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Configuring a database is much easier than it used 

to be, but it’s still a chore that many of us would 
rather not perform.  The investment in hardware and 
people necessary to make a large, powerful database 
available is prohibitive for short-term tasks.  As a 
result, applications that might use a database do 
without; queries take much longer than they need to; 
useful business analytics is not performed; and people 
waste time learning how to make the database fast, 
rather than focusing on their primary business 
function.  

Prato solves these problems by offering customers 
a private, virtual, DBMS appliance that can be sized 
up to several hundred nodes, and made available on 
demand, in minutes.  The initial Prato prototype is 
built around a main-memory DBMS on which decision 
support queries run an order of magnitude faster than 
on a traditional DBMS.  Future versions will make the 
database resilient to a wide range of failures; 
completely self-managing; and capable of supporting 
multiple back-end database types. 

The research problems are centered on how to 
automate Prato’s control system in the face of a large-
scale distributed system that has many failure-prone 
components, supports multiple users with varying 
degrees of sophistication and demands, and has to 
handle events in a completely lights-out manner.  
Towards this end, we employ a policy-based approach 
to the design and implementation of Prato’s control 
system. 

1. Introduction 
The end-user visible goal of Prato is to make 

private, virtual, DBMS appliances available on 
demand.  To accomplish this, we apply service-
oriented architecture (SOA) techniques and self-
managing systems research to the problem of database 
provisioning.  We have built an initial prototype that is 
already being used by internal customers in a limited 
manner.  We are using early customer experiences to 
validate the use cases and design of Prato.  We also 
expect such customer experience to enable us to 

identify the most valuable additional features and 
services to pursue next. 

There are many data warehouse vendors (e.g., 
Teradata, Netezza, Oracle, and now HP with 
NeoView).  Such vendors sell database appliances or 
software for exclusive use by an end customer.  The 
Prato service differs in that it can support multiple 
(potentially competing) customers on a shared 
infrastructure, via a pay-per-use service model.  These 
differences make the power of data warehouses 
available to customers who heretofore could not afford 
the necessary capital investment.  It also allows the 
individual instances to be flexed and resized as 
needed.  What is a simple reconfiguration for Prato 
turns into a fork-lift upgrade with a traditional 
database appliance.  (We sometimes refer to Prato as a 
virtual DBMS-appliance provider for this.) 

The research goal of Prato is to learn how to deliver 
this end-user experience from a completely automated 
system that is capable of handling user requests and 
failures without human intervention.  We want to 
change the provisioning of information services from a 
manual task to a fully automatic one.  This means that 
we are interested in: 
1. How best to capture customer needs, without 

dictating the way those needs are addressed: in 
our case, how much database is needed, and how 
important it is that it stay available. 

2. Automatically translating such needs into 
implementation choices, and selecting between 
different designs: in our case, what kind of DBMS 
options to set, and how much to invest in different 
failure-recovery alternatives. 

3. Completely automating the management of the 
Prato service provider: lights-out self-
management is the end goal, even in the face of 
conflicting user requirements, and failures. 

4. Service composition: how Prato interacts with 
other service providers. 

We discuss each of these topics in this paper, but 
emphasize our policy-based approach to automating 
the management of the Prato service provider.  
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Figure 1: Prato service provider architecture. 

2. Prato service provider 
The Prato service provider has three main parts 

(shown in Figure 1): 
1. A database engine that is used to create DBMS 

appliance instances. 
2. A resource pool, which provides processors for 

the DBMS appliances and file storage space for 
user data, such as internal backups/snapshots. 

3. The service manager, a control system, which is 
in charge of orchestrating all the other parts, 
responding to requests for new DBMS appliances, 
and recovering from failures. 

2.1. Database engine 
Since the Prato project is ultimately about 

controlling database management systems, not 
building them, it is constructed on top of back-end 
database systems that we obtain from others. 

The first of these is WX2, from Kognitio 
[Kognitio2007].  We chose it because it has two 
interesting properties: first, it performs very fast scans 
of in-memory data, which can often obviate the need 
for indexes, thereby easing the process of adding new 
data into the system.  Second, and perhaps most 
important, it aggregates multiple Linux compute nodes 
into a single DBMS instance – that is, a query can 
execute on multiple nodes at a time.  This means that a 
single query can bring large amounts of main memory 
to bear on a problem – in our case, up to about 1TB.  
Because WX2 was designed from the ground up to be 
a distributed system, it has proven a natural partner 
and target for our distributed control system research 
objectives.  In addition, because the number of nodes 
that a single WX2 instance runs on can be controlled, 
initial system sizing and flexing to add additional 
resources is relatively straightforward.  This was a 

good match to our desire to provide tailored, per-
customer DBMS appliances. 

Kognitio, our DBMS provider, is in the same 
business as Prato: they recently announced a “Data 
Warehouse Challenge” in which they promise to 
“build you a Data Warehouse in just 14 days for you 
to analyze your data.” Kognitio relies on their internal 
consultants and experts to make such an endeavor 
feasible.  By comparison, Prato is designed to 
accomplish a similar task without any manual 
intervention.  Besides the potential cost savings on the 
service provider side, this can lead to more rapid 
DBMS availability for its customers: minutes for 
database provisioning and tens of minutes for data 
import. 

Our future plans call for us to support additional 
DBMS back ends – in particular, the open-source 
MySQL, followed by a control interface to an HP 
NeoView platform [NeoView2007].  Clustered 
versions of MySQL have some of the same properties 
as WX2, although over a smaller range of sizes.  They 
add additional design points, with a variable mixture 
of front-end and back-end nodes. 

2.2. Resource pool 
For the resource pool, we were fortunate to have 

access to several hundred HP DL360 nodes, which 
remained from the collaboration between HP and 
DreamWorks on Shrek 2 and Madagascar 
[Beckett2004].   Without such a pool, we would never 
have learned some of the more interesting (and 
frustrating) lessons about controlling large-scale 
systems.  In addition, some of our colleagues made 
available a few terabytes of file server space that we 
use to hold a few large datasets. 

Currently, Prato takes physical possession of the 
nodes in the resource pool that it allocates to different 
database appliances.  We are working to make Prato a 
client of a physical resource provider service – one 
that dynamically rents out physical nodes to hosted 
services such as Prato, on an on-demand basis. 

2.3. Prato service manager 
We believe that the most novel part of Prato is the 

service manager, the control system that we are 
building around the other parts (see Figure 1).  The 
Prato service manager orchestrates all of the 
operations performed by the Prato service: it is 
responsible for designing virtual DBMS-appliances 
that meet client contract requests, pricing such 
contracts, allocating physical resources for such 
contracts, instantiating a specific virtual DBMS-
appliance on allocated resources for accepted 



contracts, diagnosing failures, planning recoveries 
from failures, and so on.  These responsibilities fall 
into three main categories: 
1. Create/relinquish a DBMS, which is invoked by 

the customer in their Manager role. 
2. Upload/download data, which also performs 

schema and table instantiation, which is invoked 
by the customer in their Database Administrator 
(DBA) role. 

3. Query execution, provided via a standard ODBC 
feed, which is performed by the customer in their 
Analyst role.  

In addition, the Prato service itself has business-
manager and operator roles which the Prato service 
manager must support.  Our goal is to make these as 
little needed as possible – particularly the latter. 

2.4. Design and implementation 
We have built the Prato service manager using 

Enigmatec’s Execution Management System (EMS) 
[Enigmatec2007].  Again, this came about because we 
were looking for a way to bootstrap our research 
efforts to support a distributed, failure tolerant system.  
EMS offers us location-independent workflow 
management and a convenient engine for 
implementing policies, which means we can 
concentrate our efforts on the policies and objectives, 
rather than spending time developing a low-level 
platform to route events, and cope with local failures 
in the control system itself.  To make our EMS system 
more robust, we are pairing its distributed information 
store (replicated across the main memory of several 
EMS processes on different nodes) with a stable copy 
of important data on persistent storage. 

We have organized the Prato service manager in a 
hierarchy.  Figure 2 shows the service organization we 
have implemented using EMS for the Prato service 
manager.  At the highest level, the PratoService offers 
interfaces to clients to request a DBMS appliance, 
accept a contract offered by the PratoService in 
response to a DBMS appliance request,  notify a client 
that their contracted DBMS appliance is ready, let a 
client release a DBMS appliance, and to notify a client 
that their contracted DBMS appliance has expired. 

There are two sub-trees under the PratoService: the 
WX2Manager and the NodePoolManager.  The former 
manages virtual WX2 DBMS appliances and the latter 
manages the nodes in the resource pool.  Nodes from 
our compute cluster are managed exclusively by the 
NodePoolManager until they are allocated to some 
DBMS appliance.  Once allocated, a node is managed 
by the DBMS appliance to which it is allocated.  Once 
an appliance is released, the nodes bound to it return to 
the management of the NodePoolManager.  

 

 
Figure 2: Prato EMS Service organization. 

 
The NodePoolManager implements policies for 

when a node is allocated to an appliance, released 
from the appliance, first comes up and joins the 
resource pool, and goes down/leaves the resource 
pool.  It also offers an interface to query the resources 
available in the resource pool.  Figure 3 illustrates the 
flow of the NodePoolManager policy for node 
allocation.  If nodes are successfully bound to some 
DBMS appliance, then state about available resources 
is updated.  If not, the lower branch of the workflow 
signals an error, which other policies handle. 
 

 
Figure 3: Node pool resource allocation. 

 
In the example service organization shown in 

Figure 2, up to three WX2 DBMS appliances can be 
managed by the WX2Manager.  Currently services 
cannot invoke methods on themselves in EMS.  To 
permit self-invocation, we introduce a WX2Instance 
and a WX2InstanceInner: the former is a place holder 
that defines the policy interface for a WX2 DBMS 
appliance and passes events through; the latter is an 
internal component that responds to events. 

3. Designing for self-management 
We are designing the Prato service provider to run 

without operator intervention.  This means that we 
need a way to delegate to it many of the decisions that 
are commonly made by people in a traditional service 
implementation.  Ideally, this is best accomplished 
without a great deal of fine-tuning of a large number 
of knobs: there’s little point in developing a system 
that is harder to control than the original – at least over 
the expected range of operation.  Our approach to this 
is to pick one metric, and see how far using that metric 
to determine the system’s behavior can take us.  That 



metric is profit – the difference between the cost of 
running the Prato service and the amount it can charge 
its clients. 

3.1. Economic approaches to self-
management 

A service must provide something that its 
customers value – or they would simply not use it.  In 
the face of competition, a service must be exploiting 
an asset that its competitors cannot match if it is to 
remain profitable – or the competition will simply put 
it out of business, or customers will find a way to 
provide the service themselves.  In our case, we intend 
that asset to be the automation of the service 
management, because we believe that a self-managing 
system will be cheaper to run (i.e., take fewer people), 
have higher responsiveness to requests (resulting in a 
more desirable service), be less likely to result in 
system outages when things go wrong (thereby 
reducing penalties), and rational in its allocation of 
resources to external needs (thereby maximizing the 
return on investment).  

As a result, we believe that profit provides the best 
overall measure of the utility a service is adding to its 
environment.  The main benefits come from having a 
simple, clear metric for what “goodness” means in the 
system.  This clarity makes it easy to determine 
whether a choice is making things better or worse, and 
thus makes it a good choice for the objective function 
of the automated control system. 

Profit has the additional benefit of getting business-
people’s attention.  We thus try and leverage economic 
mechanisms and incentives to establish self-interested 
policies for components that overall yield self-
managing behavior. 

In order to drive appropriate behavior in a service, 
we use price signals from the service’s customers to 
communicate how much they value different aspects 
of its behavior.  For example, a typical contract will 
include both rewards for good behaviors and penalties 
for undesirable ones.  The rewards can be as simple as 
a flat rate subscription (i.e., per unit time), or include 
utility functions over responsiveness or latency.  The 
penalties can be as inventive as the client and service 
provider are willing to be.  In the Prato context, we 
focus mainly on availability and data loss penalties. 

One difficulty with using profit as the lingua franca 
of utility is that a service must be able to predict the 
likely cost of its actions, which is not always trivial.  
For example, consider how hard it is to accurately 
predict rare events such as failures, or future events 
such as tomorrow’s demand for the Prato service.  The 
former is necessary when designing and pricing a 
DBMS appliance for a customer, and the latter is 

necessary when pricing and admitting customer 
contracts.  We believe that this is best handled 
explicitly as a risk management question.  The good 
news is that the economic approach brings it clearly 
into the open, and provides a way to quantify it – and 
provides a hint that existing work in other areas, such 
as financial markets, could be helpful. 

In a policy-driven system, the policies represent 
ways of recording preferred decisions, or preferred 
approaches to making decisions.1  The highest-level 
policy in the Prato universe is to maximize profit rate 
– the profit per unit time, subject to a certain expected 
level of risk, expressed as a permitted variance in the 
profit-rate, together with a maximum expected loss. 2  

We can then assess other policy choices and ask 
“[how] does this contribute to the primary objective?” 
We have found that an economics-based approach to 
the problems of designing self-managing systems 
helps focus attention on those decisions that are likely 
to influence a service’s profitability, rather than low-
level mechanism choices. 

In the rest of this section, we discuss how we apply 
economic incentives towards making two key aspects 
of Prato self-managing: autonomously handling client 
requests, and ensuring continued operation in the face 
of failures.  We also discuss the open problem of 
composing self-managing components. 

3.2. Automatic database instance design 
Prato autonomously determines how to configure 

the database instance and corresponding recovery 
plans for a database appliance.  Prato uses the 
requested service-level agreement (SLA) to 
accomplish this task.   

When negotiating for a DBMS appliance from 
Prato, the customer proposes a preferred service level 
objective (SLO) and the penalties to be paid out if the 
SLO isn’t met.  Prato responds with a price.  If the 
customer accepts it, the resulting combination 
becomes the customer’s contract, or service level 
agreement (SLA). This places two burdens on Prato: it 
must determine how to provision and configure a 
database instance for the proposed contract, and it 
must determine how much to charge for it in order to 
meet its profit objective.   

                                                           
1 We find it helpful to think of policy in the most 
general sense of a replaceable way of representing 
what to do in some situation, whether this is a goal 
statement or a simple condition-action rule. 
2 We could have chosen a metric such as profit per 
contract, or return on investment.  Our analysis of risk 
is still at an early stage.  We present it here to suggest 
the flavor of our approach. 



Our approach to the database instance design 
process extends techniques first developed for storage-
system availability [Keeton2004]; these use business-
penalty information provided by the customer to drive 
the service provider decisions, while making the SLA 
very straightforward.  For Prato, the penalties are 
defined as an outage penalty-rate (dollars per hour that 
the instance is not available to do useful work) and a 
data loss penalty-rate (dollars per hour that the state of 
the system has to be rolled backwards in order to 
effect a recovery). 

The use of business-level penalties rather than 
prescriptive recipes (e.g., “you will keep at least 2 
copies of this data on different media types”) means 
that the service provider retains a great deal of 
freedom behind the scenes in terms of which 
mechanisms it should use to meet the customer needs. 

In our case, the mechanisms we are designing 
include making local copies of customer data to 
provide fast recovery (we can upload a new copy in 
parallel from a local copy much faster than it can be 
downloaded from the customer data source), DBMS- 
and disk-level data-mirroring, hot/cold node spares, 
and a range of recovery procedures that offer different 
degrees and speeds of failure tolerance [Pertet2007].  

The design emphasis in Prato is on fault tolerance.  
In other systems, it could well be performance.  In our 
case, the only “performance knob” for a WX2 DBMS 
instance is the number of nodes allocated to it: and the 
main determiner of the database performance is 
whether or not the database will fit in memory.  If it 
does, the result is usually such good performance that 
our customers do not quibble! 

As we expected, we are finding that the basic 
principles enunciated in [Keeton2004] hold good, but 
the devil is in the details – for example, exactly how 
should we model the multitude of failure types, failure 
mitigation efforts, and their effects?  Failures are 
relatively rare events, so [how] should observed 
failures be factored into the predictive models?  When 
should the design of a particular instance be adjusted 
on the fly, and when should it be allowed to live out its 
life with a less-than-optimal design? 

Storage failure modes and rates are much better 
understood then the failure modes of complete 
services (especially those composed of multiple 
services as is done in a SOA).  In particular, we 
believe that the prior techniques need to be extended 
to incorporate risk tolerance aspects.  It is not enough 
to assume a single failure event, as was done in 
[Keeton2004] – we need to extend this to predict the 
likelihood of multiple events and their consequences.  
We believe that explicitly including risk in the models 
can address the dearth of knowledge about failure 
modes and rates in such systems. 

3.3. Policy-based self-management 
Our goal is to make Prato capable of handling 

failure events, customer events, and all normal 
operation functions completely autonomously, with no 
operator intervention.  This requires that we be able to 
recognize an event such as a failure or a request for 
service, determine potential courses of action, select 
between them, and then execute the preferred ones. 

In a customer-driven event (such as a customer 
requesting a new database instance), the identification 
of the event is usually straightforward, and the state of 
the Prato system is likely to be reasonably well 
understood.  The main choices are two-fold: whether it 
is possible (and if so, how best) to meet the request, 
and, if so, whether it is desirable (profitable!) to do so 
– i.e., admission control. 

Admission control choices are determined by 
service-business-level policies that capture the service-
provider’s business choices, such as the appropriate 
tradeoff between the expected levels of profit and risk 
in a contract.  Admission control decisions could also 
include other customer-related information such as a 
prior interaction history with the customer, or their 
reputation – e.g., whether they are likely to pay 
promptly!  It seems that the development of such 
policies is still in its infancy.  Prato is no exception. 

Once the business-level policies have been applied, 
it’s necessary to address more technical aspects.  
These include the self-management policies of each 
database instance and its constituent nodes.  Our 
approach to this is to formalize the state-space through 
which each component can move (e.g., see Figure 4). 

 

 
Figure 4: Prato DBMS-instance state 
transitions. 

 
This state-space approach allows us to develop 

responses for both normal operations and for threats 
such as failures, and we believe that it represents a 
fairly powerful, general-purpose technique.  
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a state and an event can be controlled by policies: for 
example, the recovery mechanism design for a 
database instance is itself a kind of policy.   

However, one of the biggest difficulties facing 
responses to failures is determining exactly what state 
the system is in – the problem of failure detection.  
Part of the difficulty is simply that of gathering data 
about a failure event, since the failure might have 
taken down part of the monitoring system.  Part of the 
difficulty is in determining what course of action is 
most likely to lead to a desirable outcome.  
Fortunately, the economics-driven approach to the 
SLA helps significantly here – the tradeoffs between 
the costs of various mechanisms and their expected 
return (reduced penalties) are readily understood, if 
these values can be predicted. 

A more insidious problem is how to determine 
which part of the system should respond – which leads 
us onto the topic of composite systems and policies.  

3.4. Policy composition 
Like most service implementations, Prato is not 

internally monolithic: it is composed of the 
interacting, loosely-coupled components shown in 
Figure 2.  The independence of these components 
presents some interesting problems, akin to ones that 
show up in composite services built from autonomous 
components. 

For example, take the simple case of a node that 
stops responding.  Who should respond?  It might be a 
process that has run amuk, and resetting the database 
instance will get things working again, quickly, with 
relatively little loss of availability or data.  Maybe the 
operating system has gotten itself wedged temporarily, 
in which case a reboot will fix things, although the in-
memory part of the database might need to be 
reloaded.  Or it might be more permanent (e.g., the file 
system has filled up), and more drastic action is 
required, although determining what to do could take a 
while.  It’s possible that there’s a hardware failure 
(with 300 nodes and 600 disks, we experience 
regularly).  Replacing the node will be required – but 
that may mean that the database has to be reloaded.  

The tricky part here isn’t the choice of which 
recovery action to invoke – with global knowledge, 
there are approaches to handling this problem (e.g., 
[Joshi2005]).  The difficulty is that several Prato 
components may simultaneously determine that there 
is a fault – e.g., the node pool manager, the WX2 
instance manager, and the WX2 node manager.  
Which of them should proceed?  And how is this 
choice to be represented?  We consider this a 
relatively simple instance of policy (de)composition, 
and yet it doesn’t seem to be easy to solve without 

resorting to centralized decision-making.  Policy 
composition seems to be an open question.  We 
believe that to receive all the benefits of SOA, policies 
must compose. 

In Prato, we have the luxury of resorting to a 
central controller if we must.  But this is not always 
possible: what if the components were independent 
services provided by distinct entities, with separate 
administration, management, and fiscal domains.  For 
example, we are planning on replacing Prato’s 
NodePoolManager with a stub that delegates most of 
its work to an external physical resource-set service.  
Failure modes in such complicated systems are 
essentially an emergent property of the system.  How 
do we develop policies for dealing with failure modes 
that we cannot predict will emerge? 

4. Current status 
We have completed the Prato service architecture 

design, have implemented a subset of the design, and 
are implementing the remainder of the prototype.  
Prato is already capable of allocating a database on 
demand (albeit with some manual assistance), and it 
already has some internal customers.   

We are currently working with the internal Prato 
customers to validate our use cases, design, and 
implementation.  Our initial focus is on customers 
with a relatively static corpus of data that they expect 
to analyze repeatedly, because this matches the 
strengths of the WX2 engine, which is optimized for 
business intelligence/analytics queries.  We have some 
initial customers within HP Labs that fit this profile: 
one that periodically analyzes a ~1 TB corpus of 
customer data (provided by a major international 
retailer), another that periodically analyzes many 
months of Nielson click-stream data (~420 GB), and 
another group that are attempting the Netflix Prize 
challenge [Netflix2006]. 

Our initial production Prato service makes over 200 
DL360 nodes and 2 TB of storage available for such 
customers in the form of one WX2 virtual database 
appliance per customer.  The Prato service can also 
make multiple smaller appliances available, each one 
for a distinct customer.  Each such appliance is 
provisioned on a disjoint node set, provisioned for its 
use from the cluster. 

5. Discussion 
Our initial goal is to make Prato be a robust, 

supportable, self-managing, lights-out service for the 
HP Labs community.  Doing that will require 
constructing solutions to the research questions we 
have identified here.  We’re pretty sure that we have 



answers; what remains to be seen is how well those 
answers do in practice.   

We believe that there is much research to be done 
in the failure tolerance area, including finding ways to 
do failure detection, diagnosis, and recovery.  We are 
extending our work into the runtime task of failure 
detection, isolation, and recovery.  All are 
significantly complicated when the control system is 
executing on the same distributed system that is being 
monitored.  We have done some initial research in this 
area towards “automated finger-pointing” for 
distributed systems [Pertet2007]. 

Initial experience with our customers at HP Labs 
has made us realize that we may need to deploy 
analytics packages on the cluster that hosts the Prato 
virtual DBMS appliance, rather than elsewhere.  
Although Prato offers a direct ODBC feed from the 
database engine to its customers, rather than imposing 
the overheads of a web services interface, there are 
times when the bandwidth offered to the outside world 
from the cluster simply isn’t high enough.  Since we 
don’t want to distort the appliance notion by running 
general purpose software on the nodes allocated to the 
database, we are experimenting with giving 
researchers access to other nodes in the cluster on 
which to run their analytics scripts.  (This is another 
motivator for wanting Prato to migrate to being a 
customer of a nodes-on-demand physical resource 
provider service, which can be used to manage the 
allocation of machines in the resource pool to different 
needs.)  We observe that the interfaces for such 
service composition have always been part of the 
Prato design, but the requirement to co-locate such 
services has arisen only after real-life customer 
experiences at HP Labs.  

One of the attractions of Prato as a service is that it 
makes it possible to consider an ecosystem of services 
that can be constructed around it.  For example, we see 
value in making data extraction and transformation be 
separable services that can be tied into Prato.  We also 
see value in layering business analytics packages (e.g., 
like those offered by Business Objects, Greenplum, 
and Information Builders) on top of Prato.  By making 
such functions into a SOA-based service, we believe it 
will be possible to reuse them and compose them in 
interesting ways.  However, correctly composing the 
policies of such services stands as an open question. 

6. Summary 
Prato is a service provider that delivers database-

management systems on demand to clients.  Prato’s 
benefits are two-fold: it provides a useful service to its 
clients, who are given rapid, flexible access to more 
capabilities than they could justify on their own 

behalf.  It also acts as a vehicle for doing research on 
automated control and management of failure-tolerant 
distributed systems, and for learning how to solve the 
problems that will have to be tackled before on-
demand provisioning of information services can 
become commonplace.  The guiding principal of self-
management in Prato is to maximize profit.  This 
guiding principal informs the policies used to 
automate database instance design, price/admit 
customer contracts, and to plan recovery strategies 
from failures.  Further research is required to 
understand how to incorporate risk into these policies, 
and how to compose policies of disparate services. 
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