
Efficient eventual consistency in Pahoehoe,

an erasure-coded key-blob archive

Eric Anderson, Xiaozhou Li, Arif Merchant, Mehul A. Shah,

Kevin Smathers, Joseph Tucek, Mustafa Uysal, Jay J. Wylie

Hewlett-Packard Laboratories

Abstract

Cloud computing demands cheap, always-on, and reli-

able storage. We describe Pahoehoe, a key-value cloud

storage system we designed to store large objects cost-

effectively with high availability. Pahoehoe stores objects

across multiple data centers and provides eventual consis-

tency so to be available during network partitions. Pahoe-

hoe uses erasure codes to store objects with high reliability

at low cost. Its use of erasure codes distinguishes Pahoehoe

from other cloud storage systems, and presents a challenge

for efficiently providing eventual consistency.

We describe Pahoehoe’s put, get, and convergence

protocols—convergence being the decentralized protocol

that ensures eventual consistency. We use simulated exe-

cutions of Pahoehoe to evaluate the efficiency of conver-

gence, in terms of message count and message bytes sent,

for failure-free and expected failure scenarios (e.g., parti-

tions and server unavailability). We describe and evaluate

optimizations to the naı̈ve convergence protocol that reduce

the cost of convergence in all scenarios.

1. Introduction

Cloud computing offers the promise of always-on, glob-

ally accessible services that lower total cost of ownership.

To meet this promise, cloud services must run on low-

cost and highly available infrastructure. High availability

means offering responsive service even in the face of mul-

tiple simultaneous failures (e.g., node crashes or partitions)

to clients in diverse geographic regions. For many cloud

applications, like social networking or photo sharing, avail-

able storage is paramount and, given their scale (and cut-

rate cost constraint) partitions are inevitable. Unfortunately,

Brewer’s CAP Theorem [13] states that only two of con-

sistency, availability, and partition-tolerance are simultane-

ously achievable. Hence cloud storage systems cannot pro-

vide the same consistency semantics as traditional storage

systems do and still be available.

In light of these constraints, we designed Pahoeoe, a

highly available, low-cost, and scalable key-value store.

Pahoehoe offers a get-put interface similar to Amazon’s

S3 service. The get and put methods take a key (unique

application-provided name) as a parameter that specifies the

object to retrieve or store into the system, respectively. Be-

cause of the implications of the CAP Theorem, we designed

Pahoehoe to offer eventual consistency so that it achieves

high availability and partition-tolerance. Further, to achieve

high reliability and availability at low cost, Pahoehoe stores

objects using erasure coding. Erasure codes enable space-

efficient fault-tolerant storage, but they require careful im-

plementation to avoid using more network bandwidth to

propagate data than a replica-based system. To the best

of our knowledge, Pahoehoe is the first distributed erasure-

coded storage system that provides eventual consistency.

In this paper, we describe the put and get protocols for

storing and retrieving erasure-coded objects in Pahoehoe.

We also describe convergence, the decentralized protocol

that provides eventual consistency. We first describe naı̈ve

convergence which is simple and robust, but potentially in-

efficient. Then we describe extensions to make conver-

gence efficient—both in terms of message bytes and mes-

sage counts sent.

We evaluate the various convergence optimizations in

various failure scenarios. Pahoehoe achieves network ef-

ficiency and low message counts in the common, failure-

free case. Under failure scenarios in which some servers

are unavailable for some period of time, Pahoehoe incurs

a roughly constant overhead regardless of the severity of

the failure. Under failure scenarios in which the network is

lossy, the work convergence does to achieve eventual con-

sistency increases commensurate with the loss rate.

2. Design

Pahoehoe is a key-value store tailored for binary large

objects such as pictures, audio files or movies of moderate

size (∼ 100 × 210 Bytes (B) to 100 × 220 B). Pahoehoe

exports two interfaces for clients: put(key , value, policy)

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

Data center

Key Lookup (KLS)

Fragment (FS)

Proxy

Clients Clients

Data center

Key Lookup (KLS)

Fragment (FS)

Proxy

Figure 1. Pahoehoe architecture.

and get(key). The put interface allows a client to associate

a value with the object identified by the key. The policy

specifies durability requirements for the stored value. Pa-

hoehoe allows different put operations to specify the same

key, i.e., multiple object versions may be associated with

the same key. Different object versions associated with the

same key are distinguished by a unique Pahoehoe-assigned

timestamp. The get interface allows a client to retrieve an

object version associated with the specified key. Although

Pahoehoe will attempt to retrieve the most recent object ver-

sion, because Pahoehoe is eventually consistent, there may

be multiple versions that it can safely return.

The high-level architecture of Pahoehoe is illustrated in

Figure 1. Clients use a RESTful interface [10] to interact

with a proxy server at a data center which performs get and

put operations on behalf of the client. Pahoehoe itself has

two types of servers: Key Lookup Servers (KLSs) and Frag-

ment Servers (FSs). Key Lookup Servers store a metadata

list of (timestamp, policy, locations) tuples which maps a

key to its object versions. The locations list the FSs that

store fragments of the object version. Pahoehoe’s separa-

tion of metadata (KLS) and data (FS) servers is similar to

that of object-store-based file systems such as NASD [12].

Pahoehoe provides several properties: high availability,

durability, and eventual consistency. It provides availability

by permitting a client to put and get objects even whenmany

servers have crashed or the network is partitioned, either

WAN or LAN [6]. Even if a proxy can only reach a minority

of KLSs and FSs, a put or a get may complete successfully.

By durability, we mean that an object version can be re-

covered even if many of the servers are crashed. Pahoehoe

uses erasure codes to achieve durability at reduced storage

cost. An erasure code encodes a value into n = k +m frag-

ments such that any k fragments can be used to recover the

object. Pahoehoe uses a systematic Reed-Solomon erasure

code [16] in which a value is striped across the first k data

fragments, with the remaining m being parity fragments.

Modern erasure code implementations are sufficiently effi-

cient [19] that we believe encoding and decoding can be

performed fast enough to meet our performance require-

ments. We refer to the erasure-coded fragments of an ob-

ject version as sibling fragments, and FSs that host sibling

fragments as sibling FSs.

A durability policy can be specified for each put opera-

tion. The default policy is a (k = 4,n = 12) erasure code
with up to 2 fragments per FS, 6 fragments per data center,

and all 4 data fragments at the same data center. This policy

has the same storage overhead as triple replication, but can

tolerate many more failure scenarios: up to eight simultane-

ous disk failures; or a network partition between data cen-

ters in conjunction with either two simultaneous disk fail-

ures or a single unavailable FS.

Once the complete metadata and all the sibling frag-

ments for an object version have been stored at all KLSs and

sibling FSs (respectively), we say that the object version is

at maximum redundancy (AMR). To ensure that object ver-

sions put into Pahoehoe eventually achieve AMR, each FS

runs convergence. Convergence is a decentralized gossip-

like protocol in which each sibling FS repeatedly and in-

dependently attempts to make progress towards achieving

AMR for each object version, until AMR is achieved. The

AMR property dictates Pahoehoe’s eventual consistency

guarantee: once an object version is AMR, a subsequent

get will not return any prior object version.

Unfortunately, eventual consistency—a necessity for Pa-

hoehoe to be available during network partitions—requires

sibling FSs to propagate or recover erasure-coded frag-

ments. “Gossiping” erasure-coded fragments among FSs

is expensive relative to gossip in replica-based systems, be-

cause a sibling FS must receive k fragments to recover their

sibling fragments. To avoid this bandwidth cost, proxies

generate all the sibling fragments and send them to all of

the sibling FSs directly. Therefore convergence is a mecha-

nism to deal with failures rather than the common means to

propagate fragments.

3. Core protocols

In this section, we describe the system model, the put,

get, and naı̈ve convergence protocols, discuss implementa-

tion details, and sketch correctness arguments. In Section 4,

we describe optimizations to naı̈ve convergence that reduce

its demands on message bytes and message counts.

3.1. System model

Pahoehoe tolerates nodes (clients, proxies, FSs, and

KLSs) that crash and recover [2]. Pahoehoe tolerates benign

failures; it does not tolerate Byzantine failures. We assume

that servers have stable storage that persists throughout the

crash and recover process. While our protocols can rebuild

destroyed disks or nodes, and detect disk corruption using

hashes, we do not discuss these due to space limitations.

2

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

Informally, we assume that eventually there will be a pe-

riod in which all nodes are available and during which mes-

sages between clients, proxies, KLSs, and FSs are deliv-

ered successfully within some time bound. More formally,

we assume a partially synchronous system model [9] and

point-to-point channels with fair losses and bounded mes-

sage duplication [2].

We assume that nodes have access to a local clock for the

purposes of scheduling periodic tasks and for tuning poli-

cies like backoff and probing. We also assume that proxies

have access to a loosely synchronized clock, that can order

concurrent put operations to the same key. Pahoehoe orders

concurrent puts in the order they were received, subject to

the synchronization limits of NTP [17]. This order matches

users’ expected order for partitioned data centers when they

happen to access different ones during the partition.

3.2. Put protocol

The basic put protocol proceeds in two rounds. Upon re-

ceiving a put(key , value, policy) request from a client, the

proxy selects an object version, and asks all KLSs to sug-

gest potential fragment locations (i.e., a list of FSs for their

data center) for it. We assume the set of all KLSs (klss)

is known be every proxy and FS. The KLSs use method

which locs to interpret the policy and to balance load and

capacity across the FSs. The proxy decides which fragment

locations to use in each data center based on the first KLS

response from that data center. The proxy then sends the

metadata (i.e., policy and locations) for the object version

to all of the KLSs, and sends the metadata and appropriate

sibling fragments to each sibling FS. After receiving replies

(or timeouts) from all the servers (KLSs and FSs), the proxy

replies back to the client.

Although simple and correct, the above put protocol may

suffer long latency under some conditions. For example,

during a network partition, the proxy will wait for timeouts

in both rounds. Two optimizations reduce latency during

failures. First, the proxy sends out metadata with partial

locations and the appropriate sibling fragments as soon as

the locations for any data center (rather than all data cen-

ters) are decided. Second, the proxy reports success to the

client as soon as it receives enough (specified by the policy)

successful replies from FSs.

Figure 2 presents pseudocode for the put operation with

these optimizations. Each KLS maintains two persistent

data structures: a timestamp store (storets) which maps

an object, uniquely identified by a key, to object versions,

each of which is uniquely identified by ov , a (key, times-

tamp) pair; and a metadata store (storemeta), which maps

an object version to its metadata, a (policy, locations) pair.

Each FS maintains two persistent data structures: a meta-

data store, which it uses for convergence, and a fragment

store (storefrag) which maps an object version to its meta-

Proxy server proxy

1: meta ← ⊥; frags← ∅; locs← ∅; resps← ∅
2: upon receive put(key, value, policy) from client

3: ts ← now(); ov ← (key , ts); meta.policy ← policy

4: frags← encode(value ,meta.policy)
5: ∀kls ∈ klss : send decide locs(ov , meta.policy) to kls

6: upon receive decide locs reply(ov , locs) from kls

7: if useful locs(meta , locs) then
8: meta.locs← meta.locs ∪ locs

9: ∀kls ∈ klss : send store(ov ,meta) to kls

10: ∀fs ∈ meta.locs : send store(ov , meta, frags[fs]) to fs

11: upon receive store reply(ov , status) from server

12: resps← resps ∪ {(server , status)}
13: if can reply(resps,meta) then
14: send put reply(reply status(resps, meta)) to client

Key Lookup Server kls

1: storets ← ∅; storemeta ← ∅
2: upon receive decide locs(ov , policy) from proxy

3: locs← which locs(ov , policy)
4: send decide locs reply(ov , locs) to proxy

5: upon receive store(ov ,meta) from proxy

6: storets [ov .key]← storets [ov .key] ∪ {ov .ts}
7: locs← storemeta [ov].locs∪meta.locs

8: storemeta [ov]← (meta .policy , locs)
9: send store reply(ov , success) to proxy

Fragment Server fs

1: storefrag ← ∅; storemeta ← ∅
2: upon receive store(ov ,meta, frag) from proxy

3: locs← storemeta [ov].locs∪meta.locs

4: storemeta [ov]← (meta .policy , locs)
5: storefrag [ov]← (storemeta [ov], frag)
6: send store reply(ov , success) to proxy

Figure 2. Put operation.

data and sibling fragment. Each proxy constructs a glob-

ally unique timestamp by concatenating the time from the

loosely synchronized local clock with its own unique iden-

tifier (proxy line 3). Locations from a KLS are considered

useful if they are the first locations that a proxy receives for

a data center (proxy line 7). The function can reply (proxy

line 13) returns true if, according to the given policy, enough

fragments have been durably stored.

3.3. Get protocol

The basic get protocol also uses two rounds. Upon re-

ceiving a get(key) request from a client, the proxy first asks

all KLSs for all of the object versions (timestamps) with

the associated metadata for the object identified by the key.

After collecting the object versions with metadata from all

available KLSs, the proxy attempts to retrieve the object

versions in timestamp order (i.e., from latest to earliest).

Two optimizations reduce the latency during failures. First,

the proxy starts retrieving fragments for the latest object

version it identifies as soon as it hears back from any KLS.

This optimization will not violate consistency because ev-

ery KLS has the timestamp with complete metadata for an

AMR object version (if any). Second, the proxy starts re-

3

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

trieving an earlier object version as soon as it determines

that the current object version cannot be retrieved, and that

it is safe (explained below) to try an earlier object version.

Figure 3 lists the pseudocode of the get protocol with

these optimizations. Method can decode (proxy line 16)

returns true if sufficient sibling fragments for the current ob-

ject version have been retrieved. Method can try earlier

(proxy line 19) returns true if the proxy can safely try to

retrieve an earlier object version. In particular, it returns

true if, for the object version being retrieved, any KLS re-

turned incomplete metadata (proxy line 6) or any FS re-

turned a ⊥ fragment (proxy line 13), implying that the cur-

rent version is not AMR. Once all object versions that can

be safely tried have been tried unsuccessfully, and object

versions with metadata have been received from all KLSs,

the proxy has to return failure to the client (proxy line 28).

3.4. Naı̈ve convergence

In a failure-free execution, an object version is AMR

when a proxy completes the put. Failures such as mes-

sage drops, network partitions, or server unavailability re-

sult in an object version not being AMR when the proxy

stops work on the put. Convergence ensures that all object

versions for which sufficient fragments are durably stored

eventually reach AMR.

Each FS runs convergence independently in periodic

rounds. During each round, a convergence step is per-

formed for each object version the FS has not yet verified

is AMR. In a convergence step, an FS verifies the follow-

ing: 1) it has complete metadata (i.e., sufficient locations

to meet the durability requirements specified in the policy);

2) it stores the appropriate sibling fragment locally; 3) all

KLSs store complete metadata for the object version; and

4) all sibling FSs store verified metadata and sibling frag-

ments. If verification is successful, then the object version

is AMR and the FS excludes it from subsequent conver-

gence rounds. If the FS has incomplete metadata, it acts

somewhat like a proxy performing a put and asks a KLS

to suggest locations for the object version. If the FS does

not store its fragment locally, it performs a get of the de-

sired object version to retrieve sibling fragments so that it

can generate its missing fragment. By repeatedly perform-

ing convergence steps on an object version with sufficient

durably stored fragments, it will eventually be AMR.

Figure 4 presents the pseudocode for the naı̈ve conver-

gence protocol. The method recover fragment (fs line 8)

is a get operation that only retrieves the specified object ver-

sion. Given that object version, the FS generates its missing

fragment via erasure coding. The method verify (fs line 5

and kls line 4) verifies that metadata is complete (has suffi-

cient locations as per the policy); when invoked on a (meta-

data, fragment) pair, it verifies that the metadata is complete

and that the fragment is not ⊥ (fs line 22). The method

Proxy server proxy

1: key ← ⊥; ts ← ⊥;meta ← ⊥
2: tss← ∅; respskls ← ∅; respsfs ← ∅
3: upon receive get(key′) from client

4: key ← key′

5: ∀kls ∈ klss : send retrieve ts(key) to kls

6: upon receive retrieve ts reply(tss′,metas) from kls

7: for all ts′ ∈ tss′ do

8: locs← respskls[ts
′].locs∪metas[ts′].locs

9: respskls[ts
′]← (metas[ts′].policy , locs)

10: tss← tss ∪ tss′

11: if ts = ⊥ then

12: next ts()
13: upon receive retrieve frag reply(ts ′, frag) from fs

14: if ts = ts′ then

15: respsfs[ts]← respsfs[ts] ∪ {(fs, frag)}
16: if can decode(meta , respsfs[ts]) then
17: value ← decode(meta , respsfs[ts])
18: send get reply(success , value) to client

19: else if can try earlier(meta, respsfs[ts]) then
20: next ts()
21: upon next ts()
22: ts ← max(tss)
23: if ts 6= ⊥ then

24: tss← tss \ {ts}
25: ov ← (key , ts); meta ← respskls[ts].meta

26: ∀fs ∈ meta.locs : send retrieve frag(ov) to fs

27: else if all kls replied(respskls) then
28: send get reply(failure ,⊥) to client

Key Lookup Server kls

1: upon receive retrieve ts(key) from proxy

2: metas← {storemeta [(key, ts)] : ts ∈ storets [key]}
3: send retrieve ts reply(storets [key],metas) to proxy

Fragment Server fs

1: upon receive retrieve frag(ov) from proxy

2: send retrieve frag reply(ov .ts, storefrag [ov].frag) to proxy

Figure 3. Get operation.

is amr (fs line 25) confirms that all KLSs and sibling FSs

have replied with success in response to the converge re-

quests. Once the object version is determined to be AMR,

the FS removes it from storemeta so that it does no further

work in future convergence rounds for this object version.

3.5. Discussion

We have elided many implementation details, including

some optimizations, from the descriptions of the core pro-

tocols. For example, during a put, the proxy iteratively re-

trieves timestamps with associated metadata from KLSs in-

stead of retrieving information about all object versions at

once. As another example, a location in Pahoehoe actually

identifies both an FS and a disk on that FS so that multiple

sibling fragments may be collocated on the same FS. Three

topics do warrant further discussion though: 1) proxy time-

outs and return codes; 2) exceeding the locations needed by

the policy; and 3) object versions with insufficient durably

stored fragments.

A client may timeout waiting for a proxy to return from

4

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

Fragment Server fs

1: upon start round()
2: resps← ∅
3: for all ov ∈ storemeta do

4: (meta, frag)← storefrag [ov]
5: if ¬verify(meta) then
6: ∀kls ∈ klss : send decide locs(ov ,meta.policy) to kls

7: else if frag = ⊥ then

8: recover fragment(ov)
9: else

10: ∀kls ∈ klss : send converge(ov ,meta) to kls

11: ∀fs ∈ meta.locs : send converge(ov ,meta) to fs

12: upon receive decide locs reply(ov , locs′) from kls

13: if useful locs(storemeta [ov].meta, locs′) then
14: storemeta [ov]← storemeta [ov].locs ∪ locs′

15: storefrag [ov].meta ← storemeta [ov]
16: upon receive converge(ov ,meta) from fs′

17: if ov 6∈ storemeta ∧ ov 6∈ storefrag then

18: storemeta [ov]← meta; storefrag [ov]← (meta ,⊥)
19: else if ov ∈ storemeta then

20: storemeta [ov].locs← storemeta [ov].locs ∪meta.locs

21: storefrag [ov].meta ← storemeta [ov]
22: send converge reply(ov , verify(storefrag [ov])) to fs′

23: upon receive converge reply(ov , status) from server

24: resps[ov]← resps[ov] ∪ {(server , status)}
25: if is amr(resps[ov], storemeta [ov]) then
26: storemeta ← remove(storemeta , ov)

Key Lookup Server kls

1: upon receive converge(ov ,meta) from fs

2: locs← storemeta [ov].locs ∪meta.locs

3: storemeta [ov]← (meta.policy , locs)
4: send converge reply(ov , verify(storemeta [ov])) to fs

Figure 4. Naı̈ve convergence.

either a put or a get. This timeout is necessary because prox-

ies may crash and so the client must handle such timeouts.

Beyond this, a proxy may choose to return “unknown” in

response to a put request after some amount of time. This

response is effectively handled like a timeout by the client.

Because of the nature of distributed systems, the proxy may

not know whether or not certain fragment store requests

arrived at certain FSs and so cannot know whether suffi-

cient fragments have been durably stored to meet the pol-

icy. There is a similar difficulty for get operations: after

some time, if neither can decode nor can try earlier re-

turns true, then the proxy must timeout or return failure.

It is possible for the locations of an object version to ex-

ceed the policy, that is, for there to be “too many” locations.

There are two ways in which this may occur: an FS do-

ing a convergence step sends a KLS a decide locs message

concurrent to the proxy doing the same, or concurrent to

another sibling FS doing the same. If this happens, it is

a form of inefficiency (too many sibling fragments end up

being stored); it does not affect correctness. To reduce the

chance of this happening, every FS probes KLSs in each

data center in a specific order, unlike a proxy doing a put

which broadcasts to all KLSs simultaneously. Beyond this,

a KLS treats a decide locs request from an FS differently

than from a proxy: the KLS updates its storemeta with the

locations it suggests before replying to the FS, and sends an

indication to all sibling FSs of its locations decision.

Finally, if an object version has insufficient durably

stored fragments (i.e., fewer than k sibling fragments), then

it can never achieve AMR. This state results in the sibling

FSs invoking convergence steps forever but in vain. Ex-

ponential backoff is used to decrease the frequency with

which convergence steps are actually attempted—the older

the non-AMR object version, the longer before a conver-

gence step is tried again. Beyond this, Pahoehoe can be

configured to stop trying convergence steps after some time

has passed; in practice, we set this parameter to two months.

3.6. Correctness sketch

Due to space limitations, we provide only a rough sketch

of the correctness of the Pahoehoe protocols. Pahoehoe pro-

vides eventual consistency [29] with regular semantics [15]

that permits aborts (i.e., put and get operations may abort,

which is similar to, but somewhat weaker than, pseudo-

regular [18]). Consider a single key, a get operation for that

key, put operations for that key, and the following defini-

tions. The get operation begins the moment a proxy begins

the get protocol; it completes when the proxy sends a reply

to the client (or aborts). A put operation begins the mo-

ment a proxy begins the put protocol; it completeswhen the

object version being put is AMR. The latest AMR version

is the object version of the complete put with the highest

timestamp at the moment the get begins. A durable ob-

ject version is an object version for which k fragments are

durably stored on FSs, as specified in the object version’s

policy. A recent version is any durable object version with

a timestamp later than the latest AMR version. Assuming

sufficiently synchronized clocks, a put that begins after an-

other put completes yields a recent version.

In Pahoehoe, regular semantics with aborts means that

the get returns a recent version, or the latest AMR version,

or aborts. Note that AMR is a stable property, that is, once

an object version is AMR, it remains so forever, because

(1) none of the protocols ever delete metadata or fragments,

and (2) a server that crashes and recovers retains its persis-

tent state (i.e., metadata and fragments). By the definition

of AMR, every KLS returns the timestamp with metadata

for all AMR object versions, including the latest AMR ver-

sion. Also by the definition of AMR, every sibling FS has

the appropriate sibling fragment and returns it in response

to a retrieve fragment request. The get operation attempts

to retrieve object versions from latest to earliest by times-

tamp. Therefore the get operation may return a recent ver-

sion, which is allowed by regular semantics. The get op-

eration will not return an object version prior to the latest

AMR version though since can try earlier always returns

false if the latest AMR version is being retrieved. It re-

5

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

turns false because all KLSs return complete metadata and

all sibling FSs return the appropriate sibling fragment for

the latest AMR version.

In Pahoehoe, eventual consistencymeans that if, at some

point, no additional puts are issued, the recent object ver-

sion with the latest timestamp will become the latest AMR

version. All durable object versions eventually achieve

AMR because of our assumptions of partial synchrony, fair

lossy channels, and server recoveries.

4. Efficient convergence

In naı̈ve convergence, each FS independently determines

whether an object version is AMR. Such a decentralized

approach, though correct and robust to failures, is ineffi-

cient. In this section we discuss extensions to convergence

to make common cases more efficient. Note that we elide

some simple optimizations which are not as substantial as

the ones below (e.g., an FS does not actually send converge

messages to itself in fs line 11 of Figure 4).

4.1. AMR Indications

In the naı̈ve protocol, FSs may start convergence on an

object version even before the put operation completes; fur-

ther, every single FS individually must complete conver-

gence, contacting every other FS. This approach is obvi-

ously wasteful; we modify the protocol to eliminate con-

vergence steps in the common case and, when convergence

steps are needed, to minimize the number of FSs that per-

form such steps.

In the common, failure-free case, it is likely that a proxy

will completely finish a put operation and will know that

the object version is AMR due to the replies it gets. To

keep the FSs from doing any work during a converge step

for this object version, the proxy sends an AMR Indication

to all the sibling FSs. Upon receiving such an indication,

an FS removes the object version from its storemeta and

will not perform any further convergence work. To allow

the put to complete, an FS only initiates convergence on

non-AMR object versions over a minimum age (currently

300 seconds). If a proxy AMR Indication is lost, the only

effect is that some sibling FSs will perform an unnecessary

round of convergence. However, because the failure-free

case is common, this optimization significantly reduces the

number of messages needed to ensure AMR.

Since sibling FSs are sent fragments for an object ver-

sion at the same time, they are likely to run the corre-

sponding convergence steps simultaneously. To improve

the chance of only one sibling FS performing a sibling con-

vergence step, convergence rounds are scheduled uniformly

randomly between every 30 and 90 seconds. This random-

ness encourages sibling convergence steps to be unsynchro-

nized. When an FS does determine that the object version is

AMR, it sends an AMR Indication to all of its sibling FSs,

so that they do not initiate convergence steps for it. Again,

this indication is not necessary for correctness, and so the

protocol can tolerate its loss.

4.2. Sibling fragment recovery

One of the most common failures is a network partition.

In the case of a WAN partition, one entire data center will

need to perform recovery after the partition heals. However,

having each of the sibling FSs in that data center retrieve k

fragments across the WAN to decode the object version and

encode its fragment is expensive. Any FS that retrieves k

fragments can recover all of the sibling fragments simulta-

neously. Having only one FS recover the missing fragments

and then share the fragments over the LAN can significantly

reduce WAN traffic.

In the more general case, we can have any FS that per-

forms recovery help its siblings. In sibling fragment recov-

ery, an FS that needs to recover a fragment sends converge

messages to its sibling FSs with a flag set indicating its in-

tentions. A sibling FS includes which, if any, fragments it

needs recovered in its reply to the converge message. The

FS performing sibling fragment recovery waits some time

to accumulate replies and then recovers all of the missing

fragments. The FS then sends store messages with the re-

covered sibling fragments to all the appropriate sibling FSs.

This optimization creates the risk of FSs performing

even more work to recover fragments: if multiple FSs per-

form sibling fragment recovery simultaneously then they

could each retrieve k fragments and store m fragments in

the worst case. To prevent this from happening, FSs track

whether they are currently attempting sibling fragment re-

covery of an object version. If they are, and they receive a

converge message from a sibling FS that indicates it too in-

tends to attempt sibling fragment recovery, then they may

backoff. An FS only backs off if its unique server id is

lower than the other sibling FS’s unique id. This backoff

extends the exponential random backoff mentioned previ-

ously in Section 3.5.

5. Evaluation

To evaluate convergence in Pahoehoe, we setup experi-

ments, in simulation, that measure the merit of the various

optimizations we added to naı̈ve convergence, that measure

the work convergence does in the face of specific failures,

and that confirm object versions that achieve sufficient dura-

bility eventually become AMR. The main failures we con-

sider are network failures: either some nodes are unreach-

able or some percentage of messages are lost. Such network

failures can be used to simulate a server crashing (and sub-

sequently recovering), or a proxy failing after completing

only some portion of a put operation.

6

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

5.1. Experimental setup

We are primarily interested in the behavior of the proto-

cols and how the various optimizations affect them. Hence,

we measure our protocols under two criteria: the mes-

sage bytes sent and the number of messages sent to reach

AMR, including all activity from the proxy’s put and all

convergence activity. We do not measure response time or

throughput because these measures depend on workload,

capacity, and implementation quality, none of which we

consider in this paper. We evaluate our protocols by run-

ning the Pahoehoe implementation in a simulated network

environment. We use a simple performance model for the

network: each message has a latency between 10 to 30 ms

chosen uniformly randomly.

Our experimental workload consists of 100 puts of 100×
210 B objects, using the default durability policy described

in Section 2: a (k = 4,n = 12) erasure code with six

fragments per data center and up to two sibling fragments

per server. For the cases where we inject failures, we either

1) simulate a 10 minute node crash and recovery by drop-

ping all messages in and out of that simulated node for 10

minutes, or 2) we drop (system wide) a percentage of the

messages, randomly. We run all experiments until all object

versions that can achieve AMR do so. Our simulated hard-

ware consists of two data centers, with two replicated KLSs

each and three FSs each. We intentionally choose a small

system configuration so that, given the durability policy, any

server failure affects all object versions.

We run most experiments 50 times with different random

seeds and report the mean; we run the lossy network exper-

iments 150 times. We measure the 95th confidence interval

to verify that all reported results are statistically significant.

5.2. Convergence in the absence of failures

In this first experiment, we evaluate the impact of opti-

mizations in Section 4 when there are no failures. Figure 5

illustrates the results. In this experiment, we compare to

an Idealized implementation of our protocols, i.e., one that

knows this is a failure-free execution and so can send the

absolute minimum number of messages to reach AMR. The

Idealized results are calculated analytically as follows: one

KLS per data center receives a locations request which elic-

its one response; the proxy sends each of the four KLSs

the chosen locations to which each sends one response; it

also sends each of the six FSs two store fragment requests

(one for each sibling fragment) for which each FS sends one

response and receives an AMR indication. In naı̈ve conver-

gence, every sibling FS runs a complete convergence step

to determine that each object version is AMR, as a result,

six times more messages are generated compared to an Ide-

alized implementation.

Our first optimization involves each FS sending an AMR

 0

 5

 10

 15

 20

 25

 30

Naive FSAMR-S FSAMR-U PutAMR Idealized

M
e

s
s
a

g
e

 c
o

u
n

t
(1

0
3
)

Enabled optimizations

DecideLocsReq
DecideLocsRep

StoreMetadataReq
StoreMetadataRep
StoreFragmentReq
StoreFragmentRep

AMRIndication
KLSConvergeReq
KLSConvergeRep

FSConvergeReq
FSConvergeRep

Figure 5. Failurefree execution.

indication at the end of convergence to avoid redundant

work. However, when all FSs start convergence at the same

time, this optimization (FSAMR-S) results in a 13% in-

crease in the number of messages because each FS runs sib-

ling convergence steps simultaneously and sends an indica-

tion to other FSs at the end. The effectiveness of this opti-

mization hinges on each FS starting convergence at slightly

different times so that the indications of the first FS execut-

ing convergence has a chance to prevent a full convergence

step on the sibling FSs. FS AMR indications combinedwith

unsynchronized start times (FSAMR-U) results in a 57%

drop in message count compared to naı̈ve convergence.

Our second optimization (PutAMR) includes the proxy

sending an AMR indication at the end of the put. In the

failure-free case, this avoids running any convergence steps

at all, since each FS learns the AMR status from the proxy.

This optimization results in 68% fewer messages compared

to naı̈ve convergence. However, it still falls short of the Ide-

alized implementation because the proxy immediately for-

wards chosen locations upon receipt from a KLS in each

data center, resulting in two sets of location messages and

two location updates instead of one.

5.3. Convergence and server recovery

In this section, we investigate the effects of server un-

availability on the performance of convergence. This failure

scenario occurs either due to a server crash or due to a net-

work partition during a put operation. We simulate both of

these scenarios by using a network model that drops all the

messages between designated servers during a fixed period

followed by a full recovery.

First, we consider from zero to four FS failures. When

there are more than one failure, the failures are roughly bal-

anced between data centers. Figures 6 and 7 show message

counts and byte counts respectively during convergence as

varying numbers of FSs are unavailable during a put oper-

ation. The label below each column indicates the number

7

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

 0

 5

 10

 15

 20

 25

0
-A

ll
1

-
1

-P
u

tA
M

R
1

-F
S

A
M

R
1

-S
ib

lin
g

1
-A

ll
2

-
2

-P
u

tA
M

R
2

-F
S

A
M

R
2

-S
ib

lin
g

2
-A

ll
3

-
3

-P
u

tA
M

R
3

-F
S

A
M

R
3

-S
ib

lin
g

3
-A

ll
4

-
4

-P
u

tA
M

R
4

-F
S

A
M

R
4

-S
ib

lin
g

4
-A

ll

M
e

s
s
a

g
e

 c
o

u
n

t
(1

0
3
)

Enabled Optimizations

DecideLocsReq
DecideLocsRep

StoreMetadataReq
StoreMetadataRep
StoreFragmentReq
StoreFragmentRep

AMRIndication
KLSConvergeReq
KLSConvergeRep

FSConvergeReq
FSConvergeRep
RetrieveFragReq
RetrieveFragRep
SiblingStoreReq

Figure 6. FS failures and message count.

 0

 10

 20

 30

 40

 50

 60

0
-A

ll
1

-
1

-P
u

tA
M

R
1

-F
S

A
M

R
1

-S
ib

lin
g

1
-A

ll
2

-
2

-P
u

tA
M

R
2

-F
S

A
M

R
2

-S
ib

lin
g

2
-A

ll
3

-
3

-P
u

tA
M

R
3

-F
S

A
M

R
3

-S
ib

lin
g

3
-A

ll
4

-
4

-P
u

tA
M

R
4

-F
S

A
M

R
4

-S
ib

lin
g

4
-A

ll

M
e

s
s
a

g
e

 b
y
te

s
 (

2
2
0
)

Enabled Optimizations

DecideLocsReq
DecideLocsRep

StoreMetadataReq
StoreMetadataRep
StoreFragmentReq
StoreFragmentRep

AMRIndication
KLSConvergeReq
KLSConvergeRep

FSConvergeReq
FSConvergeRep
RetrieveFragReq
RetrieveFragRep
SiblingStoreReq

Figure 7. FS failures and message bytes.

of FSs that are unavailable (from 0 to 4) and which conver-

gence optimizations are enabled. We consider four different

optimization settings for this experiment: PutAMR uses the

Put AMR Indication optimization; Sibling uses the unsyn-

chronized sibling fragment recovery optimization; FSAMR

uses the FS AMR Indication optimization; and All uses all

of the convergence optimizations. The experiment 0-All is

actually the same result as PutAMR in the previous experi-

ment (i.e., Figure 5), and is included as a reference point.

Figure 6 shows that FS failures greatly increase the num-

ber of messages exchanged during convergence. In each

convergence step, an FS sends each sibling FS a converge

message (FSConvergeReq) and each KLS a converge mes-

sage (KLSConvergeReq), and each of these requests gar-

ners a reply. Figure 6 also shows that both the FS AMR indi-

cation and the sibling fragment recovery reduce the number

of convergence messages during FS failures. The effective-

ness of sibling fragment recovery increases with more FSs

being unavailable as the sibling fragment recovery does a

good job of preventing duplicated effort when rebuilding

fragments. Note that the number of messages for conver-

gence during FS failures depends on two factors: 1) the du-

ration of the FS failures, and 2) the number of available

FSs trying to make progress on convergence. The latter is

the primary reason why the total number of messages drops

as the number of unavailable FSs increase in Figure 6. In-

terestingly, the optimizations have a cumulative impact on

message counts. This effect is good as the common recov-

ery scenario during convergence is for a single FS to recover

all needed sibling fragments, store them on the appropriate

sibling FSs, and indicate to all sibling FSs that the object

version is AMR.

The sibling fragment recovery optimization significantly

reduces the total amount of data exchanged for convergence

during FS failures. This is due to the properties of erasure

codes: to recover any fragment, at least k sibling fragments

must be retrieved. To use the minimal network capacity, the

sibling fragment recovery optimization amortizes the cost

of retrieving k fragments over recovering all missing sib-

ling fragments. Since we are using (k = 4,n = 12) erasure
coding, the sibling fragment recovery uses approximately

one third more network capacity compared to the no-failure

case because it must retrieve 4 fragments in order to recon-

struct the missing fragments (Figure 7).

For the KLS failures, we consider the same convergence

optimizations as in the FS experiments. We do not show

the effect of these optimizations on the number of messages

for the KLS failures, as they are similar to the FS failure

scenario. We separate 2 KLS failures into two cases: one

KLS per data center and so the network remains connected

(2C) versus two KLSs in one data center and so the network

is effectively partitioned (2P). The KLS-2P failure scenario

mimics a WAN partition because the proxy cannot access

any KLSs in one of the data centers and so does not identify

any locations in that data center.

Figure 8 shows the amount of data exchanged during

convergence for varying number of KLSs being unavailable.

The amount of data exchanged during convergence is domi-

nated by the fragments, so the KLS failures add only a little

overhead so long as the both data centers remain connected.

If there is a WAN partition, then all the FSs on one side of

the partition need to recover fragments during convergence.

The sibling fragment recovery optimization prevents all FSs

from independently transferring fragments needed for their

recovery over the WAN, instead, only one of the FSs per-

forms this recovery on behalf of the others. This optimiza-

tion reduces the usage of the limited WAN bandwidth.

5.4. Lossy network

Figure 9 shows the performance of Pahoehoe under a

lossy network that drops messages with a uniformly ran-

dom drop rate ranging from 0% up to 15%. In practice, we

8

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

 0

 10

 20

 30

 40

 50

 60

0
-A

ll
1

-
1

-P
u

tA
M

R
1

-F
S

A
M

R
1

-S
ib

lin
g

1
-A

ll
2

C
-

2
C

-P
u

tA
M

R
2

C
-F

S
A

M
R

2
C

-S
ib

lin
g

2
C

-A
ll

2
P

-
2

P
-P

u
tA

M
R

2
P

-F
S

A
M

R
2

P
-S

ib
lin

g
2

P
-A

ll
3

-
3

-P
u

tA
M

R
3

-F
S

A
M

R
3

-S
ib

lin
g

3
-A

ll

M
e

s
s
a

g
e

 b
y
te

s
 (

2
2
0
)

Enabled Optimizations

DecideLocsReq
DecideLocsRep

StoreMetadataReq
StoreMetadataRep
StoreFragmentReq
StoreFragmentRep

AMRIndication
KLSConvergeReq
KLSConvergeRep

FSConvergeReq
FSConvergeRep
RetrieveFragReq
RetrieveFragRep
SiblingStoreReq

FSDecideLocsReq

Figure 8. KLS failures and message bytes.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

P
u

t
c
o

u
n

t
w

it
h

 l
o

w
 t

o
 h

ig
h

 r
a

n
g

e

Message drop rate (percentage)

Puts attempted
Excess AMR object versions
Non-durable object versions

Figure 9. Convergence and a lossy network.

do not expect networks to exhibit such egregious behavior

since transport mechanisms such as TCP effectively mask

packet losses. This experiment is thus more of a thought ex-

periment to understand how the cost of convergence could

grow under extraordinary circumstances. This experiment

also exercises some code paths that may occur due to sub-

stantial delays in the network or a proxy failures. All con-

vergence optimizations are enabled for this experiment.

Notice that as the message drop rate increases, the num-

ber of put operations the proxy has to attempt to receive 100

success replies increases. Further note that most of these

additional put attempts lead to excess AMR object versions,

that is, even though the proxy did not receive a success re-

ply for many puts, these puts eventually resulted in AMR

object versions. Also shown on the graph is the number

of non-durable object versions, that is object versions that

never durably stored sufficient fragments to achieve AMR.

The rate at which non-durable object versions occurs is very

low, given the extraordinary failure scenario.

6. Related work

A number of distributed key-value storage systems [5, 7,

28] have been implemented in the past few years, all us-

ing data replication for availability, unlike Pahoehoe, which

supports both erasure codes and replication. Dynamo [7],

Amazon’s highly available key-value store uses sloppy quo-

rums and object versioning to provide weak/probabilistic

consistency of replicated data. Dynamo uses hinted hand-

offs to propagate data to nodes that ought to host the data,

but were unavailable when the data was updated. Hinted

handoffs, like convergence in Pahoehoe, ensure that even-

tually the “right” nodes host the right data.

Data replication has also been widely used in distributed

file systems, including Ficus [20], Coda [25], Pangaea [24],

Farsite [8], WheelFS [26] and the Google File System

(GFS) [11]. GFS and Farsite, like most file systems, pro-

vide fairly strong consistency and so are not suited for

deployment across a WAN. Ficus, Coda, and Pangaea al-

low reads and writes even when some servers are discon-

nected; each guarantees a version of eventual consistency,

but differs in how and when update conflicts are resolved.

WheelFS allows the user to supply semantic cues to indi-

cate access requirements: for example, the user can spec-

ify a maximum access time or the level of consistency ex-

pected (“eventual consistency” or “close-to-open”) for a file

update. Bayou [27] is a replicated, distributed, eventu-

ally causally consistent relational database system that al-

lows disconnected operations and can tolerate network par-

titions. It uses an anti-entropy protocol to propagate up-

dates between pairs of storage replicas. Baldoni et al. [3]

demonstrate a replication protocol where replicas eventu-

ally achieve consistency by using gossiping, but are never

aware that consistency has been achieved. None consider

eventual consistency of erasure-coded data.

There are relatively few distributed storage systems that

use erasure codes. Goodson et al. [14] and Cachin & Tes-

saro [4] have designed erasure-coded distributed atomic

registers. The Federated Array of Bricks (FAB) [23] is

an erasure-coded distributed block store. Ursa Minor [1]

is an erasure-coded distributed object store. Pond [21] is

an erasure-coded distributed file system. All such erasure-

coded distributed storage systems of which we are aware,

provide strong consistency and so cannot be available dur-

ing a network partition. Pahoehoe, however, provides even-

tual consistency and can be available during a network par-

tition.

Peer-to-peer systems use a globally consistent protocol

to locate stored objects. For example, PAST [22] is an ex-

ample of a distributed storage system that uses DHTs for ob-

ject location. Pahoehoe uses the more traditional approach

of storing location information in metadata servers (i.e.,

KLSs), but could use DHT techniques to scale the KLSs.

9

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

7. Conclusions

In this paper, we presented the Pahoehoe key-value cloud

storage system and studied the efficiency of its convergence

protocol. To achieve the high availability and partition-

tolerance needed for the cloud, Pahoehoe provides eventual

consistency. Unlike previous eventually consistent systems

that use replication, Pahoehoe uses erasure codes to durably

store values.

Our key contribution is to show how a distributed

erasure-coded storage system can provide eventual consis-

tency without incurring excessive network overheads. Tra-

ditional gossip-based mechanisms are not well-suited be-

cause they require k ≥ 1 fragments to recover a single

erasure-coded fragment, thereby increasing network traffic

significantly to achieve eventual consistency. In Pahoehoe,

each Fragment Server (FS) independently runs convergence

to ensure eventual consistency under failures. We present

optimizations that reduce network traffic—both messages

sent and bytes sent—while still maintaining the robust, de-

centralized nature of convergence. These optimizations in-

clude allowing proxies and FSs to send indications that con-

vergence is not needed (i.e., the value has achieved eventual

consistency) and allowing a single FS to recover fragments

on behalf of its sibling FSs to reduce or eliminate much

network traffic. Our experiments show that in the failure-

free case, the Pahoehoe implementation achieves network

efficiency close to what we believe an ideal implementa-

tion could achieve. Our experiments also show that the op-

timizations taken together reduce both message count and

message bytes across a broad range of failure cases.

References

[1] M. Abd-El-Malek, et al. Ursa Minor: Versatile cluster-based

storage. In FAST’05, pages 59–72, December 2005.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Failure detec-

tion and consensus in the crash-recovery model. Distributed

Computing, 13(2):99–125, 2000.

[3] R. Baldoni, et al. Unconscious eventual consistency with

gossips. In Proceedings of the Eighth International Sym-

posium on Stabilization, Safety and Security of Distributed

Systems, pages 65–81. Springer, 2006.

[4] C. Cachin and S. Tessaro. Optimal resilience for erasure-

coded Byzantine distributed storage. InDSN’06, pages 115–

124, June 2006.

[5] Cassandra. Available at http://incubator.apache.

org/cassandra/. Accessed December 2009.

[6] J. Dean. Designs, lessons and advice from building

large distributed systems. Keynote slides at http://

www.cs.cornell.edu/projects/ladis2009/

talks/dean-keynote-ladis2009.pdf Accessed

December 2009.

[7] G. DeCandia, et al. Dynamo: Amazon’s highly available

key-value store. In SOSP’07, pages 205–220, October 2007.

[8] J. R. Douceur and J. Howell. Distributed directory service in

the farsite file system. In OSDI’06, pages 321–334, Novem-

ber 2006.
[9] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in

the presence of partial synchrony. Journal of the ACM,

35(2):288–323, 1988.

[10] R. T. Fielding and R. N. Taylor. Principled design of the

modern Web architecture. ACM Transactions on Internet

Technology, 2(2):115–150, 2002.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file

system. In SOSP’03, pages 29–43, October 2003.

[12] G. A. Gibson, et al. A cost-effective, high-bandwidth storage

architecture. In ASPLOS’98, pages 92–103, October 1998.

[13] S. Gilbert and N. Lynch. Brewer’s conjecture and the fea-

sibility of consistent, available, partition-tolerant Web ser-

vices. ACM SIGACT News, 33(2):51–59, June 2002.

[14] G. Goodson, et al. Efficient Byzantine-tolerant erasure-

coded storage. In DSN’04, pages 135–144, June 2004.

[15] L. Lamport. On interprocess communication, Part I: Basic

formalism and Part II: Algorithms. Distributed Computing,

1(2):77–101, June 1986.

[16] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-

Correcting Codes. North Holland, Amsterdam, 1978.

[17] D. L. Mills. Network time synchronization research project.

Available at http://www.cis.udel.edu/˜mills/

ntp.html. Accessed December 2009.
[18] E. Pierce and L. Alvisi. A framework for semantic reasoning

about byzantine quorum systems. In PODC’01, pages 317–

319, August 2001.

[19] J. S. Plank, et al. A performance evaluation and examina-

tion of open-source erasure coding libraries for storage. In

FAST’09, February 2009.

[20] G. J. Popek, et al. Replication in Ficus distributed file sys-

tems. In Proceedings of the Workshop on Management of

Replicated Data, pages 20–25. IEEE, November 1990.
[21] S. Rhea, et al. Pond: The OceanStore prototype. In FAST’03,

pages 1–14, March 2003.
[22] A. Rowstron and P. Druschel. Storage management and

caching in PAST, a large-scale, persistent peer-to-peer stor-

age utility. In SOSP’01, pages 188–201, October 2001.

[23] Y. Saito, et al. FAB: Building distributed enterprise disk

arrays from commodity components. In ASPLOS’04, pages

48–58, October 2004.

[24] Y. Saito, et al. Taming aggressive replication in the Pangaea

wide-area file system. In OSDI’02, pages 15–30, December

2002.

[25] M. Satyanarayanan, et al. Coda: A highly available file sys-

tem for a distributed workstation environment. IEEE Trans-

actions on Computers, 39(4):447–459, 1990.

[26] J. Stribling, et al. Flexible, wide-area storage for distributed

systems with WheelFS. In NSDI’09, pages 43–58, April

2009.
[27] D. B. Terry, et al. Managing update conflicts in Bayou, a

weakly connected replicated storage system. In SOSP’95,

pages 172–183, 1995.

[28] Tokyo cabinet. Available at http://1978th.net/

tokyocabinet/. Accessed December 2009.

[29] W. Vogels. Eventually consistent. Communications of the

ACM, 52(1):40–44, 2009.

10

Published in proceedings of DSN 2010, The 40th Annual IEEE/IFIP International Conference
 on Dependable Systems and Networks, June 28 - July 1, 2010, Chicago Illinois USA

