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Abstract

XOR-based erasure codes are a computationally-
efficient means of generating redundancy in storage sys-
tems. Some such erasure codes provide irregular fault toler-
ance: some subsets of failed storage devices of a given size
lead to data loss, whereas other subsets of failed storage de-
vices of the same size are tolerated. Many storage systems
are composed of heterogeneous devices that exhibit different
failure and recovery rates, in which different placements—
mappings of erasure-coded symbols to storage devices—of
a flat XOR-based erasure code lead to different reliabilities.
We have developed redundancy placement algorithms that
utilize the structure of flatXOR-based erasure codes and a
simple analytic model to determine placements that max-
imize reliability. Simulation studies validate the utility of
the simple analytic reliability model and the efficacy of the
redundancy placement algorithms.

1. Introduction

Erasure codes such as replication,RAID 5, and Reed-
Solomon codes are the means by which storage systems
are typically made reliable. Reed-Solomon codes and other
maximum distance separable (MDS) codesk, provide the
best tradeoff between fault tolerance and space-efficiency,
but are computationally the most demanding type of erasure
code. In addition to these traditional erasure codes, there are
a number of proposals for novel, non-MDS erasure codes
that exclusively useXOR operations to generate redundancy
(e.g., [9, 10, 23]). SuchXOR-based codes can be compu-
tationally more efficient thanMDS codes, but offer an ir-
regular tradeoff between performance, space-efficiency, and
fault tolerance.

Methods to evaluate the space-efficiency and perfor-
mance tradeoff forXOR-based codes are well under-
stood [19, 11, 18]. However, someXOR-based erasure
codes exhibit irregular fault tolerance: some subsets of
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failed storage devices of a given size lead to data loss,
whereas other subsets of failed storage devices of the same
size are tolerated. There have been many recent advances in
understanding the fault tolerance [12, 23] and concomitant
reliability [20, 13, 8] of such codes. However, all of these
advances assume ahomogeneousset of storage devices that
all fail and recover at similar rates.

The contributions of this work are fourfold. First, we de-
fine a novel reliability problem in storage systems, there-
dundancy placement problem. Given a storage system com-
prised ofheterogeneousstorage devices with known failure
and recovery rates, how should erasure-coded symbols be
mapped to devices to maximize reliability? The redundancy
placement problem is trivial forMDS codes because they ex-
hibit regular fault tolerance—anm-tolerantMDS code will
never lose data ifm devices fail andalways lose data if
m + 1 devices fail—so all placements have the same reli-
ability. For non-MDS codes though, the redundancy place-
ment problem is non-trivial to solve. Second, we propose
a simple analytic model related to mean time to data loss
(MTTDL ). The model is called the RelativeMTTDL Esti-
mate (RME), and it allows therelative reliability of differ-
ent placements to be compared in a computationally effi-
cient manner. Third, we propose two redundancy place-
ment algorithms that use the structure of theXOR-based
erasure code and theRME to determine a placement that
maximizes (estimated) reliability. Fourth, we empirically
demonstrate, via simulation, that theRME correctly orders
different placements with regard to their reliability, and that
the redundancy placement algorithms identify placements
that maximize reliability.

The outline of the paper is as follows. In§2 and§3 we
provide background on erasure codes, replica placement al-
gorithms, and our prior work. We describe theRME and our
redundancy placement algorithms in§4; we evaluate them
in §5. We discuss the limitations of our work in§6 and then
conclude in§7.

2. Background

An erasure code consists ofn symbols, k of which
aredata symbols, andm of which areparity symbols(re-
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dundant symbols). We only considersystematicerasure
codes—codes that keep the original data symbols and solely
add parity symbols—because their use is generally consid-
ered a necessity to ensure good common case performance.

A maximum distance separable (MDS) code usesm
redundant symbols to tolerate all erasures of sizem or
less [17]. ManyMDS codes generate redundancy usingk

Galois field multiplies andk − 1 XORs per parity sym-
bol (e.g., Vandermonde Reed-Solomon codes). A Galois
field multiplication operation can be transformed into mul-
tiple XOR operations (e.g., Cauchy Reed-Solomon codes).
Parity-check array codes are another class ofMDS codes
that only useXOR operations to generate redundancy (e.g.,
RAID 4, EVENODD [3], and Row-Diagonal Parity [4]).

Hafner has categorized the construction of array codes
as HoVer constructions: codes with parity symbols in
both/eitherHorizontal and/orVertical dimensions of the ar-
ray [10]. The class of codes we study arehorizontalcodes.
We go beyond this, and refer to the codes we study asflat
codes: horizontalXOR-based codes comprised of exactly
one row (i.e., exactly one symbol, data or parity, per disk).
Flat codes are distinct from most parity-check array codes
which require multiple rows of symbols;RAID 4 is the ex-
ception because it is both a parity-check array code and a
flat code.

The impact of erasure code choice on performance is a
well-studied area [11]. In the grid storage community, the
read overheadof certain classes ofXOR-based erasure code
is of interest. Plank et al. analyzed theread overheadof
moderate-sizedXOR-based codes using Monte Carlo meth-
ods [19] and of small-sized codes using deterministic meth-
ods [18].

A replica placementalgorithm maps replicas to devices.
Traditionally, this is done to improve performance: to re-
duce response time of accesses, to balance load, and for
distributed caching. We exclusively consider the replica
placement problem as it pertains to reliability. We use the
term redundancy placementrather thanreplica placement
because our emphasis is on the placement of erasure-coded
data and parity symbols.

Our work on redundancy placement differs substantially
from prior work on replica placement. In traditionalRAID

(erasure-coded) storage systems, many stripes of sizen are
placed onN > n devices for performance reasons (e.g.,
parity declustering to reduce recovery time [1]). Thomasian
and Blaum evaluate the reliability impact of various poli-
cies for mirrored disks [22], and Lian et al. [15] evaluate
the difference in reliability between random and sequen-
tial placement policies for erasure-coded data. Both studies
only consider homogeneous devices. In contrast, the com-
petitive hill climbing replica placement algorithm places
many distinct files, each replicatedn times, onN hetero-
geneous servers in a manner that maximizes the availability

of the least available file [5]. The Multi-Object Assignment
Toolkit (MOAT) places many distinct objects, each repli-
catedn times, onN heterogeneous devices to maximize
the availability of multi-object operations in the face of cor-
related failures [24].

Replica placement algorithms placen replicas onN > n

devices. Our redundancy placement algorithms placen

erasure-coded symbols onn heterogeneous devices. The
non-MDS nature of flatXOR-based codes makes the re-
dundancy placement problem both novel and non-trivial.
There are other non-MDS XOR-based codes, e.g., Weaver
codes [9].

There are many techniques beyond simple redundancy
to improve storage system reliability, such as checksums,
snapshots, scrubbing, auditing, and backup to tape. How-
ever, questions such as where to place backup copies or
checksums to maximize reliability are outside of the scope
of this work. Such questions require different models to
answer that necessarily include metrics other than reliabil-
ity, such as cost and performance. The work of Gaonkar
et al. [7] automates the design of storage solutions that
meet cost, performance, and reliability requirements. Their
approach essentially solves a replica placement problem
across heterogeneous tiers of storage that employ distinct
reliability mechanisms.

3. Reliability of flat XOR-based codes

In this section, we describe our recent work on evalu-
ating the reliability of flatXOR-based codes. First, we re-
view the Minimal Erasures List (MEL), a fault tolerance
metric for flat codes [23]. Second, we discuss the Fault
Tolerance Vector (FTV), another fault tolerance metric for
flat codes. Finally, we review the High-Fidelity Reliability
(HFR) Simulator, a Monte Carlo reliability simulator, es-
pecially designed to simulate the reliability of (flat)XOR-
based codes [8]. The redundancy placement algorithms we
have developed use the structure of theMEL to make place-
ment decisions. TheFTV is used for comparison purposes
in the evaluation section. TheHFR Simulator is used to val-
idate the efficacy of the redundancy placement algorithms.

Traditionally, theHamming distanceis used to describe
the fault tolerance of an erasure code: a code tolerates all
sets of erasures smaller than the Hamming distance. The
Hamming distance completely describes the fault tolerance
of MDS codes, since all erasures at or beyond the Hamming
distance result in data loss. Flat erasure codes can be non-
MDS: they tolerate some sets of erasures at and beyond the
Hamming distance. We previously developed the Minimal
Erasures (ME) Algorithm to efficiently analyze a flat era-
sure code and characterize its fault tolerance [23].

Consider the following definitions: Aset of erasuresis a
set of erased symbols; anerasure patternis a set of erasures
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that results in at least one data symbol being irrecoverable;
and, aminimal erasureis an erasure pattern in which ev-
ery erasure is necessary and sufficient for it to be an erasure
pattern. The ME Algorithm determines theminimal era-
sures list(MEL) of an erasure code: the list of the code’s
minimal erasures, which completely describes the fault tol-
erance of an erasure code. TheMEL can be transformed into
a minimal erasures vectorMEV in which theith element is
the total number of minimal erasures of sizei in the MEL.
The length of the shortest minimal erasure in theMEL is
the Hamming distance of the code, and so the first non-zero
entry in theMEV corresponds to the Hamming distance.

We now present two flat codes in detail to provide exam-
ples of minimal erasures, theMEL, and theMEV. We denote
each code by (k ,m)-NAME wherek is the number of data
symbols,m is the number of parity symbols, andNAME is
the class of the code. Every code is described by a listing
of m bitmaps, one for each parity symbol, displayed as an
integer. Since we only consider systematic codes, the par-
ity symbols aresk , . . . , sn−1. A bitmap describes the data
symbols that participate in a parity equation and is an in-
teger in the range[1, . . . , 2k − 1]. For instance, consider
(4,4)-RAID 10 specified by the parity bitmaps〈1, 2, 4, 8〉.
The first parity symbol for this code,s4, is simply a replica
of s0 and so the bitmap is 1 (i.e.,s4 = s0 because1 = 20).
A more complex example is (5,3)-FLAT with parity bitmaps
〈7, 11, 29〉. The first parity symbol for this code,s5, has
bitmap 7 because it is computed as theXOR of data sym-
bols s0, s1, and s2 (i.e., s5 = s0 ⊕ s1 ⊕ s2 because
7 = 20 + 21 + 22).

The (4,4)-RAID 10 code is an example of a common
RAID technique that simply replicates each data symbol.
RAID 10 is a flat erasure code that tolerates any single
disk failure. TheMEL for the code is{(s0, s4), (s1, s5),
(s2, s6), (s3, s7)} and theMEV is (0, 4, 0, 0). The MEL

for (4,4)-RAID 10 is intuitive: whenever any pair of de-
vices that store the same replicated symbol fails, data is
lost. TheMEV simply summarizes the count of minimal
erasures of each size up tom. The MEL for (5,3)-FLAT is
{(s4, s7), (s0, s1, s4), (s0, s1, s7), (s0, s2, s6), (s0, s3, s5),
(s1, s2, s3), (s1, s5, s6), (s2, s4, s5), (s2, s5, s7),
(s3, s4, s6), (s3, s6, s7)}, and, the MEV is (0, 1, 10).
This code better illustrates the irregularity that non-MDS

flat codes can exhibit. There is no obvious structure or
symmetry to the sets of device failures which lead to data
loss.

The Fault Tolerance Vector (FTV) indicates the proba-
bility that data is lost given some number of failures. To
construct theFTV, theMEL is transformed into theerasures
list (EL). The erasures list consists of every erasure pattern
for a code. TheEL is a super set of theMEL, and every ele-
ment in it is either a minimal erasure or a super set of at least
one minimal erasure. Theerasures vector(EV) is to theEL

what theMEV is to theMEL, and is easily determined given
theEL. Finally, theEV is transformed into theFTV. Let the
ith entry of theEV beei. For a code withn symbols, the
ith entry of theFTV is ei/

(

n

i

)

. TheFTV is the complement
of theconditional probabilitiesvector described by Hafner
and Rao [13].

The High-Fidelity Reliability (HFR) Simulator [8] is sim-
ilar to the simulator developed by Elerath and Pecht [6].
Both are Monte Carlo reliability simulators that simulate
disk failure, disk recovery, sector failure, and sector scrub-
bing, and both can use Weibull distributions for such failure
and recovery rates. However, theHFR Simulator ishigh-
fidelity in the sense that it simulates the reliability of non-
MDS erasure codes that can tolerate two or more disk fail-
ures, with regard to both disk and sector failures. It is non-
trivial to extend the methods of Elerath and Pecht in this
manner.

The difficulty in simulating non-MDS codes is in effi-
ciently determining if a specific set of failures leads to data
loss. TheHFR Simulator has two modes of bookkeeping
that allow it to efficiently determine if a set of device fail-
ures leads to data loss: via theMEL, and via theFTV. Using
theMEL permits theHFR Simulator to accurately determine
if a specific set of failures leads to data loss. Therefore, it
is the method we must use to simulate the reliability of a
redundancy placement of a flat code on heterogeneous de-
vices. TheFTV is a coarse-grained metric that does not
capture the details of a specific placement of symbols on
heterogeneous devices; however, it describes the fault toler-
ance of the median placement and so is used for compara-
tive purposes in§5.

4. Redundancy placement algorithms

We have developed two redundancy placement algo-
rithms that identify placements of erasure-coded symbols
on heterogeneous storage devices with known failure and
repair rates which maximize reliability. One redundancy
placement algorithm is based on brute force computation
and the other is based on simulated annealing.

More formally, letS be the set of symbols in the erasure
code andD be theconfiguration(set of heterogeneous de-
vices). For a code withn symbols,S = {s0, . . . , sn−1} and
D = {d0, . . . , dn−1}. A placement,ρ, is a bijective func-
tion that uniquely maps each symbol in the erasure code to
a single device, i.e.,ρ : S ↔ D. The goal of the redun-
dancy placement algorithms is to find a placement,ρ, that
maximizes reliability.

4.1. Relative MTTDL estimate (RME)

We now introduce the simple analytic model that under-
lies both redundancy placement algorithms: the Relative
MTTDL Estimate (RME). TheRME can be used to compare
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the reliability of different placements. It is constructed to
correlate with the expected mean time to data loss (MTTDL ),
but it does not accurately estimate theMTTDL . The RME

can be used to compare the relative merit of different place-
ments, but not to determine if some placement meets a spe-
cific reliability requirement. The efficacy of theRME to cor-
rectly order placements byMTTDL is demonstrated in§5.

At a high level, theRME is the inverse of an estimate of
the expected unavailability of a given placement. It is based
on theMEL and a simple analytic device model. TheMEL

is a concise, exact description of a code’s irregular fault tol-
erance. TheMEL contains each minimal set of data and
parity symbol failures that lead to data loss. Letu(d) be the
expected unavailability of deviced. To calculateu(d), the
mean time to repair (MTTR) of d is simply divided by its
mean time to failure (MTTF). This analytic model ignores
sector failures and scrubbing, as well as the exact distri-
bution of the device failures and repairs. Moreover, it is
premised on failures being independent. TheRME is cal-
culated via the following function of the redundancy place-
mentρ, device unavailabilityu, andMEL:

RME =





∑

f∈MEL

∏

s∈f

u(ρ(s))





−1

.

The sum of products is inverted becauseRME values are
values that should be maximized to improve reliability, just
like MTTDL values.

TheRME for the (4,4)-RAID 10 code described in§3 is as
follows:

RME = (u(ρ(s0))u(ρ(s4)) + u(ρ(s1))u(ρ(s5)) +

u(ρ(s2))u(ρ(s6)) + u(ρ(s3))u(ρ(s7)))
−1.

Consider a configuration in which the first 4 devices have
expected device unavailability of1.2×10−4 and the second
4 devices have expected device unavailability of2.4×10−5.
Note that the more reliable a device is, the lower its device
unavailability number, so the first 4 devices are less reliable
than the second 4 devices in this configuration. Now con-
sider two distinct placements. In the first placement, the
first 4 symbols are placed on the first 4 devices, and the sec-
ond 4 symbols are placed on the second 4 devices, and so
theRME = 86.8 × 106. In the second placement, the “odd
symbols” (i.e.,s1,s3,s5, ands7) are placed on the first 4
devices, and the “even symbols” on the second 4 devices,
and so theRME = 33.4 × 106. The first placement splits
the pair of replicated symbols that occur in each minimal
erasure, mapping one to a less reliable device and the other
to a more reliable device. In contrast, the second placement
places all of the symbols from two minimal erasures (the
“odd symbols”) on the less reliable devices, which, intu-
itively, is a less reliable placement. TheseRME values fol-

low our intuition about the relative reliability of placements;
this intuition is confirmed via simulation in§5.1.

There are several reasons for using the simple analytic
model. First, the simplicity of the analytic device model
permits efficient evaluation of theRME and so permits or-
ders of magnitude more distinct placements to be evaluated
than simulation methods in the same period of time. Sec-
ond, the model only has to produce anRME that accurately
orders different sets of device failures according to the like-
lihood that they contribute to data loss. The product of ex-
pected device unavailability accomplishes this task. Third,
in a system with any redundancy, sector failures alone do
not cause data loss; only multiple disk failures, or disk fail-
ures in conjunction with sector failures lead to data loss.
Thus, the simple analytic model only needs to capture the
reliability effects of disk failures. Fourth, we considered
extending the approach of Hafner and Rao, who recently
proposed a Markov model construction forXOR-based era-
sure codes based on homogeneous devices [13]. Extending
their model to heterogeneous devices is not feasible because
each device requires a distinct Markov model state per era-
sure pattern.

4.2. Brute force algorithm

The brute force redundancy placement (BF-RP) algo-
rithm evaluates theRME for all possible placement and iden-
tifies the placement with the largestRME as the best place-
ment. TheRME is a simple equation that can be evaluated
efficiently. Calculating anRME value requires|MEL| addi-
tions and less thanm ×|MEL| multiplications. Consider the
calculation of theRME for (4,4)-RAID 10 given above. It re-
quired four additions because|MEL| = 4, and four multipli-
cations because each of the four minimal erasures consists
of exactly two symbols. Since all minimal erasures con-
sist ofm or fewer symbols, each product requiresm − 1 or
fewer multiplications.

For a code withn symbols andn distinct devices, there
aren! possible placements to evaluate. Given the efficiency
of theRME calculation, it is feasible to evaluate theRME for
every possible placement for small codes. For example, in
§5 theBF-RPalgorithm is used to find the best placement for
some codes withn = 12. Each such execution of theBF-RP

performs12! = 479001600 RME calculations to determine
the best placement.

4.3. Simulated annealing algorithm

For large codes, the factorial number of distinct place-
ments make it is infeasible to apply theBF-RP algorithm.
The best placement for a code maximizes theRME value.
Therefore, the problem of finding the best placement can be
understood as an optimization problem. Unfortunately, the
nonlinear structure of theRME equation—all of the terms
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in the summation are products of variables to be assigned
via the optimization—precludes linear optimization tech-
niques.

Fortunately, there are many non-linear optimization
techniques. An approach that requires little work, in terms
of formulating constraint equations, is simulated anneal-
ing [14]. This made simulated annealing, a stochastic opti-
mization technique, appealing as the first optimization ap-
proach for us to evaluate. Simulated annealing uses ran-
domization to find a solution; however, there is a chance
that the solution found is not globally optimal.

The simulated annealing redundancy placement (SA-RP)
algorithm takes anMEL and a configuration of devices as
input. TheSA-RP algorithm is initialized with a randomly
selected placement. Eachstepin SA-RP is based on a ran-
dom number of random swaps of mappings in the current
placement. As the algorithm proceeds, the number of ran-
dom swaps performed at each step decreases. This is the
manner in which we capture the “cooling” aspect of simu-
lated annealing, in which randomness is reduced over time
so that some locally optimal placement is settled upon. In
SA-RP, we include parameters to backtrack if a step that de-
creased theRME does not lead to a largerRME after some
number of additional steps. TheSA-RPalgorithm is invoked
multiple times, while keeping track of the bestRME value
found over different invocations. Because each invocation
is initialized with a different random placement, repeated
invocations find distinct locally maximal placements (RME

values).
Unfortunately, simulated annealing does not lend itself

to many practical rigorous statements about the quality of
solution found. However, our empirical results indicate that
theSA-RP algorithm quickly produces good solutions.

5. Evaluation

To evaluate theBF-RP and SA-RP algorithms, we con-
sider configurations that have devices with failure models
between two bounds. The first device failure model is based
on that used by Elerath and Pecht (cf. Table 2 in [6]). Disk
failures are distributed according to a Weibull distribution
with parametersγ = 0, η = 500000, andβ = 1.12. (Note
that we “rounded up” theη parameter of 461386 hours used
by Elerath and Pecht.) Disk recoveries are distributed ac-
cording to a Weibull distribution withγ = 6, η = 12, and
β = 2. We refer to the first device as the 500k device be-
cause its expectedMTTF is 500 thousand hours. The 500k
device is the most reliable device we consider in the eval-
uation. We refer to the least reliable device as the 100k
device. The 100k device differs from the 500k device only
in its MTTF: η = 100000 instead ofη = 500000. To calcu-
late theRME, only theMTTF for disk failure and theMTTR

for a recovery is used. TheHFR Simulator uses the speci-

fied Weibull distributions to simulate theMTTDL . All sim-
ulations are based on devices that exhibit only disk failures
and recoveries; sector failures are not included in this eval-
uation.

There are two types of heterogeneous configurations we
evaluate.Bimodal configurationsconsist of only two types
of devices: 100k devices and 500k devices. For example,
an 8-disk 3-bimodal configuration consists of 3 100k de-
vices and 5 500k devices.Uniform configurationsconsist
of one 100k device and one 500k device; the remaining
devices haveMTTF values uniformly distributed between
η = 100000 and η = 500000. For example, an 8-disk
uniform configuration consists of one device with each of
the followingη values: 100000, 157000, 214000, 271000,
328000, 385000, 442000, 500000. We evaluate 8-, 12-, and
20-disk configurations.

Table 1 lists the flat codes analyzed by the redundancy
placement algorithms. TheMEV andFTV for each code is
listed. All of the codes have a Hamming distance of 2. The
MEL is used to calculate theRME and so is more useful than
the MEV for understanding the results in this section. The
MEL for the (4,4)-RAID 10 and (5,3)-FLAT are given in§3.
The MEL of the (6,2)-FLAT is {(s0, s1), (s2, s3), (s2, s6),
(s3, s6), (s4, s5), (s4, s7), (s5, s7)}. TheMEL for the larger
codes is too verbose to list. TheFTV is used for compari-
son purposes because the reliability simulated based on the
FTV approximates the median reliability over all possible
placements.

The specific flat codes listed in Table 1 were selected
because, for the given values ofk and m, they are the
most fault tolerant flat codes [23]. One is the (4,4)-RAID 10
which was selected because it has a familiar structure. The
specific values ofk and m were selected so that all of
the codes have a Hamming distance of 2. It takes many
CPU days for theHFR Simulator to simulate a single data
loss event for more fault-tolerant codes so we restricted the
Hamming distance to ensure that the results of the redun-
dancy placement algorithms could be validated via simula-
tion.

Beyond the flat codes, we also includedMDS codes with
Hamming distance two to provide context. The placement
of such codes does not affect their reliability because all sets
of device failures of Hamming distance size or greater lead
to data loss.

All MTTDL values in this section are measured in hours.
The HFR Simulator is used to produce all of theMTTDL

values [8]. Except where noted,MTTDL values in tables
and annotated on histograms are based on simulations of
1000 data loss events. Each histogram consists of fifty
bins equally sized from the shortestMTTDL to the longest
MTTDL . The MTTDL values for data points in histograms
are based on 100 data loss events and so exhibit greater vari-
ance.
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code Minimal Erasures Vector (MEV) Fault Tolerance Vector (FTV) parity bitmaps
(6,2)-FLAT (0, 7) (0, 0.25, 1) 〈15, 51〉

(5,3)-FLAT (0, 1, 10) (0, 0.036, 0.29, 1) 〈7, 11, 29〉

(4,4)-RAID 10 (0, 4, 0, 0) (0, 0.14, 0.43, 0.77, 1) 〈1, 2, 4, 8〉

(10,2)-FLAT (0, 18) (0, 0.27, 1) 〈127, 911〉

(9,3)-FLAT (0, 5, 34) (0, 0.076, 0.38, 1) 〈31, 227, 365〉

(17,3)-FLAT (0, 19, 162) (0, 0.10, 0.43, 1) 〈1023, 31775, 105699〉

(16,4)-FLAT (0, 5, 80, 315) (0, 0.026, 0.15, 0.48, 1) 〈511, 7711, 26215, 43691〉

Table 1. Flat erasure codes.

code 100k 500k
(6,2)-FLAT 3.99 × 107 9.66 × 108

(5,3)-FLAT 2.88 × 108 6.89 × 109

(4,4)-RAID 10 6.59 × 107 1.83 × 109

(7,1)-MDS 1.01 × 107 2.55 × 108

(10,2)-FLAT 1.54 × 107 3.89 × 108

(9,3)-FLAT 5.28 × 107 1.40 × 109

(11,1)-MDS 4.06 × 106 1.03 × 108

(17,3)-FLAT 1.44 × 107 3.55 × 108

(16,4)-FLAT 5.42 × 107 1.32 × 109

(19,1)-MDS 1.55 × 106 3.60 × 107

Table 2. MTTDL of homog. config. in hours.

Table 2 listsMTTDL values of all the codes evaluated in
this section in homogeneous configurations. Two configu-
rations are listed: one based on 100k devices and the other
based on 500k devices. Obviously, 500k homogeneous con-
figurations are more reliable than 100k homogeneous con-
figurations. TheMTTDL of all the heterogeneous configu-
rations fall between theMTTDL of these two homogeneous
configurations.

5.1. Eight-disk configurations

In this section we exhaustively evaluate the three flat
codes of size 8 on various configurations. First, consider
the 4-bimodal distribution. Figures 1, 2, and 3 respectively
showMTTDL histograms for (4,4)-RAID 10, (5,3)-FLAT, and
(6,2)-FLAT. These histograms are constructed by simulating
theMTTDL of the8! = 40320 possible placements.

Each histogram is annotated with a vertical line. The ver-
tical line corresponds to theMTTDL for the FTV. TheFTV

is described in§3, it estimates theMTTDL of the median
placement. In these figures, theFTV MTTDL is indeed near
the medianMTTDL over all possible placements.

Each histogram is also annotated with a series of lines
labeled with integers. These lines are related toRME cal-
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Figure 1. (4,4)-RAID10, 4-bimodal.
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Figure 2. (5,3)-FLAT, 4-bimodal.
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Figure 3. (6,2)-FLAT, 4-bimodal.
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Figure 4. (4,4)-RAID10, uniform.
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Figure 5. (5,3)-FLAT, uniform.

culations. For each of these codes, theBF-RP algorithm
is used to determine theRME of each distinct placement.
We were surprised to discover that for each of these codes,
only a small number of distinctRME values were produced.
From this, we hypothesized that there areisomorphic place-
ments, i.e., different placements that have the sameRME and
MTTDL .

Each line on each histogram is effectively a sub-
histogram for an isomorphic class of placements. The in-
teger labels on the classes are in order ofRME value, so line
0 has a lowerRME than line 1. Note that we expected there
to be no more than

(

8

4

)

= 70 distinct RME values for the
4-bimodal configuration because the first four and last four
devices are identical. Figures 1, 2, and 3 show that there are
respectively 3, 7, and 6 isomorphic classes.

To better understand isomorphic placements, consider
(4,4)-RAID 10. The following are example placements for
each isomorphic placement class:0 : (s1, s3, s5, s7, s0,
s2, s4, s6), 1 : (s0, s1, s2, s4, s3, s5, s6, s7), and2 : (s0,
s1, s2, s3, s4, s5, s6, s7). The first four symbols in each
placement is on a 100k device, and the second four symbols
are on a 500k device. We already discussed the placements
for classes 0 and 2 in§4.1. The placement for class 1 is
consistent with the prior discussion: one pair of replicated
symbols is on the 100k devices and so we expect theMTTDL
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Figure 6. (6,2)-FLAT, uniform.
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Figure 7. (9,3)-FLAT, 6-bimodal.

to fall between class 0 (two pairs of replicated symbols on
100k devices) and class 2 (no pairs of replicated symbols on
100k devices).

The ordering of sub-histograms in each experiment
strongly support our hypothesis that theRME correctly or-
ders different placements with regard to reliability. The
spread within each sub-histogram is due to statistical vari-
ance; remember that each simulation to produce a histogram
data point was run for only 100 iterations. Because theMEL

for (5,3)-FLAT and (6,2)-FLAT contain more entries than that
of (4,4)-RAID 10, they each have more isomorphic place-
ment classes. The distribution of isomorphic placement
classes is interesting: the density of placements in the me-
dian classes appears to be greater than in the “best” class.
This suggests that good placements are less common.

Now consider the uniform configuration instead of the
4-bimodal configuration. Figures 4, 5, and 6 respectively
show MTTDL histograms for (4,4)-RAID 10, (5,3)-FLAT,
(6,2)-FLAT. The FTV MTTDL is annotated on these his-
tograms. Sub-histograms for isomorphic placement classes
are not presented. The uniform configuration leads to too
many such classes to illustrate. To be more precise, there
are respectively 105, 840, and 280 distinct classes. These
values are all much lower than the8! = 40320 poten-
tial distinct RME values, and so these results also support
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the idea of isomorphic placement classes. Instead of sub-
histograms, a vertical line is shown for a placement from
each of the following isomorphic placement classes: Worst
RME, Q3 (third quartile)RME, Q2 (second quartile)RME,
Q1 (first quartile)RME, and BestRME.

Our hypothesis is that theMTTDL of the placement from
the WorstRME class would be less than that of the place-
ment from the Q3RME class, and so on. The results sup-
port this hypothesis. One exception is the results for Q1
RME and Q2RME for (6,2)-FLAT which are out of order.
The difference between theMTTDL results for Q1RME and
Q2 RME is small though; we conclude that the Q1RME and
Q2 RME placements simply have quite similar reliabilities.

We expect theFTV MTTDL to provide an estimate of the
median placement, because it is computed using theFTV, a
probability vector derived from theMEV. As a consequence
theFTV MTTDL should align with the Q2RME MTTDL. Our
results support this hypothesis, allowing us to use theFTV

MTTDL as a reference when comparing the reliability of
placements.

Table 3 summarizes results for all of the bimodal con-
figurations and the uniform configuration. For each code,
theFTV MTTDL and the BestRME MTTDL are listed. In all
cases, the BestRME MTTDL is better than that of theFTV

MTTDL .
All of these experiments support our hypothesis that the

RME can be used to identify placements of erasure-coded
symbols that maximizes reliability. The reliability differ-
ence between the worst placements and best placements
range from from around a factor of two for (4,4)-RAID 10
to an order of magnitude for (5,3)-FLAT. Table 3 shows
that across all configurations, differences between theFTV

MTTDL and the BestRME MTTDL range from no difference
to a factor of six.

5.2. Twelve-disk configurations

For 12-disk configurations, it is not feasible to evaluate
every possible placement via simulation, but it is feasible
to do so via theRME metric. We ran theBF-RP algorithm
for the (9,3)-FLAT, and (10,2)-FLAT codes for all possible
bimodal configurations and the uniform configuration. We
also ran theSA-RP algorithm on these configurations. We
run theSA-RP algorithm for a total of 1000000 steps; if the
RME does not improve in 25 steps, the placement reverts to
the last best placement for this execution; if the bestRME

placement does not improve in 1000 steps, a new execu-
tion is initialized with a random placement. In all cases,
the SA-RP algorithm identified a placement from the same
isomorphic placement class as theBF-RP algorithm (i.e., its
RME is the same as the BestRME).

To determine the quality of the placements selected by
the BF-RP and SA-RP algorithms, we simulated the Best
RME MTTDL and theFTV MTTDL for a subset of config-

urations. The results are listed in Table 4. In most cases, the
MTTDL of the placement with the BestRME is significantly
better than that of theFTV. For the 9-bimodal configuration,
theMTTDL values for (10,2)-FLAT are effectively the same.

From theBF-RP results, we also can identify the Worst
RME, Q3 RME, Q2RME, and Q3RME placements. We sim-
ulated theMTTDL of these placements as well as 1000 ran-
dom placements to generate low fidelity histograms. An ex-
ample of such a histogram for (9,3)-FLAT in the 6-bimodal
configuration is given in Figure 7. The histograms further
support the hypothesis that theRME metric correctly orders
placements by reliability.

5.3. Twenty-disk configurations

For 20-disk configurations, it is infeasible to evaluate ev-
ery possible placement via simulation or theRME metric.
Instead, we use theSA-RP algorithm to identify an Approx-
imate BestRME placement for these configurations. We ran
the SA-RP algorithm for the (17,3)-FLAT, and (16,4)-FLAT

codes for all of the bimodal configurations and the uniform
configuration. TheSA-RPalgorithm is run in the same man-
ner as for the 12-disk configurations.

To determine the quality of the placements selected by
the SA-RP algorithm, we simulated theMTTDL of the Ap-
proximate BestRME placement found bySA-RP and com-
pare it with theFTV MTTDL for a subset of configurations.
The results are listed in Table 5. In all cases, the Approxi-
mate BestRME MTTDL is significantly better than theFTV

MTTDL .

6. Discussion

The redundancy placement algorithms based on theRME

effectively find reliable placements. However, we have not
characterized how sensitive the redundancy placement al-
gorithms are to different failure models. Specifically, we
do not have a good characterization of the conditions nec-
essary for theRME to correctly order placements by their
reliability.

We believe that extensive simulation will permit us to do
such characterization. Unfortunately, theHFR Simulator is
currently too slow to run the potentially millions of analy-
ses necessary to do such characterization. The existence of
isomorphic placement classes suggests an avenue for speed-
ing up the redundancy placement algorithms. If we identify
the sets of symbols that areequivalent, i.e., that if swapped
yield a new placement in the same isomorphic class, then
both theBF-RP and SA-RP algorithms can operate over a
much smaller state space. Such a speedup may facilitate
betterRME characterization.

The specific device models used in the evaluation are
based on the distributions that Elerath and Pecht used [6].
We believe that the models of Elerath and Pecht are as good
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(4,4)-RAID 10 (5,3)-FLAT (6,2)-FLAT

configuration FTV BestRME FTV BestRME FTV BestRME (7,1)-MDS

1-bimodal 8.60 × 108 8.39 × 108 3.30 × 109 6.90 × 109 4.98 × 108 6.20 × 108 1.19 × 108

2-bimodal 4.74 × 108 5.97 × 108 1.94 × 109 6.53 × 109 2.94 × 108 3.74 × 108 6.71 × 107

3-bimodal 3.01 × 108 4.35 × 108 1.23 × 109 6.40 × 109 1.72 × 108 2.54 × 108 4.41 × 107

4-bimodal 1.69 × 108 3.49 × 108 9.24 × 108 6.37 × 109 1.33 × 108 1.47 × 108 2.96 × 107

5-bimodal 1.51 × 108 1.81 × 108 6.07 × 108 6.62 × 109 8.76 × 107 9.67 × 107 2.05 × 107

6-bimodal 1.09 × 108 1.19 × 108 4.53 × 108 6.89 × 109 6.50 × 107 7.42 × 107 1.61 × 107

7-bimodal 8.29 × 107 8.42 × 107 3.40 × 108 1.35 × 109 4.99 × 107 5.18 × 107 1.26 × 107

uniform 4.34 × 108 4.88 × 108 1.56 × 109 6.11 × 109 2.34 × 108 2.79 × 108 5.60 × 107

Table 3. MTTDL of 8-disk configurations in hours.

(9,3)-FLAT (10,2)-FLAT

configuration FTV BestRME FTV BestRME (11,1)-MDS

3-bimodal 3.45 × 108 7.88 × 108 9.83 × 107 1.31 × 108 3.13 × 107

6-bimodal 1.57 × 108 3.30 × 108 4.25 × 107 5.14 × 107 1.27 × 107

9-bimodal 8.81 × 107 1.06 × 108 2.57 × 107 2.54 × 107 5.75 × 106

uniform 2.70 × 108 5.63 × 108 8.01 × 107 9.59 × 107 2.77 × 107

Table 4. MTTDL of 12-disk configurations in hours.

as any currently available. Recently published analyses of
failure data [21, 16, 2] will hopefully result in better fail-
ure models. We expect that such models will change the
MTTDL values, but not the placement that is most reliable.
TheRME is based on the assumption that failures are inde-
pendent. TheRME equation may have to change if signifi-
cant correlation is found in failure models.

When we developed theRME metric, we assumed that
sector failures would have a secondary effect on placement
decisions and so could be excluded from theRME metric.
We have some initial results for theRME metric in systems
with sector failures. For codes with a Hamming distance
greater than 2, theRME still correctly order placements by
reliability. For codes with a Hamming distance of 2, data
loss events are dominated by single-disk, single-sector fail-
ures. For such codes, if every symbol occurs in at least
one minimal erasure of size two, e.g., like (6,2)-FLAT, then
placement had little affect on overall reliability. Whereas,
for (5,3)-FLAT, only the symbolss4 ands7 occur in a mini-
mal erasure of size 2, and so placements based on theRME

maximize reliability.

7. Conclusions

We introduced the novelredundancy placement prob-
lem in which a mapping, called aplacement, of the sym-
bols in a flatXOR-based code onto a set of heterogeneous

storage devices with known failure and recovery rates must
be found to maximize reliability. To solve this problem,
we developed the ReliabilityMTTDL Estimate (RME), a
simple model based on estimated device unavailability and
the Minimal Erasures List (MEL), a concise characteriza-
tion of the fault tolerance of anXOR-based code. We de-
veloped two redundancy placement algorithms, theBF-RP

algorithm based on brute force computation, only suitable
for small redundancy placement problems, and theSA-RP

based on simulated annealing, and suitable for larger prob-
lems. Simulation results based on the High-Fidelity Re-
liability ( HFR) Simulator provide extensive empirical evi-
dence that theRME correctly orders different placements for
a given code byMTTDL . Additional simulation results sug-
gest that the placements found by theSA-RP algorithm are
significantly more reliable than the median placement. The
results ofBF-RPalgorithm lead us to realize the existence of
isomorphic placements, sets of placements which have the
sameMTTDL .
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