
Implementing Prato, a
database on demand service

(extended abstract)

Soila Pertet, John Wilkes, and Jay Wylie

HP Labs
soila@cmu.edu, john.wilkes@hp.com, jay.wylie@hp.com

Configuring a database is much easier than it used

to be, but it’s still a chore that many of us would
rather not perform. The investment in hardware and
people necessary to make a large, powerful database
available is prohibitive for short-term tasks. As a
result, applications that might use a database do
without; queries take much longer than they need to;
useful business analytics is not performed; and people
waste time learning how to make the database fast,
rather than focusing on their primary business
function.

Prato solves these problems by offering customers
a private, virtual, DBMS appliance that can be sized
up to several hundred nodes, and made available on
demand, in minutes. The initial Prato prototype is
built around a main-memory DBMS on which decision
support queries run an order of magnitude faster than
on a traditional DBMS. Future versions will make the
database resilient to a wide range of failures;
completely self-managing; and capable of supporting
multiple back-end database types.

The research problems are centered on how to
automate Prato’s control system in the face of a large-
scale distributed system that has many failure-prone
components, supports multiple users with varying
degrees of sophistication and demands, and has to
handle events in a completely lights-out manner.
Towards this end, we employ a policy-based approach
to the design and implementation of Prato’s control
system.

1. Introduction
The end-user visible goal of Prato is to make

private, virtual, DBMS appliances available on
demand. To accomplish this, we apply service-
oriented architecture (SOA) techniques and self-
managing systems research to the problem of database
provisioning. We have built an initial prototype that is
already being used by internal customers in a limited
manner. We are using early customer experiences to
validate the use cases and design of Prato. We also
expect such customer experience to enable us to

identify the most valuable additional features and
services to pursue next.

There are many data warehouse vendors (e.g.,
Teradata, Netezza, Oracle, and now HP with
NeoView). Such vendors sell database appliances or
software for exclusive use by an end customer. The
Prato service differs in that it can support multiple
(potentially competing) customers on a shared
infrastructure, via a pay-per-use service model. These
differences make the power of data warehouses
available to customers who heretofore could not afford
the necessary capital investment. It also allows the
individual instances to be flexed and resized as
needed. What is a simple reconfiguration for Prato
turns into a fork-lift upgrade with a traditional
database appliance. (We sometimes refer to Prato as a
virtual DBMS-appliance provider for this.)

The research goal of Prato is to learn how to deliver
this end-user experience from a completely automated
system that is capable of handling user requests and
failures without human intervention. We want to
change the provisioning of information services from a
manual task to a fully automatic one. This means that
we are interested in:
1. How best to capture customer needs, without

dictating the way those needs are addressed: in
our case, how much database is needed, and how
important it is that it stay available.

2. Automatically translating such needs into
implementation choices, and selecting between
different designs: in our case, what kind of DBMS
options to set, and how much to invest in different
failure-recovery alternatives.

3. Completely automating the management of the
Prato service provider: lights-out self-
management is the end goal, even in the face of
conflicting user requirements, and failures.

4. Service composition: how Prato interacts with
other service providers.

We discuss each of these topics in this paper, but
emphasize our policy-based approach to automating
the management of the Prato service provider.

mailto:jay.wylie@hp.com

Prato Virtual file
system

(WX2) DBMS
Instance

Virtual DBMS-appliance

Virtual file
system

(WX2) DBMS
Instance

Virtual DBMS-appliance

Virtual file
system

(WX2) DBMS
Instance

Virtual DBMS-appliance

Contract pricing

Service manager

Design to spec.

Fault diagnosis

Fault recovery

Self management

Contract pricing

Service manager

Design to spec.

Fault diagnosis

Fault recovery

Self management File system Nodes

Physical infrastructure

File systemFile system NodesNodes

Physical infrastructure

C
us

to
m

er

Service
provider

Manager

Web service

Request
contract

Manager

Web service

Request
contract

Web service

Upload
data

DBA

Web service

Upload
data

DBA

ODBC

Query &
report

Analyst

ODBC

Query &
report

Analyst

W
eb

 s
er

vi
ce

A
dd

 n
od

es

O
pe

ra
to

r

W
eb

 s
er

vi
ce

A
dd

 n
od

es

O
pe

ra
to

r

W
eb

 s
er

vi
ce

N
od

e
ut

iliz
at

io
n

M
an

ag
er

W
eb

 s
er

vi
ce

N
od

e
ut

iliz
at

io
n

M
an

ag
er

Figure 1: Prato service provider architecture.

2. Prato service provider
The Prato service provider has three main parts

(shown in Figure 1):
1. A database engine that is used to create DBMS

appliance instances.
2. A resource pool, which provides processors for

the DBMS appliances and file storage space for
user data, such as internal backups/snapshots.

3. The service manager, a control system, which is
in charge of orchestrating all the other parts,
responding to requests for new DBMS appliances,
and recovering from failures.

2.1. Database engine
Since the Prato project is ultimately about

controlling database management systems, not
building them, it is constructed on top of back-end
database systems that we obtain from others.

The first of these is WX2, from Kognitio
[Kognitio2007]. We chose it because it has two
interesting properties: first, it performs very fast scans
of in-memory data, which can often obviate the need
for indexes, thereby easing the process of adding new
data into the system. Second, and perhaps most
important, it aggregates multiple Linux compute nodes
into a single DBMS instance – that is, a query can
execute on multiple nodes at a time. This means that a
single query can bring large amounts of main memory
to bear on a problem – in our case, up to about 1TB.
Because WX2 was designed from the ground up to be
a distributed system, it has proven a natural partner
and target for our distributed control system research
objectives. In addition, because the number of nodes
that a single WX2 instance runs on can be controlled,
initial system sizing and flexing to add additional
resources is relatively straightforward. This was a

good match to our desire to provide tailored, per-
customer DBMS appliances.

Kognitio, our DBMS provider, is in the same
business as Prato: they recently announced a “Data
Warehouse Challenge” in which they promise to
“build you a Data Warehouse in just 14 days for you
to analyze your data.” Kognitio relies on their internal
consultants and experts to make such an endeavor
feasible. By comparison, Prato is designed to
accomplish a similar task without any manual
intervention. Besides the potential cost savings on the
service provider side, this can lead to more rapid
DBMS availability for its customers: minutes for
database provisioning and tens of minutes for data
import.

Our future plans call for us to support additional
DBMS back ends – in particular, the open-source
MySQL, followed by a control interface to an HP
NeoView platform [NeoView2007]. Clustered
versions of MySQL have some of the same properties
as WX2, although over a smaller range of sizes. They
add additional design points, with a variable mixture
of front-end and back-end nodes.

2.2. Resource pool
For the resource pool, we were fortunate to have

access to several hundred HP DL360 nodes, which
remained from the collaboration between HP and
DreamWorks on Shrek 2 and Madagascar
[Beckett2004]. Without such a pool, we would never
have learned some of the more interesting (and
frustrating) lessons about controlling large-scale
systems. In addition, some of our colleagues made
available a few terabytes of file server space that we
use to hold a few large datasets.

Currently, Prato takes physical possession of the
nodes in the resource pool that it allocates to different
database appliances. We are working to make Prato a
client of a physical resource provider service – one
that dynamically rents out physical nodes to hosted
services such as Prato, on an on-demand basis.

2.3. Prato service manager
We believe that the most novel part of Prato is the

service manager, the control system that we are
building around the other parts (see Figure 1). The
Prato service manager orchestrates all of the
operations performed by the Prato service: it is
responsible for designing virtual DBMS-appliances
that meet client contract requests, pricing such
contracts, allocating physical resources for such
contracts, instantiating a specific virtual DBMS-
appliance on allocated resources for accepted

contracts, diagnosing failures, planning recoveries
from failures, and so on. These responsibilities fall
into three main categories:
1. Create/relinquish a DBMS, which is invoked by

the customer in their Manager role.
2. Upload/download data, which also performs

schema and table instantiation, which is invoked
by the customer in their Database Administrator
(DBA) role.

3. Query execution, provided via a standard ODBC
feed, which is performed by the customer in their
Analyst role.

In addition, the Prato service itself has business-
manager and operator roles which the Prato service
manager must support. Our goal is to make these as
little needed as possible – particularly the latter.

2.4. Design and implementation
We have built the Prato service manager using

Enigmatec’s Execution Management System (EMS)
[Enigmatec2007]. Again, this came about because we
were looking for a way to bootstrap our research
efforts to support a distributed, failure tolerant system.
EMS offers us location-independent workflow
management and a convenient engine for
implementing policies, which means we can
concentrate our efforts on the policies and objectives,
rather than spending time developing a low-level
platform to route events, and cope with local failures
in the control system itself. To make our EMS system
more robust, we are pairing its distributed information
store (replicated across the main memory of several
EMS processes on different nodes) with a stable copy
of important data on persistent storage.

We have organized the Prato service manager in a
hierarchy. Figure 2 shows the service organization we
have implemented using EMS for the Prato service
manager. At the highest level, the PratoService offers
interfaces to clients to request a DBMS appliance,
accept a contract offered by the PratoService in
response to a DBMS appliance request, notify a client
that their contracted DBMS appliance is ready, let a
client release a DBMS appliance, and to notify a client
that their contracted DBMS appliance has expired.

There are two sub-trees under the PratoService: the
WX2Manager and the NodePoolManager. The former
manages virtual WX2 DBMS appliances and the latter
manages the nodes in the resource pool. Nodes from
our compute cluster are managed exclusively by the
NodePoolManager until they are allocated to some
DBMS appliance. Once allocated, a node is managed
by the DBMS appliance to which it is allocated. Once
an appliance is released, the nodes bound to it return to
the management of the NodePoolManager.

Figure 2: Prato EMS Service organization.

The NodePoolManager implements policies for

when a node is allocated to an appliance, released
from the appliance, first comes up and joins the
resource pool, and goes down/leaves the resource
pool. It also offers an interface to query the resources
available in the resource pool. Figure 3 illustrates the
flow of the NodePoolManager policy for node
allocation. If nodes are successfully bound to some
DBMS appliance, then state about available resources
is updated. If not, the lower branch of the workflow
signals an error, which other policies handle.

Figure 3: Node pool resource allocation.

In the example service organization shown in

Figure 2, up to three WX2 DBMS appliances can be
managed by the WX2Manager. Currently services
cannot invoke methods on themselves in EMS. To
permit self-invocation, we introduce a WX2Instance
and a WX2InstanceInner: the former is a place holder
that defines the policy interface for a WX2 DBMS
appliance and passes events through; the latter is an
internal component that responds to events.

3. Designing for self-management
We are designing the Prato service provider to run

without operator intervention. This means that we
need a way to delegate to it many of the decisions that
are commonly made by people in a traditional service
implementation. Ideally, this is best accomplished
without a great deal of fine-tuning of a large number
of knobs: there’s little point in developing a system
that is harder to control than the original – at least over
the expected range of operation. Our approach to this
is to pick one metric, and see how far using that metric
to determine the system’s behavior can take us. That

metric is profit – the difference between the cost of
running the Prato service and the amount it can charge
its clients.

3.1. Economic approaches to self-
management

A service must provide something that its
customers value – or they would simply not use it. In
the face of competition, a service must be exploiting
an asset that its competitors cannot match if it is to
remain profitable – or the competition will simply put
it out of business, or customers will find a way to
provide the service themselves. In our case, we intend
that asset to be the automation of the service
management, because we believe that a self-managing
system will be cheaper to run (i.e., take fewer people),
have higher responsiveness to requests (resulting in a
more desirable service), be less likely to result in
system outages when things go wrong (thereby
reducing penalties), and rational in its allocation of
resources to external needs (thereby maximizing the
return on investment).

As a result, we believe that profit provides the best
overall measure of the utility a service is adding to its
environment. The main benefits come from having a
simple, clear metric for what “goodness” means in the
system. This clarity makes it easy to determine
whether a choice is making things better or worse, and
thus makes it a good choice for the objective function
of the automated control system.

Profit has the additional benefit of getting business-
people’s attention. We thus try and leverage economic
mechanisms and incentives to establish self-interested
policies for components that overall yield self-
managing behavior.

In order to drive appropriate behavior in a service,
we use price signals from the service’s customers to
communicate how much they value different aspects
of its behavior. For example, a typical contract will
include both rewards for good behaviors and penalties
for undesirable ones. The rewards can be as simple as
a flat rate subscription (i.e., per unit time), or include
utility functions over responsiveness or latency. The
penalties can be as inventive as the client and service
provider are willing to be. In the Prato context, we
focus mainly on availability and data loss penalties.

One difficulty with using profit as the lingua franca
of utility is that a service must be able to predict the
likely cost of its actions, which is not always trivial.
For example, consider how hard it is to accurately
predict rare events such as failures, or future events
such as tomorrow’s demand for the Prato service. The
former is necessary when designing and pricing a
DBMS appliance for a customer, and the latter is

necessary when pricing and admitting customer
contracts. We believe that this is best handled
explicitly as a risk management question. The good
news is that the economic approach brings it clearly
into the open, and provides a way to quantify it – and
provides a hint that existing work in other areas, such
as financial markets, could be helpful.

In a policy-driven system, the policies represent
ways of recording preferred decisions, or preferred
approaches to making decisions.1 The highest-level
policy in the Prato universe is to maximize profit rate
– the profit per unit time, subject to a certain expected
level of risk, expressed as a permitted variance in the
profit-rate, together with a maximum expected loss. 2

We can then assess other policy choices and ask
“[how] does this contribute to the primary objective?”
We have found that an economics-based approach to
the problems of designing self-managing systems
helps focus attention on those decisions that are likely
to influence a service’s profitability, rather than low-
level mechanism choices.

In the rest of this section, we discuss how we apply
economic incentives towards making two key aspects
of Prato self-managing: autonomously handling client
requests, and ensuring continued operation in the face
of failures. We also discuss the open problem of
composing self-managing components.

3.2. Automatic database instance design
Prato autonomously determines how to configure

the database instance and corresponding recovery
plans for a database appliance. Prato uses the
requested service-level agreement (SLA) to
accomplish this task.

When negotiating for a DBMS appliance from
Prato, the customer proposes a preferred service level
objective (SLO) and the penalties to be paid out if the
SLO isn’t met. Prato responds with a price. If the
customer accepts it, the resulting combination
becomes the customer’s contract, or service level
agreement (SLA). This places two burdens on Prato: it
must determine how to provision and configure a
database instance for the proposed contract, and it
must determine how much to charge for it in order to
meet its profit objective.

1 We find it helpful to think of policy in the most
general sense of a replaceable way of representing
what to do in some situation, whether this is a goal
statement or a simple condition-action rule.
2 We could have chosen a metric such as profit per
contract, or return on investment. Our analysis of risk
is still at an early stage. We present it here to suggest
the flavor of our approach.

Our approach to the database instance design
process extends techniques first developed for storage-
system availability [Keeton2004]; these use business-
penalty information provided by the customer to drive
the service provider decisions, while making the SLA
very straightforward. For Prato, the penalties are
defined as an outage penalty-rate (dollars per hour that
the instance is not available to do useful work) and a
data loss penalty-rate (dollars per hour that the state of
the system has to be rolled backwards in order to
effect a recovery).

The use of business-level penalties rather than
prescriptive recipes (e.g., “you will keep at least 2
copies of this data on different media types”) means
that the service provider retains a great deal of
freedom behind the scenes in terms of which
mechanisms it should use to meet the customer needs.

In our case, the mechanisms we are designing
include making local copies of customer data to
provide fast recovery (we can upload a new copy in
parallel from a local copy much faster than it can be
downloaded from the customer data source), DBMS-
and disk-level data-mirroring, hot/cold node spares,
and a range of recovery procedures that offer different
degrees and speeds of failure tolerance [Pertet2007].

The design emphasis in Prato is on fault tolerance.
In other systems, it could well be performance. In our
case, the only “performance knob” for a WX2 DBMS
instance is the number of nodes allocated to it: and the
main determiner of the database performance is
whether or not the database will fit in memory. If it
does, the result is usually such good performance that
our customers do not quibble!

As we expected, we are finding that the basic
principles enunciated in [Keeton2004] hold good, but
the devil is in the details – for example, exactly how
should we model the multitude of failure types, failure
mitigation efforts, and their effects? Failures are
relatively rare events, so [how] should observed
failures be factored into the predictive models? When
should the design of a particular instance be adjusted
on the fly, and when should it be allowed to live out its
life with a less-than-optimal design?

Storage failure modes and rates are much better
understood then the failure modes of complete
services (especially those composed of multiple
services as is done in a SOA). In particular, we
believe that the prior techniques need to be extended
to incorporate risk tolerance aspects. It is not enough
to assume a single failure event, as was done in
[Keeton2004] – we need to extend this to predict the
likelihood of multiple events and their consequences.
We believe that explicitly including risk in the models
can address the dearth of knowledge about failure
modes and rates in such systems.

3.3. Policy-based self-management
Our goal is to make Prato capable of handling

failure events, customer events, and all normal
operation functions completely autonomously, with no
operator intervention. This requires that we be able to
recognize an event such as a failure or a request for
service, determine potential courses of action, select
between them, and then execute the preferred ones.

In a customer-driven event (such as a customer
requesting a new database instance), the identification
of the event is usually straightforward, and the state of
the Prato system is likely to be reasonably well
understood. The main choices are two-fold: whether it
is possible (and if so, how best) to meet the request,
and, if so, whether it is desirable (profitable!) to do so
– i.e., admission control.

Admission control choices are determined by
service-business-level policies that capture the service-
provider’s business choices, such as the appropriate
tradeoff between the expected levels of profit and risk
in a contract. Admission control decisions could also
include other customer-related information such as a
prior interaction history with the customer, or their
reputation – e.g., whether they are likely to pay
promptly! It seems that the development of such
policies is still in its infancy. Prato is no exception.

Once the business-level policies have been applied,
it’s necessary to address more technical aspects.
These include the self-management policies of each
database instance and its constituent nodes. Our
approach to this is to formalize the state-space through
which each component can move (e.g., see Figure 4).

Figure 4: Prato DBMS-instance state
transitions.

This state-space approach allows us to develop

responses for both normal operations and for threats
such as failures, and we believe that it represents a
fairly powerful, general-purpose technique.
Determining which transition to take when faced with

WX2mgr: stop
WX2mgr: start stopped

initializing
(aka newsys)

started

broken

WX2: failure

WX2Instance:
unable -to-fix

WX2mgr: tear -down

underConstruction

WX2mgr: reset

inactive

WX2Instance: plan to
fix problem determined

shuttingDown

WX2mgr: reset

WX2: initialized
WX2mgr: reset

a state and an event can be controlled by policies: for
example, the recovery mechanism design for a
database instance is itself a kind of policy.

However, one of the biggest difficulties facing
responses to failures is determining exactly what state
the system is in – the problem of failure detection.
Part of the difficulty is simply that of gathering data
about a failure event, since the failure might have
taken down part of the monitoring system. Part of the
difficulty is in determining what course of action is
most likely to lead to a desirable outcome.
Fortunately, the economics-driven approach to the
SLA helps significantly here – the tradeoffs between
the costs of various mechanisms and their expected
return (reduced penalties) are readily understood, if
these values can be predicted.

A more insidious problem is how to determine
which part of the system should respond – which leads
us onto the topic of composite systems and policies.

3.4. Policy composition
Like most service implementations, Prato is not

internally monolithic: it is composed of the
interacting, loosely-coupled components shown in
Figure 2. The independence of these components
presents some interesting problems, akin to ones that
show up in composite services built from autonomous
components.

For example, take the simple case of a node that
stops responding. Who should respond? It might be a
process that has run amuk, and resetting the database
instance will get things working again, quickly, with
relatively little loss of availability or data. Maybe the
operating system has gotten itself wedged temporarily,
in which case a reboot will fix things, although the in-
memory part of the database might need to be
reloaded. Or it might be more permanent (e.g., the file
system has filled up), and more drastic action is
required, although determining what to do could take a
while. It’s possible that there’s a hardware failure
(with 300 nodes and 600 disks, we experience
regularly). Replacing the node will be required – but
that may mean that the database has to be reloaded.

The tricky part here isn’t the choice of which
recovery action to invoke – with global knowledge,
there are approaches to handling this problem (e.g.,
[Joshi2005]). The difficulty is that several Prato
components may simultaneously determine that there
is a fault – e.g., the node pool manager, the WX2
instance manager, and the WX2 node manager.
Which of them should proceed? And how is this
choice to be represented? We consider this a
relatively simple instance of policy (de)composition,
and yet it doesn’t seem to be easy to solve without

resorting to centralized decision-making. Policy
composition seems to be an open question. We
believe that to receive all the benefits of SOA, policies
must compose.

In Prato, we have the luxury of resorting to a
central controller if we must. But this is not always
possible: what if the components were independent
services provided by distinct entities, with separate
administration, management, and fiscal domains. For
example, we are planning on replacing Prato’s
NodePoolManager with a stub that delegates most of
its work to an external physical resource-set service.
Failure modes in such complicated systems are
essentially an emergent property of the system. How
do we develop policies for dealing with failure modes
that we cannot predict will emerge?

4. Current status
We have completed the Prato service architecture

design, have implemented a subset of the design, and
are implementing the remainder of the prototype.
Prato is already capable of allocating a database on
demand (albeit with some manual assistance), and it
already has some internal customers.

We are currently working with the internal Prato
customers to validate our use cases, design, and
implementation. Our initial focus is on customers
with a relatively static corpus of data that they expect
to analyze repeatedly, because this matches the
strengths of the WX2 engine, which is optimized for
business intelligence/analytics queries. We have some
initial customers within HP Labs that fit this profile:
one that periodically analyzes a ~1 TB corpus of
customer data (provided by a major international
retailer), another that periodically analyzes many
months of Nielson click-stream data (~420 GB), and
another group that are attempting the Netflix Prize
challenge [Netflix2006].

Our initial production Prato service makes over 200
DL360 nodes and 2 TB of storage available for such
customers in the form of one WX2 virtual database
appliance per customer. The Prato service can also
make multiple smaller appliances available, each one
for a distinct customer. Each such appliance is
provisioned on a disjoint node set, provisioned for its
use from the cluster.

5. Discussion
Our initial goal is to make Prato be a robust,

supportable, self-managing, lights-out service for the
HP Labs community. Doing that will require
constructing solutions to the research questions we
have identified here. We’re pretty sure that we have

answers; what remains to be seen is how well those
answers do in practice.

We believe that there is much research to be done
in the failure tolerance area, including finding ways to
do failure detection, diagnosis, and recovery. We are
extending our work into the runtime task of failure
detection, isolation, and recovery. All are
significantly complicated when the control system is
executing on the same distributed system that is being
monitored. We have done some initial research in this
area towards “automated finger-pointing” for
distributed systems [Pertet2007].

Initial experience with our customers at HP Labs
has made us realize that we may need to deploy
analytics packages on the cluster that hosts the Prato
virtual DBMS appliance, rather than elsewhere.
Although Prato offers a direct ODBC feed from the
database engine to its customers, rather than imposing
the overheads of a web services interface, there are
times when the bandwidth offered to the outside world
from the cluster simply isn’t high enough. Since we
don’t want to distort the appliance notion by running
general purpose software on the nodes allocated to the
database, we are experimenting with giving
researchers access to other nodes in the cluster on
which to run their analytics scripts. (This is another
motivator for wanting Prato to migrate to being a
customer of a nodes-on-demand physical resource
provider service, which can be used to manage the
allocation of machines in the resource pool to different
needs.) We observe that the interfaces for such
service composition have always been part of the
Prato design, but the requirement to co-locate such
services has arisen only after real-life customer
experiences at HP Labs.

One of the attractions of Prato as a service is that it
makes it possible to consider an ecosystem of services
that can be constructed around it. For example, we see
value in making data extraction and transformation be
separable services that can be tied into Prato. We also
see value in layering business analytics packages (e.g.,
like those offered by Business Objects, Greenplum,
and Information Builders) on top of Prato. By making
such functions into a SOA-based service, we believe it
will be possible to reuse them and compose them in
interesting ways. However, correctly composing the
policies of such services stands as an open question.

6. Summary
Prato is a service provider that delivers database-

management systems on demand to clients. Prato’s
benefits are two-fold: it provides a useful service to its
clients, who are given rapid, flexible access to more
capabilities than they could justify on their own

behalf. It also acts as a vehicle for doing research on
automated control and management of failure-tolerant
distributed systems, and for learning how to solve the
problems that will have to be tackled before on-
demand provisioning of information services can
become commonplace. The guiding principal of self-
management in Prato is to maximize profit. This
guiding principal informs the policies used to
automate database instance design, price/admit
customer contracts, and to plan recovery strategies
from failures. Further research is required to
understand how to incorporate risk into these policies,
and how to compose policies of disparate services.

References

[Beckett2004] HP Labs goes Hollywood. Jamie Beckett. HP
Laboratories, April 2004.
http://www.hpl.hp.com/news/2004/apr-jun/nab.html,
accessed April 2007.

[Enigmatec2007] Execution Management System (EMS).
Enigmatec Corporation Ltd.
http://www.enigmatec.net/Execution_Management_System/,
accessed April 2007.

[Joshi2005] K.R. Joshi, W.H. Sanders, M.A. Hiltunen and
R.D. Schlichting. Automatic Model-Driven Recovery in
Distributed Systems. In Proc. 24th IEEE Symposium on
Reliable Distributed Systems (SRDS'05), pp 25-38. October,
2005.

[Keeton2004] Designing for disasters. Kimberly Keeton,
Cipriano Santos, Dirk Beyer, Jeffrey Chase and John
Wilkes. Proc. of File and Storage Technologies (FAST'04)
San Francisco, CA, March-April 2004.

[Kognitio2007] Kognitio WX2.
http://www.kognitio.com/services/products/wx2.php,
accessed April 2007.

[NeoView2007] Neoview Platform – HP.
http://h71028.www7.hp.com/enterprise/cache/414444-0-0-
225-121.html, accessed April 2007.

[Netflix2006] Netflix Prize. http://www.netflixprize.com/,
accessed April 2007.

[Pertet2007] Soila Pertet, Priya Narasimhan, John Wilkes,
and Jay Wylie. Prato: databases on demand. To appear as a
poster in The 4th IEEE International Conference on
Autonomic Computing (ICAC‘07). Jacksonville, FL, June
11-15, 2007.

http://www.enigmatec.net/Execution_Management_System/
http://www.kognitio.com/services/products/wx2.php
http://h71028.www7.hp.com/enterprise/cache/414444-0-0-225-121.html
http://h71028.www7.hp.com/enterprise/cache/414444-0-0-225-121.html
http://www.netflixprize.com/

	1. Introduction
	2. Prato service provider
	2.1. Database engine
	2.2. Resource pool
	2.3. Prato service manager
	2.4. Design and implementation

	3. Designing for self-management
	3.1. Economic approaches to self-management
	3.2. Automatic database instance design
	3.3. Policy-based self-management
	3.4. Policy composition

	4. Current status
	5. Discussion
	6. Summary
	References

