
A protocol family for versatile survivable storage
infrastructures

Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, Michael K. Reiter

CMU-PDL-03-103

December 2003

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Survivable storage systems mask faults. A protocol family shifts the decision of which types of faults from implementation time
to data-item creation time. If desired, each data-item can be protected from different types and numbers of faults. This paper
describes and evaluates a family of storage access protocols that exploit data versioning to efficiently provide consistency for
erasure-coded data. This protocol family supports a wide range of fault models with no changes to the client-server interface or
server implementations. Its members also shift overheads to clients. Readers only pay these overheads when they actually observe
concurrency or failures. Measurements of a prototype block-store show the efficiency and scalability of protocol family members.

Acknowledgements: We thank the members and companies of the PDL Consortium (including EMC, Hewlett-Packard, Hitachi, IBM, Intel,
Microsoft, Network Appliance, Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights, feedback, and support. We thank IBM and
Intel for hardware grants supporting our research efforts. This material is based on research sponsored by the Air Force Research Laboratory, under
agreement number F49620-01-1-0433, and by DARPA/ITO’s OASIS program, under Air Force contract number F30602-99-2-0539-AFRL. Garth
Goodson was supported by an IBM Fellowship.

Keywords: survivable storage, protocol family, Byzantine fault-tolerance, atomic registers, erasure
codes

1 Introduction

Survivable, or fault-tolerant, storage systems protect data by spreading it redundantly across a set of storage-
nodes. In the design of such systems, determining which kinds of faults to tolerate and which timing
model to assume, are important and difficult decisions. Fault models range from crash faults to Byzan-
tine faults [27] and timing models range from synchronous to asynchronous. These decisions affect the
access protocol employed, which can have a major impact on performance. For example, a system’s access
protocol can be designed to provide consistency under the weakest assumptions (i.e., Byzantine failures in an
asynchronous system), but this induces potentially-unnecessary performance costs. Alternatively, designers
can “assume away” certain faults to gain performance. Traditionally, the fault model decision is hard-coded
during the design of the access protocol.

This traditional approach has two significant shortcomings. First, it limits the utility of the result-
ing system—either the system incurs unnecessary costs in some environments or it cannot be deployed in
harsher environments. The natural consequence is distinct system implementations for each distinct fault
model. Second, all data stored in any given system implementation must use the same fault model, either
paying unnecessary costs for less critical data or under-protecting more critical data. For example, temporary
and easily-recreated data incur the same overheads as the most critical data.

This paper promotes an alternative approach, in which the decision of which faults to tolerate is shifted
from design time to data-item creation time. This shift is achieved through the use of a family of access
protocols that share a common server implementation and client-server interface. A protocol family supports
different fault models in the same way that most access protocols support varied numbers of failures: by
simply changing the number of storage-nodes utilized, and some read and write thresholds. A protocol
family enables a given infrastructure of storage-nodes to be used for a mix of fault models and number of
faults tolerated, chosen independently for each data-item.

This paper describes and evaluates a family of access protocols that exploit data versioning within
storage-nodes to efficiently provide consistency for erasure-coded data. The protocol family covers a broad
range of fault model assumptions (crash vs. Byzantine servers, crash vs. Byzantine clients, synchronous vs.
asynchronous communication, client repairs of writes vs. not, total number of failures) with no changes to
the client-server interface or server implementation. Protocol family members are distinguished by choices
enacted in client-side software: the number of storage-nodes that are written and the logic employed during
a read operation. Weaker assumptions require the use of more storage-nodes and additional computation
for the client. For example, tolerating some number of Byzantine storage-nodes requires at least two times
more storage-nodes than tolerating the same number of crash storage-nodes. Likewise making no timing
assumptions requires approximately two times more storage-nodes than assuming synchrony. Regardless of
the assumptions made, the server implementation does not change.

Each member of the protocol family works roughly as follows. To perform a write, a client sends time-
stamped fragments to the set of storage-nodes. Storage-nodes keep all versions of fragments they are sent
until garbage collection frees them. To perform a read, a client fetches the latest fragment versions from
the storage-nodes and determines whether they comprise a completed write; usually, they do. If they do
not, additional fragments or historical fragments are fetched, until a completed write is observed (or, some
family members may abort). Only in certain cases of failures or concurrency are there additional overheads
incurred to maintain consistency.

This protocol family is particularly interesting because it is efficient in three ways. First, all members
support m-of-n erasure codes (i.e., any m of a set of n erasure-coded fragments can be used to reconstruct
the data), which can tolerate multiple failures with less network bandwidth (and storage space) than repli-
cation [52, 53]. Second, most read operations complete in a single round trip: only reads that observe
write concurrency or failures (of storage-nodes or a client write) may incur additional work. Most studies
of distributed storage systems (e.g., [4, 39]) indicate that concurrency is uncommon (i.e., writer-writer and

1

writer-reader sharing occurs in under 1% of operations). Failures, although tolerated, should also be rare.
Moreover, a subsequent write effectively replaces the work-inducing state, thus preventing future reads from
incurring additional costs. Third, most protocol processing is performed by clients, increasing scalability
via the well-known principle of shifting work from servers to clients [22].

This paper details the implementation and performance of a storage infrastructure built using the proto-
col family. The infrastructure consists of a block-based interface and a single storage-node implementation.
Such an infrastructure could be used directly by “storage-brick” based systems, such as Petal [28], FAB [11],
and IceCube [35]. As expected, it scales well with the type and number of faults tolerated. In particular,
the versioning avoids inter-server coordination, and the use of erasure codes avoids excessive write network
bandwidth utilization. Concurrency and garbage collection overheads have minimal impact. Wide-area la-
tencies increase response times, of course, but do not affect scalability regarding the type and number of
faults tolerated.

The remainder of this paper is organized as follows. Section 2 discusses the protocol family concept
and related work. Section 3 describes our protocol family and its membership. Section 4 explains what each
protocol member provides and develops bounds, on, for example, the minimum number of storage-nodes
required by each protocol member. Section 5 details how protocol members are realized within a common
software implementation. Section 6 explores its performance characteristics.

2 Background and related work

Figure 1 illustrates the abstract architecture of a fault-tolerant, or survivable, distributed storage system. To
write a data-item D, Client A issues write requests to multiple storage-nodes; each write request includes
a replica or an erasure coded data-fragment, depending on the data distribution scheme used. To read D,
Client B issues read requests to an overlapping subset of storage-nodes. This basic scheme provides access
to data-items even when subsets of the storage-nodes have failed. To provide reasonable storage semantics,
however, a system must guarantee that readers see consistent answers. For shared storage systems, this
usually means linearizability [20] of operations.

Access protocols and consistency. Consistent access to survivable storage requires a protocol that addresses
three sources of problems: access concurrency, storage-node failures, and client failures (resulting in partial
or corrupt updates). Many protocols have been proposed, implemented, and used to address various mixes
of these problems and assumptions about their characteristics.

Most storage systems assume benign crash failures by clients and servers, simplifying the problems
significantly. Under such assumptions, access concurrency can be addressed via leases [16], optimistic
concurrency control [26], or serialization through a primary (e.g., [29, 28]). Partial writes by clients that fail
can be addressed by two-phase commit [17] or by post-hoc repair (in systems using replication).

Most systems implementing Byzantine fault-tolerant services adopt the state machine approach [46],
wherein all operations are processed by all server replicas in the same order. Long believed to be too costly
for extensive use in practice, this approach was recently employed by Castro and Liskov to implement a
reasonably-performing replicated NFS service [6]. An alternative to replicated state machines is Byzantine
quorum systems [30], which can also provide similar semantics [31]. These approaches linearize arbitrary
operations, whereas our protocol family only linearizes read/write operations.

Previous protocol families. Our protocol family tolerates a hybrid failure model of storage-nodes (i.e., a
mix of crash and Byzantine failures). The concept of hybrid failure models was introduced in [50]; other
protocols have been developed for such failure models (e.g., [12] considers reliable broadcast, consensus
and clock synchronization in the hybrid failure model).

Cristian et al. [7] systematically derive a logical family of atomic broadcast protocols for a range of
fault models (from crash faults to a subset of Byzantine faults) in a synchronous environment. [7] uses

2

Clients A B

Fixed protocol

RPC interface

Storage

infrastructure

WRITE(D) READ(D)

Figure 1: High-level architecture for survivable storage. In a survivable storage system, clients write and
read data from multiple storage-nodes to achieve fault-tolerance. Our protocol family uses a fixed client–
storage-node interface; consequently, different data-items stored within the same storage infrastructure can
tolerate different types and numbers of failures.

the term “family” to refer to the logical construction of the protocols rather than their implementation.
Members of our protocol family are realized in a common implementation as well as being logically related.
Moreover, [7] only addresses synchronous protocols.

In [34], [7] is extended to an implementation for the timed asynchronous model [8]. Specifically, the
Timewheel group communication system provides nine distinct semantics (one of three atomicity guarantees
with one of three order guarantees) on a per broadcast granularity. It does not address Byzantine failures.

A framework for developing distributed services that are easily configured to handle different failures
is developed in [21]. The framework is distinguished from Timewheel in that high-level protocols are built
out of micro-protocols [5] that implement individual semantic properties (e.g., an atomicity guarantee or an
ordering guarantee) or mask particular failure types. The framework provides a methodology for building
micro-protocols, which are composed into high-level protocols, as well as a run-time system for distributed
services.

Both Timewheel and the configurable framework provide a modular means of employing distinct pro-
tocols. Our protocol family is distinguished from these in that servers implement a fixed protocol regardless
of the specific member being employed. Additionally, the majority of the client implementation is shared
across protocol family members: different threshold parameters are required depending on the timing model
and the number and types of storage-node failures tolerated; as well, a small amount of additional logic is
required to tolerate Byzantine clients and perform client repair.

Additional related work. Our protocol family shares characteristics with quorum systems and exploits
versioning servers. Both techniques are used in many ways by many systems. Here, we discuss a few.

Byzantine fault-tolerant protocols for implementing read-write objects using quorums are described
in [19, 30, 32, 40]. Of these, Martin et al. [32] is closest to members of our protocol family in semantics
and in that it uses a type of versioning. In our protocols, a read operation may retrieve data-fragments for
several versions of the data-item in the course of identifying the return value of a read. Similarly, readers
in [32] “listen” for updates (versions) from storage-nodes until a complete write is observed. Conceptually,
our approach differs in that clients read past versions, rather than listening for future versions broadcast by
servers. Our protocol family has several advantages over [32]: it works for erasure-coded data, it is more

3

message efficient, it requires less computation (“listeners” require digital signatures in some fault models),
and work is performed mostly by clients rather than servers.

We contrast our use of versioning to maintain consistency with systems in which each write creates
a new, immutable version of a data-item (e.g., [36, 43]). Such systems shift consistency problems to the
metadata mechanism that resolves data-item names to a version. So, systems that employ such an approach
(e.g., Past [45] and CFS [9]) require a version tracking service to find the latest version. Our protocol family
does not—indeed, these systems could use our access protocol family for such a service.

A full file service requires more general functions than read and write, such as “insert name into di-
rectory.” As discussed earlier, this can be achieved with state machine replication. Some systems (e.g.,
Farsite [2] and OceanStore [25]) use replicated state machines for such metadata functions (including the
tracking of the name–version mapping). Another option is to layer higher-level services, as needed, atop a
base read/write service—for example, Frangipani [51] provides file services atop Petal [28]. Our protocol
family is a versatile base read/write service, upon which file services and other storage services can be built.

Ivy [37] provides decentralized read/write access to immutable stored data in a fashion similar to some
members of our protocol family. Per-client update logs (which are similar to version histories) are merged
by clients at read time. Ivy differs from our protocols in that it does not provide strong consistency semantics
in the face of data redundancy or concurrent updates.

We present, in detail, a single member of the protocol family (the asynchronous repairable protocol
member with Byzantine clients and Byzantine storage-nodes) in [14]. In [14], we include proof sketches of
that member’s safety and liveness properties, as well as a favorable performance comparison (for read-write
storage) relative to Byzantine tolerant replicated state-machines [6]. This paper goes beyond that paper by
generalizing to the protocol family and exploring the result.

3 Protocol family

This section describes our protocol family for accessing erasure-coded data with versioning servers.

3.1 Overview

We describe each protocol family member in terms of N storage-nodes and an arbitrary number of clients.
There are two types of operations — reads and writes. Each read/write operation involves read/write requests
from a client to some number of storage-nodes. We assume that communication between a client and a
storage-node is point-to-point, reliable (e.g., TCP), and authenticated.

At a high level, the protocol proceeds as follows. A data-item is encoded into data-fragments; any
threshold-based erasure code (e.g., information dispersal [42], short secret sharing [24], or replication) could
be used. Logical timestamps are used to totally order all write operations and to identify data-fragments from
the same write operation across storage-nodes. For each correct write, a client constructs a logical timestamp
that is guaranteed to be unique and greater than that of the latest complete write (the complete write with the
highest timestamp). A write operation is defined as complete if sufficient storage-nodes have executed write
requests to guarantee that no subsequent read operation can return a previously written value. Storage-nodes
provide fine-grained versioning; a correct storage-node stores a data-fragment version (indexed by logical
timestamp) for each write request it executes.

To perform a read operation, a client issues read requests to a set of storage-nodes. From the responses,
the client identifies the candidate, which is the data-fragment version returned with the greatest logical
timestamp. The read operation classifies the candidate as complete, incomplete or unclassifiable based on
the number of read responses that share the candidate’s timestamp. If the candidate is classified as complete,
then the read operation is complete; the value of the candidate is returned. If it is classified as incomplete,

4

the candidate is discarded, another read phase is performed to collect previous versions of data-fragments,
and classification begins anew; this sequence may be repeated. If the candidate is unclassifiable, members
of the protocol do one of two things: repair the candidate or abort the read operation.

3.2 Family membership

Each member of the protocol family is characterized by four parameters: the timing model, the storage-node
failure model, the client failure model, and whether client repair is allowed. Eight protocol members result
from the combination of these characteristics, each of which supports a hybrid failure model (crash and
Byzantine) of storage-nodes.

Timing model. Protocol family members are either asynchronous or synchronous. Asynchronous members
rely on no timeliness assumptions (i.e., no assumptions about message transmission delays or execution
rates). In contrast, synchronous members assume known bounds on message transmission delays between
correct clients/storage-nodes and their execution rates. As well, synchronous members require loosely syn-
chronized clocks among clients and storage-nodes—protocols to achieve approximate clock synchronization
in today’s networks are well known, inexpensive, and widely deployed [33]. In an asynchronous system,
storage-node crashes are indistinguishable from slow communication. In a synchronous system, storage-
nodes that crash are detectable via timeouts—which provides useful information to the client.

Storage-node failure model. Family members are developed with a hybrid storage-node failure model [50].
Up to t storage-nodes may fail, b ≤ t of which may be Byzantine faults; the remainder can only crash. Such
a model can be converted to a wholly crash (i.e., b = 0) or wholly Byzantine (i.e., b = t) model for storage-
node failures. We assume that Byzantine storage-nodes can collude with each other and with any Byzantine
clients.

Byzantine storage-nodes can corrupt their data-fragments. As such, it must be possible to detect and
mask up to b storage-node integrity faults. Cross checksums [13] are used to detect corrupt data-fragments;
this is described in Section 5.1.

Client failure model. Each member of the protocol family tolerates crash client failures and may addition-
ally tolerate Byzantine client failures. Crash failures during write operations can result in subsequent read
operations observing an incomplete or unclassifiable write operation. Readers cannot distinguish read-write
concurrency from a crash failure during a write operation.

As in any general storage system, an authorized Byzantine client can write arbitrary values to storage,
which affects the value of the data but not its consistency. Byzantine failures during write operations can
additionally result in a write operation that lacks integrity; the decoding of different sets of data-fragments
could lead to clients observing different data-items. Mechanisms for detecting any such write operation per-
formed by a Byzantine client are described in Section 5.1. These mechanisms successfully reduce Byzantine
actions to either being detectable or crash-like, allowing Byzantine clients to be tolerated without any change
to the thresholds. Fine-grained versioning can facilitate detection, recovery, and diagnosis from storage in-
trusions [49].

Client repair. Each member of the protocol family either allows, or does not allow, clients to perform repair.
Repair enables a client that observes an unclassifiable (i.e., repairable) candidate during a read operation to
perform a write operation, which ensures that the candidate is complete, before it is returned.

In systems that differentiate write privileges from read privileges, client repair may not be possible.
Non-repair protocol members allow read operations to abort. Reads can be retried at either the protocol or
application level. At the protocol level, concurrency is often visible in the timestamp histories—an aborted
read could be retried until a stable set of timestamps is observed. Other possibilities include requiring
action by some external agent or blocking until a new value is written to the data-item (as in the “Listeners”
protocol of Martin et al. [32]).

5

Protocol Asynchronous

repairable

Asynchronous

non-repair

Synchronous

repairable

Synchronous

non-repair

N 2t +2b+1 ≤ N 3t +3b+1 ≤ N t +b+1 ≤ N t +2b+1 ≤ N

QC t +b+1 ≤ QC t +b+1 ≤ QC t +1 ≤ QC t +1 ≤ QC

QC ≤ N − t −b QC ≤ N −2t −2b QC ≤ N −b QC ≤ N −2b

m 1 ≤ m ≤ QC − t 1 ≤ m ≤ QC +b 1 ≤ m ≤ QC − t 1 ≤ m ≤ QC +b− t

Complete |CandidateSet| ≥ QC +b |CandidateSet| ≥ QC − f +b

Incomplete |CandidateSet| < QC − t |CandidateSet| < QC − f

Table 1: Protocol family constraint summary

3.3 Protocol guarantees

The target safety property for the protocol family is linearizability [20]. Operations are linearizable if their
return results are consistent with an execution in which each operation is performed instantaneously at a
distinct point in time between its start time and its completion time. It is necessary to adapt linearizability
for some members of the protocol family.

The use of clock synchronization by synchronous members introduces clock skew, which affects the
definition of operation duration, and thus linearizability. Due to clock skew, two operations may have
the same timestamps, even though they are not globally concurrent. Clock skew extends the definition of
operation duration in synchronous members such that these operations are considered concurrent.

Byzantine clients may not follow the protocol execution. Read operations by Byzantine clients are
excluded from the set of linearizable operations. Write operations are only included if they pass validation,
which ensures they are well formed (see Section 5.1). Write operations by Byzantine clients do not have a
well-defined start time and are thus concurrent to all preceding operations.

Non-repair protocol members allow reads to abort due to insufficient classification information: aborted
reads are excluded from the set of linearizable operations. Such members achieve “linearizability with read
aborts”, which is similar to Pierce’s “pseudo-atomic consistency” [40]. That is, the set of all write operations
and all complete read operations is linearizable.

Every member of the protocol family has strong liveness properties. Operations performed by correct
clients of synchronous repairable protocol members terminate. Operations performed by correct clients of
asynchronous repairable protocol members are wait-free [18, 23]. Members that do not allow repair achieve
similar properties to those that do; however, read operations may terminate by returning the “abort” value.

4 Protocol constraints

To guarantee that linearizability and liveness are achieved, a number of constraints must hold. For each
member protocol, N, m, and the read classification rules are constrained with regard to b and t (from the
hybrid model of storage-node failure). N is the number of storage-nodes in the system and m is the “decode”
parameter of an m-of-n erasure code (note, n always equals N in our system).

This section develops four sets of constraints: one for each pair of the cross-product of asynchronous/
synchronous and repair/non-repair. The constraints are not affected by whether the failure model for clients
is crash or Byzantine. A summary of the constraints for the protocol family is presented in Table 1. Proofs
that the constraints provide the safety and liveness guarantees indicated, as well as precise definitions of
those guarantees, are presented in [15].

6

4.1 Protocol properties

Constraints for each protocol family member are derived to satisfy a number of desired properties.
These properties are described using the following terminology. A client or storage-node is correct in

an execution if it satisfies its specification throughout the execution; otherwise it fails. If it is either correct
or only crashes, it is benign.

Since many of the properties involve read classification, recall that the candidate is the data-item ver-
sion, returned by a read request, with the greatest logical timestamp. The set of read responses that share
the candidate’s timestamp are the candidate set.

The desired protocol properties are:

WRITE TERMINATION: This property ensures that all write operations can complete.

READ CLASSIFICATION: There are two classification rules: one to classify a candidate as complete and one
to classify a candidate as incomplete. A candidate that is not classified by either rule is repairable if the
protocol admits repair, and unclassifiable otherwise.

REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: This property ensures that colluding Byzantine
storage-nodes are unable to fabricate a candidate that a correct client deems unclassifiable/repairable.

CLASSIFIABLE COMPLETE CANDIDATES: This property is only necessary for non-repair protocol members;
it ensures that Byzantine storage-nodes cannot make all read operations abort. Consider a write operation
and a subsequent read operation performed in isolation by correct clients (i.e., the client does not fail and
there is no concurrency). This property ensures that the read operation will return the value written by the
write operation regardless of storage-node failures.

DECODABLE CANDIDATES: m must be constrained so that complete or repairable candidates can be de-
coded. Moreover, if m > b, Byzantine storage-nodes cannot collude to decode data-fragments. In particular,
if secret sharing [47] or short secret sharing [24] is employed, data-fragment confidentiality can be ensured.

4.2 Asynchronous constraints

In an asynchronous environment, a read operation can only wait for N − t responses from storage-nodes,
since slow communication is indistinguishable from crashed storage-nodes. Moreover, of the responses, up
to b can be arbitrary.

COMPLETE WRITE DEFINITION: In an asynchronous system, a write is complete once a total of QC benign
storage-nodes have executed the write.

WRITE TERMINATION: There must be sufficient benign storage-nodes in the system for a write operation
to complete. Since only N − t responses can be awaited,

QC +b ≤ N − t,

QC ≤ N − t −b. (1)

READ CLASSIFICATION: To classify a candidate as complete, a candidate set of at least QC benign storage-
nodes must be observed. In the worst case, at most b members of the candidate set may be Byzantine, thus,

|CandidateSet|−b ≥ QC ⇒ complete. (2)

A candidate set can only be classified incomplete if a client knows that a complete write does not exist
in the system (i.e., fewer than QC benign storage-nodes host the write). For this to be the case, the client must
have queried all possible storage-nodes (N − t), and must assume that nodes not queried host the candidate
in consideration. So,

|CandidateSet|+ t < QC ⇒ incomplete. (3)

7

REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: To ensure that Byzantine storage-nodes cannot fab-
ricate an unclassifiable/repairable candidate, a candidate set of size b must be classifiable as incomplete.
Substituting b into (3),

b+ t < QC. (4)

4.2.1 Asynchronous repairable

DECODABLE REPAIRABLE CANDIDATES: Any repairable candidate must be decodable. The lower bound
on candidate sets that are repairable follows from (3) (since the upper bound on classifying a candidate as
incomplete coincides with the lower bound on repairable):

1 ≤ m ≤ QC − t. (5)

CONSTRAINT SUMMARY:

|CandidateSet| ≥ QC +b ⇒ complete;

|CandidateSet| < QC − t ⇒ incomplete;

t +b+1 ≤ QC ≤ N − t −b;

2t +2b+1 ≤ N;

1 ≤ m ≤ QC − t.

4.2.2 Asynchronous non-repair

Repairable candidates in repairable members are unclassifiable candidates in non-repair members (i.e., read
operations can abort). An additional constraint is introduced to ensure that Byzantine storage-nodes cannot
force isolated reads subsequent to write operations by correct clients to abort.

CLASSIFIABLE COMPLETE CANDIDATES: For this property to hold, a read operation must observe at least
QC +b responses from benign storage-nodes—sufficient responses to classify the candidate as complete (2).
A write operation by a correct client may only complete at N − t storage-nodes, and a subsequent read
operation may not observe responses from t benign storage-nodes. Further, b observed responses may be
Byzantine. So,

QC +b ≤ (N − t)− t −b,

QC ≤ N −2t −2b. (6)

DECODABLE COMPLETE CANDIDATES: A candidate classified as complete, (2), must be decodable:

1 ≤ m ≤ QC +b. (7)

CONSTRAINT SUMMARY:

|CandidateSet| ≥ QC +b ⇒ complete;

|CandidateSet| < QC − t ⇒ incomplete;

t +b+1 ≤ QC ≤ N −2t −2b;

3t +3b+1 ≤ N;

1 ≤ m ≤ QC +b.

8

4.3 Synchronous constraints

In a synchronous environment, crashed storage-nodes are detectable. Let f be the number of observed
timeouts by a particular read operation. Clearly, 0 ≤ f ≤ t; as well, f is at least as great as the number of
crashed storage-nodes in the system when the read operation began—Byzantine storage-nodes can “return”
timeouts and storage-nodes may fail at any time during the read operation.

COMPLETE WRITE DEFINITION: In a synchronous system, a write is complete once a total of QC benign
storage-nodes have executed the write or have crashed.

WRITE TERMINATION: Sufficient benign storage-nodes must exist for a write operation to complete:

QC +b ≤ N. (8)

READ CLASSIFICATION: In the worst case, the candidate set plus the set of timeouts can contain b Byzantine
storage-nodes, with the remainder being benign. Thus,

(|CandidateSet|+ f)−b ≥ QC ⇒ complete. (9)

To classify a candidate as incomplete, a client must be sure that the candidate is not part of a complete
write. For synchronous protocol members, the classification rule assumes that responses (up to t of which
may be timeouts) from all N storage-nodes have been received. The client must assume that the candidate
set and the set of timeouts are from benign storage-nodes, thus:

|CandidateSet|+ f < QC ⇒ incomplete; (10)

REAL UNCLASSIFIABLE/REPAIRABLE CANDIDATES: To prevent Byzantine storage-nodes from fabricating
a write operation, a candidate set of size b must be classifiable as incomplete. If b responses within the
candidate set come from Byzantine storage-nodes, then f ≤ t −b. So, (10) becomes,

b+(t −b) < QC,

t < QC. (11)

4.3.1 Synchronous repairable

DECODABLE REPAIRABLE CANDIDATES: The lower bound on candidate sets that are repairable follows
from (10). Since in the worst case, f = t,

1 ≤ m ≤ QC − t. (12)

CONSTRAINT SUMMARY:

|CandidateSet| ≥ QC − f +b ⇒ complete;

|CandidateSet| < QC − f ⇒ incomplete;

t +1 ≤ QC ≤ N −b;

QC +b ≤ N;

1 ≤ m ≤ QC − t.

9

4.3.2 Synchronous non-repair

CLASSIFIABLE COMPLETE CANDIDATES: To ensure that a write from a correct client can be classified as
complete, a read operation must observe at least QC + b responses from benign storage-nodes. Since up to
b storage-nodes may be Byzantine,

QC +b ≤ N −b,

QC ≤ N −2b. (13)

DECODABLE COMPLETE CANDIDATES: A candidate classified as complete must be decodable. Thus, the
upper bound on m follows from the minimum value of (9):

1 ≤ m ≤ QC +b− t. (14)

CONSTRAINT SUMMARY:

|CandidateSet| ≥ QC − f +b ⇒ complete;

|CandidateSet| < QC − f ⇒ incomplete;

t +1 ≤ QC ≤ N −2b;

t +2b+1 ≤ N;

1 ≤ m ≤ QC +b− t.

5 Design and implementation

This section describes the design and implementation of our protocol family. It presents the mechanisms
employed to encode and decode data, to protect data integrity, and to authenticate requests. It then details the
protocol family in pseudo-code form and provides implementation details about our prototype block-based
storage system.

5.1 Mechanisms

This subsection describes mechanisms employed for encoding data, preventing Byzantine clients and storage-
nodes from violating consistency, and authenticating client and storage-node requests. We assume that
storage-nodes and clients are computationally bounded such that cryptographic primitives can be effective.

Erasure codes. We consider only threshold erasure codes in which any m of the N encoded data-fragments
can decode the data-item; moreover, every m data-fragments can be used to deterministically generate the
other N −m data-fragments.

In our implementation, if m = 1, then replication is employed. Otherwise, our base erasure code
implementation stripes the data-item across the first m data-fragments; each stripe-fragment is 1

m the length
of the original data-item. Thus, concatenation of the first m data-fragments produce the original data-item.
These stripe-fragments are used to generate the code-fragments via polynomial interpolation within a Galois
Field. Our implementation of polynomial interpolation was originally based on [10] (which conceptually
follows [42]). We modified the source to use stripe-fragments and added an implementation of Galois Fields
of size 28 that use a lookup table for multiplication.

Beyond our base erasure code implementation, we implemented secret sharing [47] and short secret
sharing [24]. Our implementation of short secret sharing closely follows [24], using AES for the cipher.
Such erasure codes can also provide a degree of confidentiality with regard to storage-nodes.

10

Data-fragment integrity. Byzantine storage-nodes can corrupt their data-fragments. As such, it must be
possible to detect and mask up to b storage-node integrity faults. Cross checksums [13] are used to detect
corrupt data-fragments: a cryptographic hash of each data-fragment is computed, and the set of N hashes
are concatenated to form the cross checksum of the data-item. The cross checksum is stored with each
data-fragment, enabling corrupted data-fragments to be detected.

Our implementation uses a publicly available implementation of MD5 [1] for all hashes.

Write operation integrity. Mechanisms are required to prevent Byzantine clients from performing a write
operation that lacks integrity. If a Byzantine client generates random data-fragments (rather than erasure
coding a data-item correctly), then each of the

(N
m

)

subsets of data-fragments could “recover” a distinct data-
item. This attack is similar to poisonous writes for replication, as described by Martin et al. [32]. To protect
against such Byzantine client actions, read operations must only return values that are written correctly (i.e.,
that are single-valued). To achieve this, the cross checksum mechanism is extended in three ways:

VALIDATING TIMESTAMPS: To ensure that only a single set of data-fragments can be written at any logical
time, the hash of the cross checksum is placed in the low order bits of the logical timestamp.

STORAGE-NODE VERIFICATION: On a write, each storage-node verifies its data-fragment against the cor-
responding hash in the cross checksum. The storage-node also verifies that the cross checksum matches the
low-order bits of the validating timestamp. A correct storage-node only executes write requests for which
both checks pass. Thus, a Byzantine client cannot make a correct storage-node appear Byzantine—only
Byzantine storage-nodes can return unverifiable responses.

VALIDATED CROSS CHECKSUMS: Combined, storage-node verification and validating timestamps ensure
that the data-fragments being considered by any read operation were not fabricated by Byzantine storage-
nodes. To ensure that the client that performed the write operation acted correctly, the cross checksum
must be validated by the reader. For the reader to validate the cross checksum, all N data-fragments are
required. Given any m data-fragments, the reader can generate the full set of N data-fragments a correct
client should have written. The reader can then compute the “correct” cross checksum from the generated
data-fragments. If the generated cross checksum does not match the validated cross checksum, then a
Byzantine client performed the write operation. Only a single-valued write operation can generate a cross
checksum that can be validated.

Authentication. RPC requests and responses are authenticated using HMACs (i.e., clients and storage-
nodes have pair-wise shared secrets). Thus, the channels between clients and storage-nodes are authenti-
cated. We assume some infrastructure is in place to distribute shared secrets—our implementation supports
an existing Kerberos [48] infrastructure.

5.2 Storage-node design

Storage-nodes expose the same interface, regardless of the protocol member being employed—write and
read requests for all protocol members are serviced identically. Storage-nodes offer interfaces to write a
data-fragment at a specific logical time; to query the greatest logical time of a data-fragment; to read the
data-fragment version with the greatest logical time; and to read the data-fragment with the greatest logical
time before some logical time. As mentioned above, storage-nodes validate write requests before executing
them (to protect against Byzantine clients). Pseudo-code for request validation is presented as part of the
client read operation (in Section 5.3.2).

Storage-node implementation. Implicitly, each write request creates a new version of the data-fragment
(indexed by its logical timestamp) at the storage-node. In addition to data, each write request contains
a data-item cross checksum and a linkage record [3]. The linkage record consists of descriptions of the
encoding scheme, family member, and addresses of the N storage-nodes for a specific data-item; it is fixed
upon data-item creation.

11

The storage-node implementation uses a log-structured organization [44] to reduce the cost of data
versioning. Like previous researchers [41, 49], our experiences indicate that retaining every version and
performing local garbage collection come with minimal performance cost (a few percent) and that it is
feasible to retain complete version histories for several days.

By default, a read request returns the most current data-fragment version, ordered by logical timestamp.
Reads may also request the data-fragment corresponding to a specific logical timestamp, or just part of the
version history (sequence of logical timestamps) corresponding with associated with a data-fragment.

Garbage collection. Pruning old versions, or garbage collection, is necessary to prevent capacity exhaustion
of the storage-nodes. A storage-node in isolation cannot determine which local data-fragment versions are
safe to garbage-collect, because write completeness is a property of a set of storage-nodes. A data-fragment
version can be garbage-collected only if there exists a later complete write for the corresponding data-item.
Storage-nodes can classify writes by executing the read protocol in the same manner as a client. However, no
data need be returned for protocol members that do not tolerate Byzantine clients (since the cross checksum
need not be validated). Linkage records provide sufficient information for the storage-nodes to know which
other nodes host relevant data-fragments.

Garbage collection is implemented in the current prototype and it requires no additional RPCs. It
currently must be initiated externally (e.g., by a CRON job). Research into policy issues, such as the
appropriate frequency and order of garbage collection, is warranted.

5.3 Client design

Clients do most of the work, including the execution of the consistency protocol and the encoding and
decoding of data-items. The client module provides a block-level interface to higher-level software. This
subsection describes client read and write operations through the use of pseudo-code and the next subsection
provides additional details about the actual implementation.

The read and write client pseudo-code relies on some new terms. The symbol, LT , denotes logical
time and, LTcandidate, denotes the logical time of the candidate. The set, {D1, . . . ,DN}, denotes the N data-
fragments; likewise, {S1, . . . ,SN} denotes the N storage-nodes. The operator ‘|’ denotes concatenation.

The symbol, WaitMAX, defines the maximum number of responses for which write and read operations
can wait for before having to terminate. In an asynchronous system, storage-nodes that crash cannot be
distinguished from slow storage-nodes, so a client cannot wait for the last t responses. On the other hand, in
a synchronous system, unresponsive storage-nodes are detectable through timeout “responses”. Therefore,
in an asynchronous system WaitMAX = N − t, and in a synchronous system WaitMAX = N.

5.3.1 Write operation

The write operation pseudo-code is shown in Figure 2. The WRITE operation consists of determining the
greatest logical timestamp, constructing write requests, and issuing the requests to the storage-nodes.

First, a timestamp greater than, or equal to, that of the latest complete write is determined by the
READ TIMESTAMP function on line 2 of WRITE. In a synchronous system, the client’s local clock is read
(line 2 of READ TIMESTAMP). In an asynchronous system, GET TIME requests are issued to the storage-
nodes. Responses are collected, and the highest timestamp is identified, incremented, and returned.

Next, the ENCODE function, on line 3, encodes the data-item into N data-fragments. Hashes of the data-
fragments are used to construct a cross checksum (line 4). The function MAKE TIMESTAMP, called on line 5,
generates a logical timestamp for the write operation by combining the hash of the cross checksum and the
time determined by READ TIMESTAMP.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent a specific data-
fragment, the logical timestamp, and the cross checksum. A storage-node validates the cross checksum

12

WRITE(Data) :
1: /∗ Encode data, construct timestamp, and write data-fragments ∗/
2: Time := READ TIMESTAMP()
3: {D1, . . . ,DN} := ENCODE(Data)
4: CC := MAKE CROSS CHECKSUM({D1, . . . ,DN})
5: LT := MAKE TIMESTAMP(Time,CC)
6: DO WRITE({D1, . . . ,DN}, LT, CC)

READ TIMESTAMP() :
1: if (Synchronous = TRUE) then
2: Time := READ LOCAL CLOCK()
3: else
4: for all Si ∈ {S1, . . . ,SN} do
5: SEND(Si, GET TIME)
6: end for
7: ResponseSet := /0
8: repeat
9: ResponseSet := ResponseSet ∪ RECEIVE(S, GET TIME)

10: until (|ResponseSet| = WaitMAX)
11: Time := MAX[ResponseSet.LT.Time]+1
12: end if
13: RETURN(Time)

MAKE CROSS CHECKSUM({D1, . . . ,DN}) :
1: for all Di ∈ {D1, . . . ,DN} do
2: Hi := HASH(Di)
3: end for
4: CC := H1| . . . |HN

5: RETURN(CC)

MAKE TIMESTAMP(Time,CC) :
1: LT.Time := Time
2: LT.Verifier := HASH(CC)
3: RETURN(LT)

DO WRITE({D1, . . . ,DN}, LT, CC) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, WRITE REQUEST, LT, Di, CC)
3: end for
4: ResponseSet := /0
5: repeat
6: ResponseSet := ResponseSet ∪ RECEIVE(S, WRITE RESPONSE)
7: until (|ResponseSet| = WaitMAX)

Figure 2: Client-side write operation pseudo-code.

with the corresponding portion of the timestamp and validates the data-fragment with the cross checksum
before executing a write request (i.e., storage-nodes call VALIDATE listed in the read operation pseudo-code).
The write operation returns to the issuing client once enough WRITE RESPONSE replies are received (line 7
of DO WRITE).

5.3.2 Read operation

The pseudo-code for the read operation is shown in Figure 3. The read operation iteratively identifies and
classifies candidates until either a complete or repairable candidate is found or the operation aborts due to
insufficient information (only non-repair members can abort). Before a repairable or complete candidate is
returned, the read operation validates its correctness.

The read operation begins by issuing READ LATEST requests to all storage-nodes (via the DO READ

13

READ(Repair) :
1: ResponseSet := DO READ(READ LATEST, ⊥)
2: loop
3: 〈CandidateSet, LTcandidate〉 := CHOOSE CANDIDATE(ResponseSet)
4: if (|CandidateSet| ≥ COMPLETE) then
5: /∗ Complete candidate: return value ∗/
6: if (VALIDATE CANDIDATE SET(CandidateSet)) then
7: Data := DECODE(CandidateSet)
8: RETURN(Data)
9: end if

10: else if (|CandidateSet| ≥ INCOMPLETE) then
11: /∗ Unclassifiable candidate found: repair or abort ∗/
12: if (Repair = TRUE) then
13: if (VALIDATE CANDIDATE SET(CandidateSet) then
14: {D1, . . . ,DN} := GENERATE FRAGMENTS(CandidateSet)
15: DO WRITE({D1, . . . ,DN}, LTcandidate, CCvalid)
16: Data := DECODE({D1, . . . ,DN})
17: RETURN(Data)
18: end if
19: else
20: RETURN(ABORT)
21: end if
22: end if
23: /∗ Incomplete candidate or validation failed: loop again ∗/
24: ResponseSet := DO READ(READ PREVIOUS, LTcandidate)
25: end loop

DO READ(READ COMMAND, LT) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, READ COMMAND, LT)
3: end for
4: ResponseSet := /0
5: repeat
6: Resp := RECEIVE(S, READ RESPONSE)
7: if (VALIDATE(Resp.D, Resp.CC, Resp.LT, S) = TRUE) then
8: ResponseSet := ResponseSet ∪ Resp
9: end if

10: until (|ResponseSet| = WaitMAX)
11: RETURN(ResponseSet)

VALIDATE(D, CC, LT, S) :
1: if ((HASH(CC) 6= LT.Verifier) OR (HASH(D) 6= CC[S])) then
2: RETURN(FALSE)
3: end if
4: RETURN(TRUE)

VALIDATE CANDIDATE SET(CandidateSet)

1: if (ByzantineClients = TRUE) then
2: /∗ Byzantine clients: regenerate fragments for validation ∗/
3: {D1, . . . ,DN} := GENERATE FRAGMENTS(CandidateSet)
4: CCvalid := MAKE CROSS CHECKSUM({D1, . . . ,DN})
5: if (CCvalid = CandidateSet.CC) then
6: RETURN(TRUE)
7: else
8: RETURN(FALSE)
9: end if

10: end if
11: /∗ Crash clients: return TRUE ∗/
12: RETURN(TRUE)

Figure 3: Client-side read operation pseudo-code.

14

function). Each storage-node responds with the data-fragment, logical timestamp, and cross checksum
corresponding to the highest timestamp it has executed.

The integrity of each response is individually validated by the VALIDATE function, line 7 of DO READ.
This function checks the cross checksum against the validating timestamp and the data-fragment against the
appropriate hash in the cross checksum. Since correct storage-nodes perform the same validation before
executing write requests, only responses from Byzantine storage-nodes can fail the reader’s validation.

After sufficient responses have been received, a candidate for classification is chosen. The function
CHOOSE CANDIDATE, on line 3 of READ, determines the candidate timestamp, denoted LTcandidate, which
is the greatest timestamp in the response set. All data-fragments that share LTcandidate are identified and
returned as the candidate set. At this point, the candidate set contains a set of data-fragments that share a
common cross checksum and logical timestamp.

Once a candidate has been chosen, it is classified as either complete, unclassifiable (repairable), or
incomplete. If the candidate is classified as incomplete, a READ PREVIOUS message is sent to each storage-
node with the candidate timestamp. Candidate classification begins again with the new response set.

If the candidate is classified as complete or repairable, the candidate set is constrained to contain suffi-
cient data-fragments (see Section 4) to decode the original data-item. At this point the candidate is validated.
This is done through the VALIDATE CANDIDATE SET call on line 6 (for complete candidates) or line 13 (for
repairable candidates) of READ.

For family members that do not tolerate Byzantine clients, this call is a no-op returning TRUE.
Otherwise, the candidate set is used to generate the full set of data-fragments, as shown in line 3 of
VALIDATE CANDIDATE SET. A validated cross checksum, CCvalid, is then computed from the newly gener-
ated data-fragments. The validated cross checksum is compared to the cross checksum of the candidate set
(line 5 of VALIDATE CANDIDATE SET). If the check fails, the candidate was written by a Byzantine client;
the candidate is reclassified as incomplete, and the read operation continues. If the check succeeds, the
candidate was written correctly and the read enters its final phase. Note that this check either succeeds or
fails for all correct clients, regardless of which storage-nodes are represented within the candidate set.

If necessary and allowed, repair is performed: write requests are issued with the generated data-
fragments, the validated cross checksum, and the logical timestamp (line 15 of READ). Storage-nodes not
currently hosting the write execute the write at the given logical time; those already hosting the write are
safe to ignore it.

Finally, the function DECODE recovers the data-item from any m data-fragments.

5.4 Client implementation

Our client implementation follows the pseudo-code described above. The client module is accessed through
a set of library interface calls. These calls allow an application to control the encoding scheme, the threshold
values, and the failure and timing models. The client protocol routines are implemented such that different
protocol family members and thresholds may be specified for different data-items. Likewise, the storage-
nodes for any given data-item are also specified via these interfaces, thus externalizing control (and respon-
sibility) for such bootstrapping information; for our experiments we use a static set of N storage-nodes.
Clients communicate with storage-nodes through a TCP-based RPC interface.

In an asynchronous environment, the client implementation issues GET TIME requests to only N +b−
QC storage-nodes, since this ensures overlap with the latest complete write. In a synchronous environment,
client clocks are synchronized using NTP [33]. To improve the responsiveness of write operations, clients
return after the first QC +b storage-nodes respond; the remainder of the requests complete in the background.

To improve the read operation’s performance, only m read requests fetch the latest data pertaining to
the data-fragment, while all receive version histories; this makes the read operation more network-efficient.
Read requests also return a limited version history of the data-fragment requested (with no corresponding

15

data). This version history allows clients to classify earlier writes without issuing additional storage-node
requests. If necessary, after classification, extra data-fragments are fetched according to the candidate’s
timestamp.

6 Performance evaluation

This section evaluates protocol family performance in the context of the prototype block storage system.

6.1 Experimental setup

We use a cluster of 20 machines to perform experiments. Each storage-node is a dual 1GHz Pentium III
machine with 384 MB of memory and a 9GB Quantum Atlas 10K disk. Each client is a single processor
2GHz Pentium IV machine. The machines are connected through a 100Mb switch. All machines run the
Linux 2.4.20 SMP kernel.

In all experiments, clients keep a fixed number of read and write operations outstanding—when an
operation completes, a new operation is issued immediately. Unless otherwise specified, requests are for
random 16 KB blocks. Unless otherwise specified, QC and N are the minimum allowable values for the
protocol member, as given in Table 2, and m is the maximum allowable value. Authentication costs (i.e.,
HMAC computations) are included in all experiments.

No caching is done on the clients. Storage-nodes use write-back caching, mimicking availability of
16 MB of non-volatile RAM. All experiments focus on the protocol costs: the working sets fit into memory
and all caches are warmed up beforehand. Results from such experiments highlight the overheads introduced
by the protocol and not those introduced by the disk system. It is, however, a full system implementation:
each storage-node is backed by a real persistent data store, and compulsory cache flushes are serviced by
the disk system.

6.2 Space-efficiency of protocol members

All protocol members can employ m-of-n erasure codes. Increasing m improves space-efficiency, since each
data-fragment is 1

m the size of the data-item. Space-efficiency reduces the network bandwidth needed, which
reduces the response time of operations.

To perform a write operation, N data-fragments are sent over the network. With each data-fragment, a
cross checksum and linkage record are sent. Respectively, these are N times the size of a MD5 digest (16
bytes) and N times the size of a storage-node ID (4 bytes). RPC headers and arguments consume negligible
bandwidth. Thus, the total amount of data sent over the network by a write operation is: 16 KB× N

m +
20 B×N2.

6.3 Computation costs

Computation costs are incurred to erasure code data. Additional computation costs are incurred to authenti-
cate messages and protect against non-crash failures.

Erasure coding costs. Figure 4 shows the trends in the cost of encoding data with our erasure code im-
plementation. For comparison, the performance of N-fold replication (i.e., N memcpys) is shown. Lines are
shown for fixed m values of two and three. These lines illustrate that, as expected, the cost of an erasure
code for a given m grows linearly with N, since the number of code-fragments grows with N.

Two other lines are shown in Figure 4 to illustrate the interesting impact of m on performance: the
space-efficiency of an erasure code is inversely proportional to m whereas the cost of generating some
aggregate amount of code-fragment is proportional to m. Consider the m = N

2 line. For each point on

16

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
Erasure coding performance (16KB blocks)

N

C
om

pu
te

 ti
m

e
(m

s)

Replication
m = 2
m = 3
m = N/2
m = N − 1

Figure 4: Computational cost of erasure coding. Block size, N, and m dictate the computational cost of
erasure coding.

the line, erasure coding generates, in total, 16 KB of code-fragments, although the number and individual
sizes of the code-fragments differ. When generating some aggregate amount of code-fragments, the cost of
erasure coding grows linearly with m. For m = N − 1, a single code-fragment is needed for each write; as
expected, the cost of generating one fragment decreases with N, since the size of the fragment also decreases
(to 1

N−1).

Computation cost breakdown. Table 2 enumerates the client and storage-node computation costs for
asynchronous repairable members tolerating one and four Byzantine storage-node faults.

CLIENTS: All protocol family members place the majority of the computational work on clients in the
system. Erasure-coding is done by the client and requires nothing of the storage-node. The difference in
computation costs for the two instances of the protocol member listed is due to their respective values of N
and m. The cost of erasure coding with regard to N and m is dicussed above. The cost of generating cross
checkums grows with N

m .
Read operations in protocol members with only crash clients are computationally less demanding than

write operations. A read operation requires fewer hashes of data-fragments and generation of fewer code-
fragments. In the best case, the m stripe-fragments can be concatenated and no code-fragments need be
generated. In protocol members that tolerate Byzantine clients, read operations performs almost the same
computation as write operations to validate the cross checksum (i.e., N −m code-fragments are generated
and N data-fragments hashes are taken).

Short secret sharing can be used in place of our default erasure code. Doing so adds ≈550 µs to the
base erasure code costs for encrypting the data-item under the AES cipher and less than 20 µs for generating
and secret sharing the encryption key (this cost depends on m and N). Both write and read operations incur
these costs.

STORAGE-NODES: For each write request, a storage-node must verify both the timestamp and the data-
fragment. Validating the data-fragment is roughly 1

N the work the client does in creating the cross checksum.
A hash of the cross checksum is taken to verify the hash within the timestamp. Read requests require no
significant computation by the storage-node (for the protocol).

AUTHENTICATION: Clients and storage-nodes must authenticate each RPC request and response. Authen-

17

b = t = 1 b = t = 4

Storage-node: write operation costs

Verify timestamp 1.56 µs 3.78 µs

Verify data-fragment 72.2 29.4

Client: write operation costs

Encode: generate N −m code-fragments 163 546

Generate one code-fragment 54.2 45.5

Generate cross checksum: hash N data-fragments 359 512

Hash one data-fragment 71.2 30.1

Generate validating timestamp 1.60 3.72

Client: read operation costs

Verify data-fragments: hash m data-fragments 143 150

Best case decode: memcpy m stripe-fragments 6.84 7.86

Worst case decode: generate m code-fragments 108 228

Validate cross checksum (to tolerate Byz. clients) 522 1060

Table 2: Client and storage-node computation costs. Costs are broken down for the asynchronous re-
pairable protocol member with Byzantine storage-nodes for: b = t = 1 and b = t = 4 (N = 5, m = 2 and
N = 17, m = 5, respectively).

tication is performed over the RPC header and some RPC arguments. Cross checksums and data-fragments
are not directly included in the authentication; however, the validating timestamp is included, and it indi-
rectly authenticates the remainder. In all cases, authentication of an RPC message requires less than 2.5 µs.

6.4 Scalability

Figure 5 shows mean response times as a function of the number of tolerated storage-node failures. Read and
write response times are shown for each of the four 〈asynchronous/synchronous, repairable/non-repair〉 pro-
tocol members that tolerate Byzantine storage-nodes and crash clients. t is constrained by our experimental
setup; recall, we have 20 machines in our testbed.

All of the response time lines are straight, indicating that each protocol member scales linearly with t
(faults tolerated). The flatness of most of the response time lines indicates that network bandwidth consumed
and computation required does not grow substantially with t. As well, even though N grows with t, storage-
node communication can usually be overlapped.

The read response time lines are so flat because of the space-efficiency of read operations. Read oper-
ations only fetch full data-fragments from m storage-nodes. Thus, read operations by all protocol members
require only a total of ≈16 KB of data to be returned over the network. The slight slope is due to the in-
creases in N and QC, which increases communication costs. The only difference in response time between
protocol members with crash clients (shown in the plot) and members with Byzantine clients (not shown) is
in computation costs incurred by read operations.

The differences in write response time among protocol members is directly attributable to their differ-
ences in space-efficiency. Consider the synchronous repairable protocol member, which, in this experiment,

18

1 2 3 4 5 6
0

5

10

15

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Total failures tolerated (b=t)

Response time (16KB blocks)

Async + repair (read)
Async + repair (write)
Async (read)
Async (write)
Sync + repair (read)
Sync + repair (write)
Sync (read)
Sync (write)

Figure 5: Response time of protocol family members. Mean response times of read and write operations
of random 16 KB blocks are shown for the 〈asynchronous/synchronous, repair/non-repair〉 protocol family
members with crash clients and Byzantine storage-nodes.

uses m = 1 (replication). Since N = t + b + 1 and b = t, then N = 2t + 1; at t = 4, 9-fold replication is
employed, which consumes 146 KB of network bandwidth for each write, taking at least 11.9 ms on a
100 Mbps network link.

Increasing m improves the space-efficiency of protocol members. To increase m, one must also increase
QC and N (constraints on m, QC and N are listed in Table 1). Figure 6 shows the effect of increasing m (along
with QC and N) on mean write response time for the synchronous repairable protocol member. The increase
from m = 1 to m = 2 yields a dramatic improvement: space-efficiency is doubled, network utilization is
effectively halved. Additional increases in m further improve space-efficiency, although diminishing returns
are encountered.

Throughput experiments were also performed. Due to space limitations, graphs of throughput measure-
ments are omitted. The throughput scales until either the client or storage-node network links are saturated.
The point of saturation depends on the space-efficiency of the protocol member. With our experimental
setup, the clients and storage-nodes are never compute bound—with a faster network, of course, this may
change.

6.5 WAN

To emulate WAN-like latencies, we used the NIST Net network emulator [38]. NIST Net is implemented
as a Linux kernel module that allows for the emulation of various network conditions. We used NIST Net
to set a 12.5 ms delay on each client/storage-node link, thus producing a perceived 25 ms round-trip delay.
Figure 7 shows the results for both the synchronous and asynchronous non-repair protocol members with
Byzantine storage-nodes and crash clients. In addition to the fixed 25 ms delay experiments, experiments
with a 25 ms round-trip delay and 15 ms standard deviation were performed (the stdv lines).

First, consider the experiments with a fixed delay. Synchronous reads, synchronous writes, and asyn-
chronous reads have approximately the same response time, as expected, given the single round-trip in-
volved. The response time for asynchronous writes is twice the round-trip time; an extra round-trip is

19

1 2 3 4 5 6
0

5

10

15

20

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Total failures tolerated (b=t)

Impact of space−efficiency on write response time

m = 1
m = 2
m = 3
m = 4
m = 5
m = t

Figure 6: Effect of m on write response time. Increasing m (i.e., increasing space-efficiency) reduces the
mean response time of write operations for the synchronous repairable protocol member with Byzantine
storage-nodes and crash clients. Here, QC = t +m and N = 2t +m.

required to obtain the logical timestamp.
Now, consider the impact of variance in round trip time. Synchronous write operations have lower

response times than synchronous read operations. This is due to the prototype’s implementation. Write
operations return once QC +b write requests have been acknowledged by storage-nodes, although N requests
are issued. Thus, the write operation returns once the fastest acknowledgements have been received. On the
other hand, read operations initially issue the minimum number of requests needed to classify a candidate
as complete. As such, clients must wait for all read requests to complete. Asynchronous protocol members
also benefit from the early-completion of writes, however, due to the additional round-trip to obtain the
logical timestamp, writes do not complete faster than reads. Read response time could be reduced similarly
by “over-requesting” [52, 53] (issuing additional requests) and terminating once a sufficient number have
returned. There is a tradeoff between the responsiveness gained by issuing additional requests and the
throughput lost by performing unnecessary work.

6.6 Concurrency

Read-write concurrency can lead to client read operations observing repairable writes or aborting. To explore
the effect of concurrency on the system, we measure multi-client throughput when accessing overlapping
block sets. The experiment consists of four clients, each with four operations outstanding. Each client
accesses a range of eight data blocks, some overlapping with other clients and some not, and no outstanding
requests from the same client going to the same block.

At the highest concurrency level—all eight blocks in contention by all clients—we observed neither
significant drops in throughput nor significant increases in mean response time. For example, the asyn-
chronous repairable protocol member classified the initial candidate as complete 88.8% of the time, and
found repair was necessary only 3.3% of the time. Since repair occurs rarely, the effect on average response
time and throughput is minimal.

Read aborts can occur when reads are concurrent to in-progress writes. By retrying read operations,
almost all such “false” aborts can be eliminated.

20

1 2 3 4 5 6
0

20

40

60

80

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Total failures tolerated (b=t)

Wide−area response time

Async (read)
Async (write)
Sync (read)
Sync (write)
Async stdv (read)
Async stdv (write)
Sync stdv (read)
Sync stdv (write)

Figure 7: Response time with emulated network delays. The mean response times for the asynchronous
& synchronous non-repair protocol members with crash clients and Byzantine storage-nodes are plotted.
The first four lines show response times for a fixed round trip time of 25 ms. The stdv lines are for a round
trip time of 25 ms with a standard deviation of 15 ms.

6.7 Other results

Storage-node failures. For clients of both synchronous and asynchronous protocol members, storage-node
failures have minimal impact on performance.

Client crash failures. Client crash failures appear as partially written data. Subsequent reads may observe
these writes as incomplete or unclassifiable. If they are unclassifiable, the read must either abort or attempt
repair. Repair adds much of the cost of performing a write, though, the round-trip to obtain a logical
timestamp in an asynchronous system is not needed.

Garbage collection. We assume a large window of storage version capacity, so garbage collection usually
occurs during idle periods. But, even when it competes with real requests, garbage collection is inexpensive.
Garbage collection requests are just batched read requests, except that no data need be returned for members
that do not tolerate Byzantine clients. When Byzantine clients are tolerated, garbage collection must validate
the cross checksum, which does require data-fragments.

7 Conclusion

A protocol family shifts fault model decisions from system implementation time to data creation time. Our
family of access protocols exploits versioning and erasure coding to efficiently and scalably provide strong
consistency and liveness properties for survivable storage.

References

[1] RSA Data Security, Inc. MD5 Message-Digest Algorithm. http://www.ietf.org/rfc/rfc1321.txt.

21

[2] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R. Douceur, Jon
Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wattenhofer. FARSITE: federated, available,
and reliable storage for an incompletely trusted environment. Symposium on Operating Systems Design
and Implementation (Boston, MA, 09–11 December 2002), pages 1–15. USENIX Association, 2002.

[3] Khalil Amiri, Garth A. Gibson, and Richard Golding. Scalable concurrency control and recovery for
shared storage arrays. CMU–CS–99–111. Computer Science Department, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, February 1999.

[4] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Ousterhout. Mea-
surements of a distributed file system. ACM Symposium on Operating System Principles (Asilomar,
Pacific Grove, CA). Published as Operating Systems Review, 25(5):198–212, 13–16 October 1991.

[5] Nina T. Bhatti and Richard D. Schlichting. A system for constructing configurable high-level protocols.
ACM SIGCOMM Conference (Cambridge, MA, 28 August–1 September). Published as Computer
Communications Review, 25(4):138–150. ACM, 1995.

[6] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. Symposium on Operating
Systems Design and Implementation (New Orleans, LA, 22–25 February 1999), pages 173–186. ACM,
1998.

[7] Flaviu Cristian, Houtan Aghili, Raymond Strong, and Danny Dolev. Atomic broadcast: from simple
message diffusion to Byzantine agreement. Information and Computation, 118(1):158–179, April
1995.

[8] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model. IEEE Trans-
actions on Parallel and Distributed Systems, 10(6):642–657. IEEE, June 1999.

[9] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area cooperative
storage with CFS. ACM Symposium on Operating System Principles (Chateau Lake Louise, AB,
Canada, 21–24 October 2001). Published as Operating System Review, 35(5):202–215, 2001.

[10] Wei Dai. Crypto++ reference manual. http://cryptopp.sourceforge.net/docs/ref/.

[11] Svend Frolund, Arif Merchant, Yasushi Saito, Susan Spence, and Alistair Veitch. FAB: enterprise
storage systems on a shoestring. Hot Topics in Operating Systems (Lihue, HI, 18–21 May 2003),
pages 133–138. USENIX Association, 2003.

[12] Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed computing. Inter-
national Workshop on Distributed Algorithms (Halifax, Isreal, 02–04 November 1992), volume 647,
pages 153–165. Springer Verlag, 1992.

[13] Li Gong. Securely replicating authentication services. International Conference on Distributed Com-
puting Systems (Newport Beach, CA), pages 85–91. IEEE Computer Society Press, 1989.

[14] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. Efficient Byzantine-
tolerant erasure-coded storage. CMU–PDL–03–104. Parallel Data Laboratory, Carnegie Mellon Uni-
versity, Pittsburgh, PA, December 2003.

[15] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. The safety and liveness
properties of a protocol family for versatile survivable storage infrastructures. CMU–PDL–03–105.
Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA, March 2004.

22

[16] Cary G. Gray and David R. Cheriton. Leases: an efficient fault-tolerant mechanism for distributed
file cache consistency. ACM Symposium on Operating System Principles (Litchfield Park, AZ, 3–6
December 1989). Published as Operating Systems Review, 23(5):202–210, December 1989.

[17] Jim N. Gray. Notes on data base operating systems. In , volume 60, pages 393–481. Springer-Verlag,
Berlin, 1978.

[18] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages,
13(1):124–149. ACM Press, 1991.

[19] Maurice P. Herlihy and J. D. Tygar. How to make replicated data secure. Advances in Cryptology -
CRYPTO (Santa Barbara, CA, 16–20 August 1987), pages 379–391. Springer-Verlag, 1987.

[20] Maurice P. Herlihy and Jeanette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492. ACM, July
1990.

[21] Matti A. Hiltunen, Vijaykumar Immanuel, and Richard D. Schlichting. Supporting customized failure
models for distributed software. Distributed Systems Engineering, 6(3):103–111, September 1999.

[22] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems, 6(1):51–81, February 1988.

[23] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared objects.
Journal of the ACM, 45(3):451–500. ACM Press, May 1998.

[24] Hugo Krawczyk. Secret sharing made short. Advances in Cryptology - CRYPTO (Santa Barbara, CA,
22–26 August 1993), pages 136–146. Springer-Verlag, 1994.

[25] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaten, Dennis Geels, Ra-
makrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.
OceanStore: an architecture for global-scale persistent storage. Architectural Support for Program-
ming Languages and Operating Systems (Cambridge, MA, 12–15 November 2000). Published as
Operating Systems Review, 34(5):190–201, 2000.

[26] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM Transactions
on Database Systems, 6(2):213–226, June 1981.

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems, 4(3):382–401. ACM, July 1982.

[28] Edward K. Lee and Chandramohan A. Thekkath. Petal: distributed virtual disks. Architectural Support
for Programming Languages and Operating Systems (Cambridge, MA, 1–5 October 1996). Published
as SIGPLAN Notices, 31(9):84–92, 1996.

[29] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and Michael Williams.
Replication in the Harp file system. ACM Symposium on Operating System Principles (Pacific Grove,
CA, 13–16 October 1991). Published as Operating Systems Review, 25(5):226–238, 1991.

[30] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–
213. IEEE, 1998.

23

[31] Dahlia Malkhi, Michael K. Reiter, Daniela Tulone, and Elisha Ziskind. Persistent objects in the Fleet
system. DARPA Information Survivability Conference and Exposition (Anaheim, CA, 12–14 January
2001), pages 126–136. IEEE, 2001.

[32] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. International
Symposium on Distributed Computing (Toulouse, France, 28–30 October 2002), 2002.

[33] David L. Mills. Network time protocol (version 3), RFC–1305. IETF, March 1992.

[34] Shivakant Mishra, Christof Fetzer, and Flaviu Cristian. The Timewheel Group Communication Sys-
tem. IEEE Transactions on Computers, 51(8):883–899. IEEE, August 2002.

[35] Robert Morris. Storage: from atoms to people. Keynote address at Conference on File and Storage
Technologies, January 2002.

[36] Sape J. Mullender. A distributed file service based on optimistic concurrency control. ACM Symposium
on Operating System Principles (Orcas Island, Washington). Published as Operating Systems Review,
19(5):51–62, December 1985.

[37] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: a read/write peer-to-
peer file system. Symposium on Operating Systems Design and Implementation (Boston, MA, 09–11
December 2002). USENIX Association, 2002.

[38] NIST Internetworking Technology Group. NIST Net. http://snad.ncsl.nist.gov/itg/nistnet/.

[39] Brian D. Noble and M. Satyanarayanan. An emperical study of a highly available file system. Technical
Report CMU–CS–94–120. Carnegie Mellon University, February 1994.

[40] Evelyn Tumlin Pierce. Self-adjusting quorum systems for byzantine fault tolerance. PhD thesis, pub-
lished as Technical report CS–TR–01–07. Department of Computer Sciences, University of Texas at
Austin, March 2001.

[41] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage. Conference on File and
Storage Technologies (Monterey, CA, 28–30 January 2002), pages 89–101. USENIX Association,
2002.

[42] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.
Journal of the ACM, 36(2):335–348. ACM, April 1989.

[43] David P. Reed. Implementing atomic actions on decentralized data. ACM Transactions on Computer
Systems, 1(1):3–23. ACM Press, February 1983.

[44] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file
system. ACM Transactions on Computer Systems, 10(1):26–52. ACM Press, February 1992.

[45] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a large-scale, per-
sistent peer-to-peer storage utility. ACM Symposium on Operating System Principles (Chateau Lake
Louise, AB, Canada, 21–24 October 2001). Published as Operating System Review, 35(5):188–201.
ACM, 2001.

[46] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial.
ACM Computing Surveys, 22(4):299–319, December 1990.

24

[47] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613. ACM, November
1979.

[48] Jennifer G. Steiner, Jeffrey I. Schiller, and Clifford Neuman. Kerberos: an authentication service for
open network systems. Winter USENIX Technical Conference (Dallas, TX), pages 191–202, 9–12
February 1988.

[49] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and Gregory R.
Ganger. Self-securing storage: protecting data in compromised systems. Symposium on Operating
Systems Design and Implementation (San Diego, CA, 23–25 October 2000), pages 165–180. USENIX
Association, 2000.

[50] Philip Thambidurai and You keun Park. Interactive consistency with multiple failure modes. Sympo-
sium on Reliable Distributed Systems (10–12 October 1988), pages 93–100. IEEE, 1988.

[51] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: a scalable distributed
file system. ACM Symposium on Operating System Principles (Saint-Malo, France, 5–8 October 1997).
Published as Operating Systems Review, 31(5):224–237. ACM, 1997.

[52] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs. replication: a quantitative ap-
proach. First International Workshop on Peer-to-Peer Systems (IPTPS 2002) (Cambridge, MA, 07–08
March 2002), 2002.

[53] Jay J. Wylie, Michael W. Bigrigg, John D. Strunk, Gregory R. Ganger, Han Kiliccote, and Pradeep K.
Khosla. Survivable information storage systems. IEEE Computer, 33(8):61–68. IEEE, August 2000.

25

	Introduction
	Background and related work
	Protocol family
	Overview
	Family membership
	Protocol guarantees

	Protocol constraints
	Protocol properties
	Asynchronous constraints
	Asynchronous repairable
	Asynchronous non-repair

	Synchronous constraints
	Synchronous repairable
	Synchronous non-repair

	Design and implementation
	Mechanisms
	Storage-node design
	Client design
	Write operation
	Read operation

	Client implementation

	Performance evaluation
	Experimental setup
	Space-efficiency of protocol members
	Computation costs
	Scalability
	WAN
	Concurrency
	Other results

	Conclusion

