8.11. Timing model policy: Write response time vs. universe size.
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for a specific R/W-PF member that a set of servers provides is a function
only of the latter two costs. Assuming there are sufficient client operations
outstanding to keep all servers busy all of the time, then client compute does
not affect throughput. We refer to this as server-group throughput, that is,
the aggregate client perceived throughput that a set of servers can provide.

To determine the server-group throughput for different R/W-PF mem-
bers, we ran a series of experiments with a server-group of size 12. We ran
experiments for almost all of the possible combinations of failure model pol-
icy, timing model policy, and space-efficiency policy. The exception being
that experiments were not run for Malevolent+ members. The rationale for
this is that the only difference between Malevolent+ and Malevolent mem-
bers is client compute time. We ran experiments for t = 1 and t = 2 for
each member. For t = 1, we excluded Hybrid members, because they are
identical to Malevolent members at t = b = 1. We ran experiments for read
operations separate from write operations for each R/W-PF member.

We found throughput measurements to be sensitive to the size of re-
quests, the number of client processes, and the number of outstanding oper-
ations per client process. In an effort to keep the profile of network traffic as
similar as possible across R/W-PF members, we set the fragment size to be
a constant 4 KiB. Thus, different R/W-PF members read and write objects
of different sizes: objects are m×4 KiB in size.

The larger the quorum size for an R/W-PF member, the more server
responses a client receives. This results in congestion on client receive links.
Similarly, more client processes leads to more requests received by a server.
This results in congestion on server receive links. Because different R/W-
PF members have different quorum sizes in this experiment, we ran a set
of experiments for each R/W-PF member over a range of number of client
processes (15, 20, 25) and operations outstanding per client process (1, 2, 3).
The best observed throughput is reported. These steps are taken to avoid
unduly penalizing R/W-PF members for artifacts of TCP/IP.

Each of the R/W-PF members evaluated had a universe size less than
or equal to 12. To take advantage of the entire server-group, each object,
based on its object ID, was assigned to a universe of servers drawn from the
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server-group. The chained declustering layout described in Section 7.5 was
used.

8.4.1 Throughput

The results of the throughput experiments performed with t = 1 are shown
in Figure 8.12, and those with t = 2 are shown in Figure 8.13. Notice that the
scale of the y-axis is different for reads and writes, as well as for t = 1 and t =
2. Observed read throughput ranges from 200 MiB/s for the Asynchronous,
Replication, Malevolent, t = 2 member shown in Figure 8.13e, to 590 MiB/s
for the Synchronous, Constant, Benign, t = 1 member shown in Figure 8.12a.
Observed write throughput ranges from 80 MiB/s for the Asynchronous,
Replication, Malevolent, t = 2 member shown in Figure 8.13f, to 460 MiB/s
for the Synchronous, Constant, Benign, t = 1 member shown in Figure 8.12b.

In all cases, Synchronous members provide higher throughput than Syn-
chronous&CR and Asynchronous members with the same failure and space-
efficiency policies. The universe size for Synchronous members is smaller
than for other members. Synchronous members layout more server-groups
within the twelve servers and thus achieve higher throughput.

For read operations, Synchronous&CR and Asynchronous members
achieve almost identical throughput for members with the same failure and
space-efficiency policy. This is expected. Read operations are identical for
these types of R/W-PF members. However, write operations differ. Syn-
chronous&CR members use the local client clock to construct timestamps.
This avoids a quorum RPC to determine the latest logical time. In turn, this
reduces the load on the network which improves observed throughput. In
all cases, Synchronous&CR members achieve better write throughput than
Asynchronous members with the same failure and space-efficiency policy.

For read operations, the Fault space-efficiency policy achieves the same
or better throughput than other R/W-PF members with the same failure
and timing policy. Such members benefit from relatively small server-groups,
while being more space-efficient than Default members.
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(b) Benign writes.
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(c) Hybrid and Malevolent reads.
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(d) Hybrid and Malevolent writes.

Figure 8.12. Twelve server case study with t = 1.

For write operations, the Constant space-efficiency policy achieves the
same or better throughput than other R/W-PF members with the same
failure and timing policy. The network-efficiency achieved by the Constant
R/W-PF members is significant for write operations. Whereas, for read op-
erations, because of read witnesses, network-efficiency is not as important
for read throughput.

The experimental procedure may penalize Replication members. Because
the fragment size is constant (and small) in these experiments, Replica mem-
bers are essentially network-operation limited rather than bandwidth lim-
ited.
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(a) Benign reads.
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(b) Benign writes.
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(c) Hybrid reads.
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(d) Hybrid writes.

Default Fault Replication Constant
0

100

200

300

400

500

600

Space-efficiency

T
hr

ou
gh

ou
t (

M
iB

/s
)

Sync
Sync&CR
Async

(e) Malevolent reads.
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(f) Malevolent writes.

Figure 8.13. Twelve server case study with t = 2.
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8.4.2 Usable capacity

Given a server-group of size twelve, different values of m and n for R/W-PF
members yield different amounts of usable capacity. Where usable capacity
is the equivalent number of servers worth of raw capacity. For example, a
1 of 2 replication scheme for a server-group with twelve servers yields a
usable capacity of six servers. Considering usable capacity in conjunction
with throughput results allows for more concrete discussion of trade-offs in
terms of cost (i.e., number of servers).

The usable capacities of the R/W-PF members with t = 1 are shown in
Figure 8.14, and those with t = 2 are shown in Figure 8.15. Usable capacity
is not a function of operation type and so fewer graphs are listed for usable
capacity than for throughput.

There are a few interesting trends in usable capacity. Synchronous mem-
bers provide more usable capacity than Synchronous&CR or Asynchronous
members given some fault and space-efficiency policy. This result is expected
because such members require a smaller universe. Synchronous&CR and
Asynchronous members provide the same usable capacity because m and
n are identical for such members. The usable capacity for space-efficiency
policies, given failure and timing policies, is most with Constant, then Fault,
then Default, and then Replication. These results make sense given that us-
able capacity is correlated with m. The usable capacity is less for t = 2 than
for t = 1 because universe size increases with t.

Consider the R/W-PF members whose throughput is discussed above.
As shown in Figure 8.15c, the Asynchronous, Replication, Malevolent, t = 2
member provides the usable capacity of 1.33 servers. As shown in Fig-
ure 8.14a, the Synchronous, Constant, Benign, t = 1 member provides the
usable capacity of 6 servers. This is a 4.5× difference in usable capacity.

Consider the least and most usable capacity provided by different R/W-
PF members. A few members provide the usable capacity of 1.33 servers
(like the Asynchronous, Replication, Malevolent, t = 2 member identified
above). Of all of the member considered, this is the least amount of usable
capacity provided. Synchronous, Constant, t = 1 members provide the us-
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(b) Hybrid and Malevolent.

Figure 8.14. Usable capacity for twelve server case study with t = 1.

able capacity of 10.29 servers. This is shown in Figures 8.14a and 8.14b. Of
all of the members considered, this is the most usable capacity provided.

Throughput and usable capacity of the R/W-PF members evaluated
varies dramatically across failure model policies, timing model policies, and
space-efficiency policies.

8.5 Concurrency and failures

All of the results presented thus far, report measurements of best-case perfor-
mance. R/W-PF members tolerate faulty servers and clients. The R/W-PF
is engineered to perform efficiently in the case of concurrency- and failure-
free read and write operations. The optimistic design of the R/W-PF results
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(b) Hybrid.
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(c) Malevolent.

Figure 8.15. Usable capacity for twelve server case study with t = 2.
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in the performance of read operations being sensitive to concurrency and to
failures.

8.5.1 Read operations

To determine the cost of concurrency and failures on read operations, we
injected faults and then measured the read operation response time. Ta-
ble 8.5 describes the faults injected in these experiments. We evaluate
the impact these faults have on the set of Asynchronous/Synchronous,
Malevolent/Malevolent+ members with the Default space-efficiency. The
members tolerate a single malevolent server (i.e., t = b = 1). The object
being read is 32 KiB in size.

The results of the fault injection experiments are shown in Figure 8.16.
Because only malevolent servers are tolerated by the members evaluated in
Figure 8.16a, no results are shown for injections of Poisonous writes (i.e., C.
Poisonous, C. Poisonous 5×, and C. & S. Malevolent).

A client performing a read operation that classifies a candidate incom-
plete reads back logical time (cf. C. Incomplete, C. Incomplete 5× results).
This requires additional quorum RPCs to be issued. However, the prototype
implementation batches additional timestamps in responses to read previ-
ous requests. The difference between one incomplete candidate and five in-
complete candidates is a one additional quorum RPC, rather than the four
expected, given the pseudo-code.

A client performing a read operation that classifies a candidate repairable
writes the candidate back, thus making it complete (cf. C. Repairable, C.
Repairable 5× results). As such, the cost of a repairable candidate is incurred
only once by a client. Indeed, the read response time for repairable candi-
dates is shown to approach that of No faults. The system is initialized with
all of the objects in the working set being repairable candidates. Because the
client repairs such candidates the first time it reads them, subsequent reads
of that object require a single quorum RPC to complete. Server omission
faults (S. Omission) require the client perform repair each time it reads the
object. As such, this result indicates the cost of performing repair. Server
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Fault injected Description
No faults Concurrency- and failure-free
C. Incomplete Client performs a read after another client par-

tially writes a candidate that is classified incom-
plete. The partial write could be due either to a
client crash or read-write concurrency.

C. Incomplete 5× Like C. Incomplete, but there are five incomplete
candidates, one after the other in logical time.
This could be due to a stuttering client, or sub-
stantial read-write concurrency.

C. Repairable Like C. Incomplete, but the partially written can-
didate is classified repairable.

C. Repairable 5× Like C. Incomplete 5×, but the partially written
candidate is classified repairable.

C. Poisonous Client performs a read after another, malevolent
client completes a poisonous write.

C. Poisonous 5× Like C. Poisonous, but the malevolent writer com-
pletes five poisonous writes, one after the other in
logical time.

S. Omission There is a single faulty server that always returns
the initial value 〈0,⊥〉.

S. Integrity There is a single malevolent server that always
returns a corrupt fragment.

C. & S. Malevolent Like C. Poisonous, but there is also a single mal-
evolent server that returns a corrupt fragment.

Table 8.5. Descriptions of faults injected.
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integrity faults (S. Integrity) require the client to issue an additional read
request to server outside of the preferred quorum.

The cost of tolerating poisonous writes from malevolent clients are shown
in Figure 8.16b. Poisonous writes, in some sense, are treated like incomplete
candidates. However, because each poisonous write corresponds to a candi-
date that the client classifies complete, each poisonous candidate must be
read, validated, and re-classified incomplete. This explains why the impact
of the C. Poisonous 5× fault injection is so great. The client reads, decodes,
and performs validation on five candidates. The reason this impact only oc-
curs for the asynchronous timing model is that replication is used in the
synchronous timing model and replicated data is self-verifying.

Lazy verification and its concomitant techniques can provide perfor-
mance protection from poisonous writes [Abd-El-Malek et al., 2005b]. Specif-
ically, servers can limit the number of unverified candidates they host in their
local history on a per-object or per-client basis. Verification essentially in-
volves the server incurring the cost of a read operation (hopefully during
an otherwise idle period). Via cooperation, each server need only verify a
subset of the requests they accept.

8.5.2 Write operations

The performance of a write operation is not sensitive to concurrency like a
read operation. Nor is it sensitive to the same faults as a read operation.
Write operations complete in one (Synchronous and Synchronous&CR mem-
bers) or two (Asynchronous members) quorum RPCs. The difference being
whether a local clock or a quorum RPC is used to construct the timestamp
of the write operation.

Quorum RPCs must probe for a live quorum if a server in the preferred
quorum crashes. Moreover, if a server crashes, the load on other servers
increases. We performed an experiment to determine the performance cost
of server crashes on write operations. In the experiment, the Asynchronous,
Benign, Default R/W-PF member with t = b = 5 was evaluated. Thirty-
five clients, each with ten operations outstanding, perform write operations.
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Figure 8.16. Read response time in the face of faults.
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Figure 8.17. Operations per second vs. time as servers crash and recover.

The experiment ran for 150 seconds. We report the total number of write
operations repeated per second, for each second of the experiment. For the
first 50 seconds, we crashed a different server every 10 seconds. After 20
more seconds, we recovered a crashed server every 10 seconds. Once all the
servers recovered, we crashed another server and recovered it 10 seconds
later. Figure 8.17 shows the result of this experiment.

8.6 Quorums and witnesses

Quorums can provide throughput-scalability: increasing the size of the uni-
verse can increase the throughput of an R/W-PF member. We ran a set
of experiments to demonstrate read throughput-scalability for some R/W-
PF members. We report results for Synchronous, Benign members with the
Replication and Constant space-efficiency policies. Each member tolerates
a single faulty server (i.e., t = 1). The ∆-threshold quorum construction
described in Section 5.2.1 is used in these experiments.
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Figure 8.18. Threshold quorum throughput-scalability.

We also ran experiments with two similar members that do not employ
read witnesses. These members are included in the experiment to show,
empirically, the impact of not using witnesses.

Because this experiment measures throughput, we used 32 client pro-
cesses, each with 5 outstanding requests in these experiments. In an effort
to keep the profile of network traffic as similar as possible across R/W-PF
members, we set the fragment size to be a constant 8 KiB in this experiment.

Figure 8.18 shows the results for these experiments. The read throughput
of the Replication member, that uses witnesses, increases as ∆ increases.
This is the expected result.

Compare the Replication member with witnesses, to the same mem-
ber without witnesses. Witnesses provide a compelling throughput ben-
efit for the Replication member. However, without witnesses, no quorum
throughput-scalability is observed as ∆ increases. This is not the expected
result. We examined counters in the server and client logs. Servers were
evenly loaded and serviced an appropriate number of requests given the
quorum construction. We are confident that the ∆-threshold quorum imple-
mentation is correct. From additional experiments, the results of which we
do not show, we concluded that this is due to congestion of the client receive
link. The number of servers that reply with entire replicas increases with ∆.
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Without read witnesses the overall throughput decreases as ∆ increases.



9 Conclusions

It is possible and fruitful to build a versatile storage infrastructure. The
Read/Write Protocol Family (R/W-PF) enables a storage infrastructure to
be built that simultaneously supports a broad range of resiliency models
and storage mechanisms. The inherent data-dependent trade-offs among re-
siliency and performance requirements in storage systems make such ver-
satility important. In this dissertation, the R/W-PF is described in detail.
Different timing models, server failure models, and client failure models com-
prise the resiliency models of the R/W-PF. Quorum constructions, erasure
codes, and witnesses comprise the storage mechanisms of the R/W-PF.

A prototype storage system, called PASIS, was built that employs the
R/W-PF. Response time and throughput experiments with PASIS demon-
strate its versatility. To give an example of the versatility provided by the
PASIS storage infrastructure, in some experiments replicated objects that
tolerate benign failures of clients and servers under a synchronous timing
model are evaluated, whereas in other experiments erasure-coded objects
that tolerate Byzantine failures of clients and servers under an asynchronous
timing model are evaluated. Recent results based on the Ursa Minor storage
system also support the claim that the R/W-PF enables the construction
of a versatile storage infrastructure. The Ursa Minor storage system incor-
porates the R/W-PF. Experiments demonstrate that versatility allows an
object to be stored using an R/W-PF member appropriate for its workload
and reliability requirements [Ganger et al., 2005].

The quorum-based nature of the R/W-PF is the key aspect that allows a
versatile storage infrastructure to be built. Quorum-based protocols localize
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much of the protocol logic at the client. In the case of the R/W-PF, almost
all logic is located at the client. Servers have a simple, narrow interface and
perform the same actions regardless of which R/W-PF member is employed.

The failure models included in the R/W-PF are all strict generaliza-
tions of one another. This facilitates using the same basic protocol steps for
every protocol family member. R/W-PF members that tolerate malevolent
components require more logic than those that only tolerate benign failures
of components. However, that additional logic does not change the steps
required in the protocol.

Members of the R/W-PF provide linearizable, wait-free read and write
operations. Only read operations by correct clients and well-formed write op-
erations are linearized. Wait-freedom hinges on unbounded storage capacity.
In practice, there are bounds on storage capacity. Garbage collection of un-
necessary versions is included in the prototype implementation to reclaim
storage capacity. With bounded storage capacity and garbage collection,
read operations are obstruction-free rather than wait-free.

9.1 Comments on continuing research

The R/W-PF demonstrates that the protocol family approach is effective
for read/write objects. This dissertation does not demonstrate that the
protocol family approach generalizes. However, we have some experience
with another optimistic quorum-based protocol, the Query/Update proto-
col, that supports arbitrary deterministic functions rather than read/write
operations [Abd-El-Malek et al., 2005a]. We believe that resiliency models,
quorum constructions, and a variant of witnesses can be incorporated in
such a protocol. As with the R/W-PF, the most complicated logic for such
a query/update protocol family involves tolerating malevolent clients. Era-
sure coding is uniquely applicable to read/write objects. For objects that
have stronger semantics than read/write objects, servers must be able to
“parse” such objects to ensure the correct semantics (at least in protocol
families that can tolerate malevolent clients).
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Versatility offers already over-loaded system administrators more knobs
to tune. This dissertation does not explain how to use versatility effectively.
Tools and techniques must be developed to assist system administrators
with tuning storage systems. The current research interest in autonomic
storage systems complements versatility nicely. From a security perspective,
the ability to select “cheap” R/W-PF members in lieu of “expensive” mem-
bers that actually meet the resiliency requirements for an object may cause
concern. However, given a versatile storage infrastructure, such mistakes can
be corrected without purchasing a different storage system—although more
servers may be required to accommodate more resilient objects.

It is desirable to be able to migrate an object from one R/W-PF mem-
ber to another. This dissertation does not develop such a mechanism. A
centralized migration service has been developed for the R/W-PF in the
Ursa Minor system [Ganger et al., 2005]. Given the nature of the R/W-
PF though, a decentralized approach to migration that shares the resiliency
characteristics of the object being migrated is desirable. Verifiable secret
redistribution, developed by Wong [2004], is decentralized and may provide
insights into how to build a decentralized migration service. Note though
that Wong considered secret shared objects exclusively. The cooperative as-
pects of lazy verification could also inform a decentralized migration service
[Abd-El-Malek et al., 2005b].

In practice, self-validating timestamps with lazy verification are the most
efficient means of tolerating Byzantine faulty clients in erasure-coded stor-
age. However, there seems to be room for the development of a specialized
cryptographic primitive that reduces the cost of validating writes of erasure-
coded objects. Such a primitive could improve R/W-PF members that tol-
erate malevolent clients as well as the asynchronous verifiable information
dispersal (AVID) technique of Cachin and Tessaro [2005a,b]. Specifically,
the goal of such a primitive would be to make the AVID approach network-
efficient as well as storage-efficient.
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10 Glossary

Symbol Definition
2set The power set of set .
U The entire set of servers.
U The set of servers for a specific object.
n The number of servers in the quorum system (i.e., |Q|).
T The set of possible sets of faulty servers toleratd.
T The set of faulty servers in a given system execution (T ∈ T ).
t The number of faulty servers tolerated in a threshold quorum

system.
B The set of possible sets of malevolent servers tolerated.
B The set of malevolent servers in a given system execution (B ∈

B).
b Total number of malevolent servers tolerated in a threshold

quorum system (b ≤ t).
δ The bound on delays in the synchronous timing model.
τ The bound on the clock skew exhibited by loosely synchronized

clocks.
m The number of correct fragments required to decoded an m-

of-n erasure-coded object.
M(Q) The decodable sets of a quorum (i.e., all of the subsets of Q

that are of size m).
M A decodable set.
R(Q) The repairable sets of a quorum.

Table 10.1. Symbols
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Term Definition
Accept/host A server that accepts a write request hosts the cor-

responding candidate (i.e., the tuple timestamp and
fragment pair).

Benign server A server that is not malevolent. Depending on the
server failure model, a benign server may be always
up, eventually up, eventually down, or unstable.

Candidate A timestamp, fragment pair.
Client A process that reads and writes objects.
Component A client or a server.
Faulty server A server that is not good. Depending on the server

failure model, a faulty server may be eventually down,
unstable, or malevolent.

Fragment A client encodes an object into fragments during a
write and decodes fragments into an object during a
read.

Good server A server that is not faulty. Depending on the server
failure model, a good server may be always up or
eventually up.

IDA Rabin’s information dispersal algorithm [Rabin,
1989]. The m-of-n threshold erasure code used in
PASIS the prototype implementation.

Malevolent server A server that is not benign. The server may exhibit
arbitrary and malicious failures, i.e., Byzantine fail-
ures.

Object Generic term for a piece of data (e.g., a block or file).
RAID Redundant array of independent (inexpensive) disks.

The “traditional” set of erasure codes employed in
storage systems: RAID 0 (striping), RAID 1 (repli-
cation), RAID 3/4/5 (parity), and RAID 6 (double
erasure tolerant).

RPC Client-server remote procedure call.
R/W-PF The Read/Write Protocol Family [Wylie, 2005].
Server A process that stores versions of fragments.
Stripe-fragment The “first” m threshold erasure-coded fragments of

an object.

Table 10.2. Terminology
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Jiménez-Peris, R., Patiño-Mart́ınez, M., Alonso, G., and Kemme,

B. 2003. Are quorums an alternative for data replication? ACM Trans-
actions on Database Systems (TODS) 28, 3, 257–294. 29

Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. 2001.
The SecureRing group communication system. ACM Transactions on
Information and Systems Security 1, 4, 371–406. 18

Kleiman, S. October 2002. Personal communication. Network Appliance,
Inc. 11

Knuth, D. E. 1997. Seminumerical algorithms. Vol. 2. Addison-Wesley.
102

Krawczyk, H. 1993. Distributed fingerprints and secure information dis-
persal. In ACM Symposium on Principles of Distributed Computing. 207–
218. 35

Krawczyk, H. 1994. Secret sharing made short. In Advances in Cryptology
- CRYPTO. Springer-Verlag, 136–146. 31, 97, 117

Krohn, M. N., Freedman, M. J., and Mazieres, D. 2004. On-the-fly
verification of rateless erasure codes for efficient content distribution. In
IEEE Symposium on Security and Privacy. 35



162 · A read/write protocol family for versatile storage infrastructures

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaten, P.,
Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer,

W., Wells, C., and Zhao, B. 2000. OceanStore: an architecture for
global-scale persistent storage. In Architectural Support for Programming
Languages and Operating Systems. 190–201. 19

Kung, H. T. and Robinson, J. T. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems 6, 2, 213–
226. 17

Lamport, L. 1985. On interprocess communication. Tech. Rep. 8, Digital
Equipment Corporation, Systems Research Center, Palo Alto, Ca. 17

Lamport, L., Shostak, R., and Pease, M. 1982. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Sys-
tems 4, 3, 382–401. 11, 23

Lamport, L. L. 1978. The implementation of reliable distributed multi-
process systems. Computer Networks 2, 95–114. 17, 79

Lampson, B. W., Paul, M., and Siegert, H. J. 1981. Distributed sys-
tems — architecture and implementation: an advanced course. Vol. 105.
Springer-Verlag, New York. 26

Lee, E. K. and Thekkath, C. A. 1996. Petal: distributed virtual disks. In
Architectural Support for Programming Languages and Operating Systems.
84–92. 9, 16, 17, 19, 89

Liskov, B. 1991. Practical uses of synchronized clocks in distributed sys-
tems. In ACM Symposium on Principles of Distributed Computing. ACM,
1–9. 23, 95

Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L., and

Williams, M. 1991. Replication in the Harp file system. In ACM Sym-
posium on Operating System Principles. 226–238. 17

Luby, M. 2002. LT Codes. In IEEE Symposium on Foundations of Com-
puter Science. IEEE, 271–280. 33



Bibliography · 163

Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., and Spiel-

man., D. A. 2001. Efficient Erasure Correcting Codes. IEEE Transac-
tions on Information Theory 47, 2, 569–584. 33

Lustre May 2004. Lustre. http://www.lustre.org/. 16

Malkhi, D. and Reiter, M. 1998. Byzantine quorum systems. Distributed
Computing 11, 4, 203–213. 18, 19, 24, 28, 60, 89

Malkhi, D., Reiter, M., and Wool, A. 2000. The load and availability
of Byzantine quorum systems. SIAM Journal of Computing 29, 6, 1889–
1906. 28, 29, 84

Malkhi, D. and Reiter, M. K. 2000. An architecture for survivable coor-
dination in large distributed systems. IEEE Transactions on Knowledge
and Data Engineering 12, 2, 187–202. 20, 89

Malkhi, D., Reiter, M. K., Tulone, D., and Ziskind, E. 2001. Per-
sistent objects in the Fleet system. In DARPA Information Survivability
Conference and Exposition. IEEE, 126–136. 18

Malkhi, D., Reiter, M. K., and Wright, R. 1997. Probabilistic quorum
systems. In ACM Symposium on Principles of Distributed Computing.
ACM, 267–273. 30

Martin, J.-P. and Alvisi, L. 2004. A framework for dynamic Byzantine
storage. In International Conference on Dependable Systems and Net-
works. IEEE, 325–334. 30

Martin, J.-P. and Alvisi, L. 2005. Fast Byzantine consensus. In Interna-
tional Conference on Dependable Systems and Networks. IEEE, 402–411.
18

Martin, J.-P., Alvisi, L., and Dahlin, M. 2002. Minimal Byzantine
storage. In International Symposium on Distributed Computing. 19, 20,
35



164 · A read/write protocol family for versatile storage infrastructures

Mazieres, D., Kaminsky, M., Kaashoek, M. F., and Witchel, E.

1999. Separating key management from file system security. In ACM
Symposium on Operating System Principles. ACM, 124–139. 35

Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. 1996.
Handbook of Applied Cryptography. CRC Press. 102

Meyer, F. J. and Pradhan, D. K. 1991. Consensus with dual failure
modes. IEEE Transactions on Parallel and Distributed Systems 2, 2,
214–222. 24

Mills, D. L. 1992. Network time protocol (version 3). IETF. 95

Mills, D. L. 1995. Improved algorithms for synchronizing computer net-
work clocks. IEEE-ACM Transactions on Networking 3, 3, 245–254. 95

Mishra, S., Fetzer, C., and Cristian, F. 2002. The Timewheel Group
Communication System. IEEE Transactions on Computers 51, 8, 883–
899. 15

Mullender, S. J. 1985. A distributed file service based on optimistic
concurrency control. In ACM Symposium on Operating System Principles.
51–62. 18

Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B. 2002.
Ivy: a read/write peer-to-peer file system. In Symposium on Operating
Systems Design and Implementation. USENIX Association. 19

Naor, M. and Wool, A. 1998. The load, capacity, and availability of
quorum systems. SIAM Journal on Computing 27, 2, 423–447. 28, 29,
84

NIST. 1995. FIPS 180-1: Secure Hash Standard. National Institute of Stan-
dards and Technology. http://www.itl.nist.gov/fipspubs/fip180-1.htm. 97

Noble, B. D. and Satyanarayanan, M. 1994. An empirical study of
a highly available file system. Tech. Rep. CMU–CS–94–120, Carnegie
Mellon University. 18



Bibliography · 165

Panasas, Inc. July 2005. Panasas ActiveScale Storage Cluster.
http://www.panasas.com/products overview.html. 16
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