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Abstract

Self-* systems are self-organizing, self-configuringf-sehling, self-tuning and, in general, self-
managing. Ursa Minor is a large-scale storage infrastruetbeing designed and deployed at Carnegie
Mellon University, with the goal of taking steps towards #@df-* ideal. This paper discusses our
early experiences with one specific aspect of storage mamagie performance tuning and projection.
Ursa Minor uses self-monitoring and rudimentary system elind to support analysis of how system
changes would affect performance, exposing simple \Wihajuery interfaces to administrators and
tuning agents. We find that most performance predictionssaféciently accurate (within 10-20%)
and that the associated performance overhead is less than®$96h embedded support for What
queries simplifies tuning automation and reduces the adnirior expertise needed to make acquisition
decisions.

1 Introduction

The administration expenses associated with storagensystee 4-8 times higher than the cost of the hardware
and software?, 6, 8]. Storage systems are key parts of important data-centplications, such as DBMSes,
hence their high administration cost directly translate$igher costs for the latter. Storage system admin-
istration involves a broad collection of tasks, includirgtadprotection (administrators decide where to create
replicas, repair damaged components, etc.), problem dsgifadministrators must figure out why a system
is not behaving as expected and determine how to fix it), p@dace tuning (administrators try to meet per-
formance goals with appropriate data distribution amorgdespappropriate parameter settings, etc.), planning
and deployment (administrators determine how many andhwigipes of components to purchase, install and
configure new hardware and software, etc.), and so on.

Like many B, 7, 15], our goal is to simplify administration by increasing autation [5]. Unlike some, our
strategy has been to architect systems from the beginnitngswpport for self-management; building automation
tools atop today’s unmanageable infrastructures is agalplio approach the self-* ideal as adding security
to a finished system rather than integrating it into the sygdesign. We have designed, implemented, and are
starting to deploy a cluster-based storage infrastru¢taied Ursa Minor) with many self-management features
in a data center environment at Carnegie Mellon University.
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Figure 1: Architecture of Ursa Minor

Ursa Minor’s high-level architecture is shown in FigdreThe design separates functionality into two logical
tiers: a mechanical tier that provides storage of and adoedata and a managerial tier that automates many
decision and diagnosis tasks. This separation of concaritis,clean interfaces between them, allows each
tier to be specialized and evolved independently. Yet,weetiers collaborate to simplify administration. The
mechanical tier provides detailed instrumentation antistaformation to the managerial tier and implements
decisions passed down from it.

Ursa Minor's mechanical tier consists of versatile clustased storagel]. We focus on cluster-based stor-
age, rather than traditional monolithic disk arrays, bseatican simplify some aspects of administration by its
nature. For example, unlike monolithic arrays, clusteseobstorage naturally provides incremental scalability.
This feature reduces the consequences of not over-proingi®n initial purchases and the effort involved in
growth over time—one can simply add servers to the clustefeasand increases. Ursa Minor's data access
protocols are versatile, allowing per-object data distitn choices, including data encoding (e.g., replication
vs. erasure codes), fault model (i.e., numbers and typesutiEftolerated), and data placement. This versatility
maximizes the potential benefits of cluster-based storggallbwing one scalable infrastructure to serve the
needs of many data types, rather than forcing adminisgdtoselect the right storage system for a particular
usage at the time of purchase or migrate data from one to enasirequirements change.

The managerial tier contains most of the functionality nalfynassociated with self-* systems. It provides
guidance to the mechanical tier and high-level interfaceadiministrators to manage the storage infrastructure.
The guidance comes in the form of configuration settingsuding the data access versatility choices mentioned
above. Various automation agents examine the instruniemtdata exposed by the mechanical tier, as it serves
client requests, to identify improvements and solutionsliserved problems. These automation agents also
condense instrumentation data to useful information foniatgstrators and allow them to explore the potential
consequences/benefits of adding resources or modifyintpaeats performance and reliability goals.

This paper focuses on our experiences with one specific aspastorage administration: predicting the
performance consequences of changes to system configura&iach predictions represent a crucial building
block for both tuning and acquisition decisions. Yet, suchdctions are extremely difficult to produce in
traditional systems, because the consequences of mosgwaiion changes are determined by a complex
interaction of workload characteristics and system irgkstnAs such, it is a substantial source of headaches for
administrators working with limited budgets.

Ursa Minor supports performance prediction with a combamabf mechanical tier instrumentation and
managerial tier modeling. The mechanical tier collects exubrts various event logs and per-workload, per-



resource activity traceslB]. The mechanical tier processes this information and ugesational laws and
simple models to suppowhat..if queries (e.g.,Whatwould be the expected performance of client A's requests
if | move its data to the set S of newly purchased storage-ntdek??.

~ Our experiences with this approach, to date, have been \a=ijiye. Instrumentation overheads are ac-
ceptable (less than 6%), and prediction accuracies areisuaffly high (usually within 10—-20%) for effective
decision making. This paper discusses these experiemme®, Iessons learned, and directions for continuing
work.

2 Tuning knobsin Ursa Minor

Like any substantial system, Ursa Minor has a number of cordigpn options that have a significant impact
on performance and reliability. In this paper, we focus on sets on knobs: those that define the data’s en-
coding and those that decide where to actually place theatheta the encoding decision has been made. Both
encoding and placement selection involve many trade-offisaae highly dependent upon the underlying system
resources, utilization, and workload access patterns, s¥gtificant benefits are realized when these data dis-
tribution choices are specialized correctly to accesepatand fault tolerance requiremerity [Expecting an
administrator to understand the trade-offs involved iringrihese and to make informed decisions, without sig-
nificant time and system-specific expertise, is unreasendiblis section describes the encoding and placement
options, and the next section explains how Ursa Minor suppmroosing among them.

Data encoding: A data encoding specifies the degree of redundancy withhwdnjgiece of data is encoded,
the manner in which redundancy is achieved, and whethertdhaalata is encrypted. Availability requirements
dictate the degree of data redundancy. Redundancy is achiivreplicating or erasure coding the datall0].
Most erasure coding schemes can be characterized by thmgtara(m,n). An m-of-n scheme encodes data
into n fragmentssuch that reading any of them reconstructs the original data. Confidentialityuissments
dictate whether or not encryption is employed. Encrypt®mperformed prior to encoding (and decryption is
performed after decoding). The basic formVighat..if questions administrators would like answers toghat
would client A's performance béf, its data is encoded using scheme E?”.

There is a large trade-off space in terms of the level of aadity, confidentiality, and system resources (such
as CPU, network, storage) consumed as a result of the emgoldaice L2, 14, 16]. For example, asincreases,
relative tom, data availability increases. However, the storage capaonsumed also increases (as does the
network bandwidth required during data writes). msncreases, the encoding becomes more space-efficient:
less storage capacity is required to provide a specific dagfrédata redundancy. However, availability decreases.
More fragments are needed to reconstruct the data durintg.ré&hen encryption is used, the confidentiality
of the data increases, but the CPU demand also increasasc(igpethe data). The workload for a given piece
of data should also be considered when selecting the dataliegc For example, it may make more sense to
increasem for a write-mostly workload, so that less network bandwidtitonsumed—3-way replication (i.e.,

a 1-of-3 encoding), for example, consumes approximatedp dtbre network bandwidth than a 3-of-5 erasure
coding scheme for an all-write workload. For an all-readkiead, however, both schemes consume the same
network bandwidth.

Data placement: In addition to selecting the data encoding, the storagiesmn which encoded data
fragments are placed must also be selected. When dataadlyniteated, the question of placement must be an-
swered. Afterwards, different system events may causeléiceiment decision to be revisited, such as when new
storage-nodes are added to the cluster, when old storatgsrawe retired, and when workloads have changed
sufficiently to warrant re-balancing load. Quantifying ferformance effect of adding or subtracting a work-
load from a set of storage-nodes is non-trivial. Each seragde may have different physical characteristics
(e.g., the amount of buffer cache, types of disks, and nétemnnectivity) and may host data whose workloads
lead to different levels of contention for the physical iases.



Workload movementVhat..if questions (e.g.,Whatis the expected throughput/response client A canfget
its workload is moved to a set of storage-no®%) need answers to several sub-questions. For example, the
buffer cache hit rate of the new workload and the existingkloads on those storage-nodes need to be evaluated
(i.e., for each of the workloads the question WHatis the buffer cache hit raté | add/subtract workload A
to/from this storage-node?”). The answer to such a quesiibrdepend on the particulars of the workload
access patterns and the storage-node’s buffer cache nmaeapalgorithm. Then, the disk service time for each
of the 1/0 workloads’ requests that miss in buffer cache maked to be predicted (i.e., for each of the workloads,
the question isWhatis the average I/O service tinifel add/subtract workload A to/from this storage-node?”).
The new network and CPU demands on each of the storage-nedds to be predicted as well.

3 Performance prediction support

With hundreds of resources and tens of workloads it is chgifey for administrators to answkvhat..if ques-
tions such as the above. Doing so accurately requires eetailowledge of system internals (e.g., buffer cache
replacement policies) and each workload’s charactesisticess patterns (e.g., locality). Traditionally, admin
istrators use two tools when making decisions on data engoaind placement: their expertise and system
over-provisioning. Most administrators work with a cotiea of rules-of-thumb learned and developed over
their years of experience. Combined with whatever undedstg of application and storage system specifics
are available to them, they apply these rules-of-thumb @omihg challenges. Since human-utilized rules-of-
thumb are rarely precise, over-provisioning is used to cedhe need for detailed decisions. Both tools are
expensive, expertise because it requires specializatidnoger-provisioning because it wastes hardware and
human resources — the additional hardware must be configumédnaintained. Further, sufficient expertise
becomes increasingly difficult to achieve as storage systerd applications grow in complexity.

Ursa Minor is designed to be self-predicting: it is able toyie quantitative answers to performance
guestions involved with administrator planning and aut@dduning. Instrumentation throughout the system
provides detailed monitoring information to automatiomatg, which use simple models to predict the perfor-
mance consequences of specific changes. Such predictiorizeaased, internally, to drive self-tuning. They
can also be exported to administrators via preconfigikét..if query interfaces The remainder of this sec-
tion describes the two primary building blocks, monitoramgd modeling, and illustrates the effectiveness with
example data.

System self-monitoring: The monitoring is to be detailed so that per-workload, reseurce demands and
latencies can be quantified. Aggregate performance cautygically exposed by systems are insufficient for
this purpose. Ursa Minor uses end-to-end instrumentatiaing form of traces oéctivity recordsthat mark
steps reached in the processing of any given request in $trébdied environment. Those traces are stored in
relational databases (Activity DBs) and post-processetbinpute demands and latencies. The monitoring is
scalable (hundreds of distributed nodes with several ressu— CPU, network, buffer cache and disks) and
easy to query per-workload (tens of workloads). The ceided in designing the monitoring is for it to capture
the work done by each of the system’s various resourcesidimgj the CPUs used for data encoding/decoding,
the network, the buffer caches, and the disks. There ar¢Hass200 instrumentation points in Ursa Minor. All
those points of instrumentation are always enabled, andubaeghead has been found to be less than 5-6%, as
qguantified by Thereska et al3]. As a general rule of thumb, we observe that approximatéyobthe available
storage capacity is used for Activity DB storage. Differelents’ access patterns generate different amounts
of traces; the main insight we had from the work on the insemtation of multiple system®][13] is that it is
inexpensive to monitor a distributed system that has stoeddts core. This is because the rate of requests to
such a system is relatively slow, since the system is usti@lypound. We find the performance and statistics
maintenance cost a reasonable performance price to paygfadded predictability.

Performance modeling tools: Modules for answeringVhat..if questions use modeling tools and observa-



tion data to produce answers. Tools used include experahergasurements (for encode/decode CPU costs),
operational laws (for bottleneck analysis of CPU, netwar#t disks), and simulation (for cache hit rate projec-
tions). What..if questions can be layered, with high-leV&hat..if modules combining the answers of multiple
lower-level What..if modules. For exampleMWhatwould be the performance of client A's workloidve add
client B's workload onto the storage-nodes it is using?"dsenswers to questions about how the cache hit rate,
disk workload, and network utilization would change. ¥What..if modules make use of the observation data
collected through self-monitoring. B

The basic strategy for making a high-level prediction imesl consulting low-leveWhat..if modules for
four resources: CPU, network, buffer cache and disk. Toigretlent A's throughput, the automation agents
consult these resource-spechithat..if modules to determine which of the resources will be the etttk one.
Client A's peak throughput will be limited by the throughpmitthat resource. In practice, other clients will share
the resources too, effectively reducing the peak througtimse resources would provide if client A was the
only one running. The automation agents adjusts the thymutgbredicted for client A to account for that.

The CPUWhat..if module answers questions of the forihatis the CPU request demand for requests from
clienti if the data is encoded using scheEf®. The CPU modules use direct measurements of encodeflecod
costs to answer these questions. Direct measurements@Pieost are acceptable, since each encode/decode
operation is short in duration. Direct measurements sgetite need for constructing analytical models for
different CPU architectures. The netwdikhat..if module answers questions of the foriWHhatis the network
request demand for requests from clieifitthe data is encoded using scheB®'. To capture first-order effects,
the network module uses a simple analytical function toiptetetwork demand based on the number of bytes
transmitted. Intuitively, schemes based on replicatidlizatlittle client CPU but place more demand on the
network and storage resourcesstorage nodes are updated on writes). Schemes based orearading are
more network and storage efficient (data is encoded in a ‘tSmary), but require more client CPU work to
encode the data (math is needed for the “smart” way). All seeerequire significant amounts of CPU work
when using encryption.

The buffer cache module answers questions of the fontmdtis the average fraction of read requests
1— p; that miss in the buffer cache (and thus have to go to disk)workload from clienti is added to a
storage-node?”. The buffer cache module can similarly anspwestions on other workloads when one client’s
workload is removed from a storage-node. The buffer cachduieouses simulation to make a prediction.
The module uses buffer cache records of workloads that dve toigrated (collected through monitoring) and
replays them using the buffer cache size and policies ofdifyeet storage-node. The output from this module is
the fraction of hits and misses and a trace of requests tlatthago to disk for each workload. Simulation is
used, rather than an analytical model, because buffer ceplecement and persistence policies are too complex
and system-dependent to be accurately captured usingianbfgrmulas. The storage-node buffer cache policy
in Ursa Minor is a variant of least-recently-used (LRU) witrtain optimizations. The disWhat..if module
answers questions of the formWhatis the average service time of a request from clieifitthat request is
part of a random/sequential, read/write stream?” The geesarvice time for a request is dependent on the
access patterns of the workload and the policy of the unideristorage-node. Storage-nodes in Ursa Minor use
NVRAM and a log-structured disk layoul]], which helps with making write performance more preditgab
(random-access writes appear sequential). When a disktalled, a simple model is built for it, based on the
disk’'s maximum random read and write bandwidth and maximequential read and write bandwidth. These
four parameters are easy to extract empirically. The disélutgis analytical. It receives the sequence of 1/0s
of the different workloads from the buffer cacki¢hat..if module, scans the combined trace to find sequential
and random streams within it, and assigns an expected sdiwie to each request.

Figure2 illustrates the prediction accuracy for two high-leVéhat..if questions the administrator may pose
(for the exact setup of these experiments, please refer ¢oe$ka et al.]2]). In general, we have observed
predictions accuracies are within 10-20% of the measurgdipeance 12].
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4 Lessonslearned and theroad ahead

We have had positive experiences with Ursa Minor’s twoetiearchitecture, particularly in the space of per-
formance self-prediction and its application to self-tghand provisioning decision support. With acceptable
overheads, sufficient instrumentation can be continuogatiiered to drive simple models that can effectively
guide decisions. This sections expands on some key lessanget from our experiences thus far and some
challenges that we continue to work on going forward.

4.1 Lessonslearned

Throw money at predictability: Administration, not hardware and software costs, dorginatlay’s data cen-
ter's costs. Hence, purchasing extra “iron” to allow selgiction may be warranted. Ursa Minor utilizes
“spare” resources to aid with both self-monitoring and mioge Spare CPU is used to collect and parse trace
records (we measure about 1-5% of the CPU goes towards thimgzhine). Spare network is needed to ship
traces to collection points for processing. Spare storageeded to store these traces and statistics (about 5%
of the storage is dedicated to them). Spare CPU time is alsd g automation agents to ansvww&hat..if
questions. B

Per-client, per-resource monitoring isa must: Exporting hundreds of performance counters to an admin-
istrator is counter-productive. Performance counterthaetdifferentiate among workloads in a shared environ-
ment nor correlate across nodes in a distributed envirohmd® instrumentation in Ursa Minor tracks a request
from the moment it enters the system until it leaves, frommraeto machine. Such instrumentation is the only
way to know 1) where requests spend their time, 2) what wasdahtext during which a client experienced a
performance degradation, and 3) what are the bottleneckiress for one specific workload in the distributed
system.

Separ ate data collection from usage: We found that there is value in separating the system im&tntiation



from its use in specific tuning and control loops, rather tiigintly coupling the two. This separation has allowed
easy data access for new uses of the instrumentation, sysrfasmance debugging. It has also allowed us to
continuously refine our notions of what data are needed teraaknformed tuning decision.

Rough system modelswork well: Resources in Ursa Minor (CPU, buffer pool, network, dikea)e simple
models associated with them. These models are based ohrdeasurements (CPU), analytical laws (network,
disk) and simulation (buffer pool). These resources areptexnespecially when shared by multiple workloads
(e.g., the disk’s performance may range over two orders @fitade depending on the workload’s and disk’s
characteristics). However, basic modeling works well,east to pinpoint the bottleneck resource and give
bounds on improvement if the bottleneck is removed. Funtloee, rough modeling is usually sufficient to pick
one from among four or five possible configurations.

4.2 Research agenda

We are following several research directions toward maktogage systems truly self-5], including automated
data protection, problem diagnosis and repair, and of edunsing. This paper discusses our experiences with
one building block: performance prediction support. Everthis one sub-area, several difficult and exciting
research issues still remain:

Predicting values beyond the average: We need to develop a common terminology for how to measure
predictability (and thus know when we have reached a satfaoutcome). All our predictions so far concen-
trate on expected values, or averages. Making predictibostavariance requires assumptions about workload
patterns (e.g., Poisson arrival times) that may not holdw ldan we ensure the variance is predicted within
reasonable bounds as well? Can we get a notion of confideroeiated with each prediction?

Co-operation with other self-* systems. How will Ursa Minor interact with other self-* systems, e.@
DBMS that also has self-tuning at its core? The DBMS may detiddo an optimization (e.g., suggest to its
administrator to double the amount of buffer cache). Thahge may alter the workload that Ursa Minor sees,
triggering in turn an optimization from Ursa Minor (e.g.,darMinor could suggest to its administrator to switch
the encoding from 3-way replication to 3-of-5). It is debilefor the combined DBM$Ursa Minor system to
be stable, settle on good global configurations and avoidatémy cycles of optimization. Should the DBMS
micro-manage Ursa Minor’s operations and optimizationshould the DBMS convey high-level performance
goals to Ursa Minor and let the latter take any necessargrati meet those goals?

Integration of legacy components. We built Ursa Minor from scratch and were thus able to insadugh
detailed instrumentation inside it to answer the abdtiet..if questions. However, it is convenient to be able to
incorporate off-the-shelf components, such as databfisagrious services within Ursa Minor (e.g., a metadata
service, an asynchronous event notification service, &@erformance prediction possible when such legacy
systems are introduced within Ursa Minor? In particulasy lndll we account for their resource utilization (they
may use all four system resources just like clients)? WhatskofWhat..if questions can be answered for these
legacy components and how fine-grained can they be? B

Performance isolation for predictability: Without a basic level of performance isolation in a shaned e
vironment with competing workloads, predictions will na meaningful. Whenever a prediction is made that
workloadW, will get X MB/s of throughput (a QoS guarantee), that prediction showlt be annulled when
another workload\,, .1 comes inside the system. Although performance isolatiothi® CPU and network re-
sources is usually straightforward to do (utilizing wefledevn scheduling techniques), it still eludes researchers
for the disk resource, which is traditionally non-work-sernving (the cost of a disk “context switch” is pro-
hibitively high, on the order of milliseconds).
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