
Prato: databases on demand

Soila Pertet, Priya Narasimhan
Carnegie Mellon University

Pittsburgh, PA 15213
{spertet,priyan}@ece.cmu.edu

John Wilkes, Jay J. Wylie

HP Laboratories
Palo Alto, CA 94304

{john.wilkes,jay.wylie}@hp.com

Database configuration can be a daunting task as
database administrators are often presented with a
myriad of configuration options that are difficult to sift
through. Prato, a project at HP Labs, is a prototype of
a self-managing DBMS service provider that eases this
burden by using economic incentives to guide
automated DBMS setup and management. Prato offers
customers private, virtual, DBMS appliances that can
each be sized up to several hundred nodes, and made
available on demand, in just a few minutes.

1 Introduction
Configuring a database is much easier than it used

to be, but it is still a chore that many of us would rather
not perform, and one that continues to be quite error-
prone [4]. The investment in hardware and people
necessary to make a large, powerful database available
is prohibitive for short-term tasks. As a result,
applications that might use a database do without;
queries take much longer than they need to; and people
waste time learning how to make their database fast,
rather than getting on with what they really wanted to
do.

Prato is a prototype of a self-managing DBMS
service provider that solves these problems by offering
customers private, virtual, DBMS appliances that can
be sized up to several hundred nodes, and made
available on demand, in just a few minutes. Prato’s
research goals are to learn how best to:
1. capture customer needs, without dictating the way

those needs are addressed (in our case, what
resources to allocate to the database, and how
important it is that it stays available);

2. automatically translate such customer needs into
implementation choices (in our case, what kind of
DBMS options to set, and how much to invest in
different failure-tolerance mechanisms); and

3. completely automating the management of the
Prato service provider: lights-out self-
management is the end goal, even in the face of
conflicting user requirements, and failures.

The initial Prato prototype focuses on making the
DBMS resilient to a wide range of failures. The
prototype uses economic rewards and penalties to
drive automated decision making. In particular, Prato

uses penalty costs in its service contracts to determine
which of several failure-tolerance mechanisms to
employ for a particular virtual DBMS appliance.
Research on the failure diagnosis and recovery aspects
of Prato is being done in collaboration with CMU.

2 Prato system architecture
The system architecture for Prato (Figure 1)

consists of a service-delivery side (shown on the right),
comprising the DBMS that hosts the customer’s
database, the machines on which runs, and file storage;
and the service manager, which is responsible for
running the service and controlling the other parts.

The novel part of Prato is the service manager. It is
in charge of controlling the execution of all the
externally-visible Prato functions. These fall into three
main categories:
1. create/relinquish a DBMS (invoked by the

customer in their Manager role).
2. upload/download data, which also performs

schema and table instantiation (invoked by the
database-administrator role of the customer).

3. query execution, provided via an ODBC feed
(performed by the customer in their Analyst role).
Note that this runs at full speed, using the native
DBMS access methods, rather than going via the
Service Manager.

Prato uses the WX2 DBMS from Kognitio [2], a
high-performance and scalable DBMS for business
analytics. Other back-ends for Prato are in the works.

Prato
Virtual file

system
(WX2) DBMS

Instance

Virtual DBMS-appliance

Contract pricing

Service manager

Fault diagnosis

Fault recovery

Self management
File system Nodes

Physical infrastructure

C
us

to
m

er

Service
provider

ManagerManager

Web service

Request
contract

DBA

Web service

Upload
data

DBA

Query &
report

Analyst

ODBC

Analyst

O
pe

ra
to

r

W
eb

 s
er

vi
ce

Ad
d

no
de

s

O
pe

ra
to

r

W
eb

 s
er

vi
ce

N
od

e
ut

iliz
at

io
n

M
an

ag
er

Design to spec.

Prato
Virtual file

system
(WX2) DBMS

Instance

Virtual DBMS-appliance

Contract pricing

Service manager

Fault diagnosis

Fault recovery

Self management
File system Nodes

Physical infrastructure

C
us

to
m

er

Service
provider

ManagerManager

Web service

Request
contract

DBA

Web service

Upload
data

DBA

Query &
report

Analyst

ODBC

Analyst

O
pe

ra
to

r

W
eb

 s
er

vi
ce

Ad
d

no
de

s

O
pe

ra
to

r

W
eb

 s
er

vi
ce

N
od

e
ut

iliz
at

io
n

M
an

ag
er

Design to spec.

Figure 1: Prato system architecture.

Business-manager and operator roles are defined for
the service provider, but our goal is to make these as
little needed as possible.

The service manager is implemented using the
Enigmatec EMS system [1]. EMS provides location
independent workflow management and a convenient
engine for implementing policies. The Service
Manager is responsible for designing virtual DBMS
appliances that meet client contract requests, pricing
such contracts, allocating physical resources for such
contracts, instantiating a specific virtual DBMS
appliance on allocated resources for accepted
contracts, diagnosing failures, and planning recoveries
from failures.

3 Failure-tolerance
The current implementation of Prato automates the

task of creating and relinquishing a DBMS, and runs
on a test bed with over 200 HP DL360 nodes, which
have 400 processors, 0.8TB of RAM, and 7.2TB of
disk capacity. The first Prato prototype focuses on
making the DBMS resilient to a wide range of failures,
a key aspect of being completely self-managing.

Customers submit their requests for a DBMS via a
web-based interface by specifying how long they
would like to rent the DBMS, and the size of their
database in terms of the memory and disk space it
requires. In addition, customers detail the penalties that
the service provider will incur in the event of service
unavailability or data-loss.

For example, a customer might specify that the
service provider will incur a penalty of $10,000 for
every hour that the service is unavailable. This
penalty-based specification allows us to evaluate the
merits of different failure-tolerance mechanisms in
terms that are meaningful to the customer, rather than
the system administrator.

Table 1 lists the failure-tolerance mechanisms that
mitigate the loss of data in the event of a DBMS crash
or hardware failure. These mechanisms range from
solutions with low outlays but long recovery latencies,
e.g., reloading the customer’s data from a local cached
copy, to solutions with high outlays but short recovery
latencies, e.g., hot standby DBMS.

Solutions with low outlays are preferred when the
penalties are low; similarly, solutions with high outlays
are preferred when the penalties are high. The current
prototype supports RAID 5 and mirroring. Future
versions will support the full range of failure-tolerance
mechanisms.

Our first prototype uses a static mapping from
penalties to mechanisms, based on work done by
Keeton et al. [3]. We plan to change this.

Table 1: Failure-tolerance mechanisms.

One of the challenges we face is structuring the

failure diagnosis and recovery services to minimize
service outages in highly-dynamic, large-scale
distributed systems like Prato, where resources are
assigned to different resource managers during a
contract’s lifetime. Conflicts can arise when multiple
resource managers simultaneously detect a resource
failure and attempt to resolve it. Policies which clearly
outline responsibilities for failure diagnosis and
recovery are critical for orchestrating failure recovery.

Another challenge is adapting our static algorithms
to cope with uncertainty in component failure rates, as
failure rates in the field can differ widely from the
manufacturer’s datasheet [5]. We are interested in
formulating policies to help service providers
maximize their profits, even in the face of uncertainty.

4 Summary
Prato is a service provider that eases the burden of

DBMS management by using economic rewards and
penalties to guide automated decision making. By
deploying Prato, we expect to gain insights into how to
design and build lights-out self-managing information
services, and to identify follow on research projects
that must be solved before on-demand service
provision can become common place.

5 References
[1] Enigmatec website. http://www.enigmatec.net/
[2] Kognitio website. http://www.kognitio.com/
[3] K. Keeton, C. Santos, D. Beyer, J. Chase, and J.

Wilkes. Designing for disasters. Proc. 3rd USENIX
Conference on File and Storage Technologies
(FAST’04), pp. 59–62, 2004.

[4] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini,
R. P. Martin, and T. D. Nguyen. Understanding and
Validating Database System Administration. Proc.
USENIX, pp 213–228, 2006.

[5] B. Schroeder, and G. Gibson. Disk failures in the real
world: What does an MTTF of 1,000,000 hours mean
to you? Proc. 5th USENIX Conference on File and
Storage Technologies (FAST’07), pp. 1–16, 2007.

Failure-tolerance
mechanism Protects against
reload from local copy loss of uploaded data
periodic database snapshots loss of query updates
RAID 5; mirrored disk disk failures
dedicated/hot spare nodes node failures
cold/hot standby DBMS node failures

