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Abstract We revisit the method of Tsai, Huang, and Zhu for
the computation of camera motion parameters in computer
vision. We elucidate some spectral properties of the homog-
raphy matrices that arise, which are rank-one perturbations
of rotation matrices. We show how to correct for noise by
finding the rank-one perturbation of a rotation closest to
a given matrix. We illustrate some of the inaccuracies and
computational failures that can arise when using the formu-
las given by Tsai, and we propose new formulas that avoid
these pitfalls. A computational experiment shows that the
new methods are indeed quite robust.

Keywords Camera pose · Singular value decomposition ·
Homography

1 Introduction

A 3 × 3 homography matrix H maps the image of a plane
taken by one camera to the image of the same plane taken
by a second camera. The relative position of these two cam-
eras can be described by a three dimensional rotation and a
translation that takes the position of one of the cameras to
the position of the other. The rotation may be described by a
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3 × 3 rotation matrix, an orthogonal matrix whose determi-
nant is +1. A suitably scaled homography H satisfies

H = R − xyT (1)

where R is a rotation matrix, x is a scaling of the trans-
lation, the difference between the coordinates of the cam-
era centers, and y is a scaling of the normal of the imaged
plane. (Clearly x and y are determined by their outer prod-
uct xyT only up to a mutual scaling.) We call any matrix of
the form (1) a rank-one perturbation of a rotation or ROPR.
The basic problem that we consider is, given the ROPR ma-
trix H , to compute a triple R, x, and y, which are the motion
parameters, so that (1) holds. In all discussions of ROPRs
we shall normalize y so that ‖y‖ = 1, where ‖ · ‖ denotes
the 2-norm, so as to pin down the mutual rescaling. This
still leaves open the signs, since changing the signs of both x

and y changes nothing, but we won’t specify the sign. A unit
vector is a vector z satisfying zT z = ‖z‖2 = 1.

The basic problem was solved by Tsai, Huang, and
Zhu [5]. They explained the mathematics using geometric
arguments, and derived formulas for the computation of the
motion parameters. Some things, however, were left for us
to consider. In this paper we shall state and solve three prob-
lems that, in their solution and in the context of the Tsai pa-
per, complete a full theory of the computation of the motion
parameters. First we prove properties, relevant to the com-
putation, of a ROPR. We discuss the existence and unique-
ness of solutions of (1) and derive some new results. Second,
based on a theorem of Nievergelt, we show how to find the
ROPR closest to a given matrix. Finally, we discuss inaccu-
racies in the computed results that can arise from roundoff
error when the formulas of Tsai are used, and we present
alternatives that are at once simpler and more accurate.
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2 Properties of a Rank-One Perturbation of a Rotation

In this section we shall determine the existence and unique-
ness of solutions to the basic problem. Our discussion hinges
on the multiplicity of the singular values of H . We shall
prove that the second singular value of any ROPR is one.
The first singular value may be greater than or equal to one
and the third may be less than or equal to one. In the general
case all three of the singular values are different; the special
cases can arise when the rotation of the image-plane normal
vector is collinear with the translation vector, in other words
when x is a scalar multiple of Ry. We shall show that the ba-
sic problem has infinitely many solutions when H has three
singular values equal to one, has a unique solution when two
of the singular values of H are equal to one, and has exactly
two solutions when the singular values of H are distinct.

Every matrix H has a singular value decomposition

H = UΣV T . (2)

Here U and V are orthogonal matrices, UT U = V T V = I ,
and

Σ =
⎛
⎝

σ1 0 0
0 σ2 0
0 0 σ3

⎞
⎠ (3)

is a diagonal matrix whose diagonal elements, the singular
values of H , are given in nonincreasing order: σ1 ≥ σ2 ≥ σ3.
We will use the notation D(a,b, c) for the diagonal ma-
trix of order 3 having a, b, and c on the diagonal; so
Σ = D(σ1, σ2, σ3). The singular values of H are the pos-
itive square roots of the eigenvalues of HHT , the columns
of U are eigenvectors of HHT and the columns of V eigen-
vectors of HT H .

We introduce the vector w = Ry and the matrix B ≡
HHT − I . It is elementary that the matrix H is orthogonal
if and only if B = 0, if and only if Σ = I .

If H is a ROPR, then

B = xxT − wxT − xwT

= (x − w)(x − w)T − wwT . (4)

We shall also make reference to C ≡ HT H −I , which when
H is a ROPR satisfies

C = (xT x)yyT − (RT x)yT − y(RT x)T . (5)

As addition of I does not change eigenvectors, we see that
U consists of eigenvectors of B and V of eigenvectors
of C. If H is a ROPR then because the columns of B are
all linear combinations of x and Ry, it cannot have full
rank: rank(B) ≤ 2. Moreover, rank(C) = rank(B), since the
columns of C are linear combinations of RT x and RT Ry.
We deal in turn with the three possibilities, rank(B) = 0,1,
or 2, below.

Lemma 1 If z is a unit vector then the matrix X ≡ I −2zzT

is symmetric and orthogonal, and det(X) = −1.

Proof It is straightforward that XT X = I , so that X is sym-
metric and orthogonal. Extend z to an orthonormal basis
and let Z be the orthogonal matrix with this basis as its
columns. Then XZ = Z − 2zzT Z = ZD(−1,1,1) whence
det(X) = det(ZT XZ) = −1. �

Matrices of the form I − 2zzT with unit-length z are called
elementary reflectors or Householder transformations after
Alston Householder, who pioneered their use in matrix com-
putation [3].

Thanks to the SVD, the basic problem can be recast as
the problem of finding a rank-one perturbation of a diagonal
matrix that is orthogonal and has determinant of the correct
sign, namely

Δ ≡ det(U)det(V ).

Lemma 2 The triple x, y, and R = H + xyT solves (1) if
and only if the matrix

Q ≡ Σ + (UT x)(V T y)T

is orthogonal and det(Q) = Δ.

Proof If Q has the specified properties then R = UQV T =
H + xyT is a rotation and is a rank-one perturbation of H .
If R, x, and y satisfy (1) and R is a rotation then UT RV =
UT (H + xyT )V = Q is orthogonal and has determinant
equal to Δ. �

We consider first the case in which rank(B) = 0.

Lemma 3 The ROPR H is orthogonal (and Σ = I , and
B = 0) if and only if either x = 0 or x = 2Ry. In the former
case, det(H) = 1 and in the latter, det(H) = −1.

Proof By (4), B = 0 if and only if x − w = ±w if and only
if x = 0 or x = 2w. When x = 0, H = R is a rotation and its
determinant is 1. When x = 2w = 2Ry, H = R − 2RyyT =
R(I − 2yyT ) and hence det(H) = det(I − 2yyT ) = −1 by
Lemma 1. �

We now completely understand the case B = 0, Σ = I ,
and H is orthogonal. If the determinant of H is one, then
the displacement vector x = 0 and there is no way to recover
the image plane normal vector y from H ; there are infinitely
many solution triples. Indeed R = H , x = 0, y satisfy (1) for
any unit-length y. On the other hand, if the determinant of H

is −1, there are again infinitely many solutions. Let z be any
unit vector, and X = I −2zzT the corresponding elementary
reflector. Let R = HX = H(I − 2zzT ) = H − (2Hz)zT .
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Clearly, det(R) = det(H)det(X) = 1, so R is a rotation. The
triple R, x = −2Hz, and y = z satisfies (1), and is clearly
distinct for each unit vector z.

We summarize this in the following.

Theorem 1 Let H be orthogonal. Then H is a ROPR. If
det(H) = 1 then R = H , x = 0, and y = z satisfy (1) for any
unit vector z. If det(H) = −1 then R = HX, x = −2Hz,
and y = z satisfy (1) for any unit vector z and corresponding
elementary reflector X = I − 2zzT .

The case rank(B) = 0 now being settled, we consider the
next possibility, in which rank(B) = 1, or equivalently the
case in which two of the singular values of H are unity. As
shown next, this case arises when x = αRy with α �∈ {0,2}.

Lemma 4 If x = αRy then the symmetric matrix B in (4)
has

(i) one negative eigenvalue if 0 < α < 2,
(ii) no nonzero eigenvalue (that is, B = 0) if α = 0 or

α = 2,
(iii) one positive eigenvalue if α /∈ [0,2].

Proof If x = αRy then B = (α2 − 2α)wwT . The vector
w = Ry is nonzero. Thus, rank(B) ≤ 1, at least two of
the eigenvalues of B are zero, and the third is given by
α2 − 2α. �

Suppose we have a solution R, x, y to the basic problem.
From Lemma 2 we see that with the definitions u ≡ UT x

and v ≡ V T y we have that Q = UT RV = Σ + uvT is or-
thogonal. We compute that

I = QQT = Σ2 + (Σv)uT + u(Σv)T + uuT

where we have used 1 = yT y = vT (V T V )v = vT v. Sup-
pose without loss of generality that it is the first singular
value σ1 that is different from, indeed greater than, unity.
Then we have that

I − Σ2 =
⎛
⎝

1 − σ 2
1 0 0

0 0 0
0 0 0

⎞
⎠

= (Σv)uT + u(Σv)T + uuT

≡ M.

The matrix M evidently has rank one, and we can there-
fore conclude that Σv is a scalar multiple αu, and that M

is therefore (1 + 2α)uuT . The form of M then implies that
only the first element of u is nonzero, and then this is also
true of Σv, and hence of v, and finally the normalization of
v leads to the conclusion v = (1,0,0)T and u = (u1,0,0)T

where u1 is a root of the quadratic u2
1 + 2σ1u1 + (σ 2

1 − 1) =

0. The solution u1 = 1 − σ1 leads to Q = I and is appropri-
ate when Δ = 1. The other solution, u1 = −1 − σ1 leads to
Q = D(−1,1,1) and is correct when Δ = −1.

When it is the third rather than the first singular value
that differs from one, then v = (0,0,1) and u = (0,0, u3),
but nothing essential changes. This proves

Theorem 2 Let H have two singular values equal to one, so
that rank(B) = 1. Then H is a ROPR and there is a unique
solution to (1). When B has a positive eigenvalue then x is
a multiple of the first column of U and y is the first column
of V . When B has a negative eigenvalue then x is a multiple
of the third column of U and y is the third column of V .

In Tsai, the possibilities in the rank-deficient cases are
further limited, perhaps by what is physically realizable
in a two-camera situation. Thus, the fully degenerate case
(Σ = I ) is identified with a translation x equal to zero; the
other possibility is ignored. In the partly degenerate case in
which w and x are linearly dependent, it is assumed or per-
haps shown via geometric arguments that σ1 = σ2 > σ3, in
other words that B is negative semidefinite. We think there
is considerable value to considering the fully general alge-
braic rather than geometric problem of reconstructing the
constituent terms making up a otherwise completely arbi-
trary ROPR. So we consider all the possibilities here, even
if they cannot be realized with physical cameras.

Moving ahead, we consider for the remainder of this sec-
tion the generic case, in which rank(B) = 2 and the singular
values of H are distinct.

Lemma 5 Let H be a ROPR and let B be given by (4). B

has rank 2 if and only if x and Ry are linearly independent.
In that case, the singular values of H satisfy

σ1 > σ2 = 1 > σ3. (6)

Furthermore, x is not an eigenvector of B , and y is not an
eigenvector of the matrix C of (5).

Proof The matrix uuT − vvT has the span of {u,v} as its
range. It thus has rank 2 if and only if u and v are linearly
independent. The vectors x and w are linearly independent
if and only if x − w and w are linearly independent. These
observations and (4) prove the first assertion.

It is straightforward to show that when u and v are lin-
early independent, the matrix A = uuT − vvT has one pos-
itive and one negative eigenvalue (and the rest are zero). In-
deed, if z is in the span of u and v and is orthogonal to v

then zT Az = (zT u)2 > 0, and if z is in the span of u and
v and is orthogonal to u then zT Az = −(zT v)2 < 0, which
implies that A is indefinite and hence has nonzero eigenval-
ues of both signs. Since B is of this form, and has rank 2,
we know that its eigenvalues are β1 > β2 = 0 > β3. Since
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HHT = I +B , the singular values of H and the eigenvalues
of B are related by σ 2

i = 1 + βi . This allows us to conclude
that the ordering relations in (6) hold.

Again, if u and v are linearly independent and A = uuT −
vvT then z = u+v is not an eigenvector of A. For if it were,
say Az = λz, then equating coefficients of u and v (valid
due to their independence) we find that λ = uT u + uT v =
−(vT v + uT v) which leads to −2uT v = uT u + vT v, or
0 = (u + v)T (u + v) which implies that u = −v, which
is impossible because they were assumed to be linearly in-
dependent. Now note that x is the sum of x − w and w,
and that (4) holds, whence we can conclude that x is not an
eigenvector of B . Similar reasoning applied to y shows that
it is not an eigenvector of C. �

Lemma 5 has as an immediate consequence the follow-
ing:

Theorem 3 The second singular value of a ROPR is equal
to one.

Proof If rank(B) = 0 then Σ = I ; all of the singular values
are equal to one. If rank(B) = 1 then either the largest sin-
gular value is greater than one or the smallest is less than
one, but the other two, and always the second, are equal to
one. If rank(B) = 2 then Lemma 5 applies. Finally, as noted
above, rank(B) > 2 is impossible. �

Let A(:, k) denote the kth column of the matrix A.

Lemma 6 Let H be a ROPR that is not orthogonal. Then
U(:,2) is orthogonal to both x and Ry, and V (:,2) is or-
thogonal to both y and RT x.

Proof If x and Ry are linearly dependent then so are RT x

and y. In that case, and since B �= 0, we have by Lemma 2
that both x and Ry are multiples of either U(: .1) or of
U(:,3), and similarly that both RT x and y are multiples of
either V (: .1) or of V (:,3). In case rank(B) = 2, Lemma 5
shows that the eigenvalues of B are distinct, and the sec-
ond of them is zero. By (4), the one-dimensional null space
of B is the set of vectors orthogonal to both x and Ry. And
U(:,2) is the normalized null vector of B , so it is orthog-
onal to x and Ry. Similar arguments based on HT H yield
the corresponding conclusion concerning V (:,2). �

Lemmas 5 and 6 give us the following guide to where to
look for the vectors x and y.

Corollary 1 When the ROPR H is not orthogonal, x is a
linear combination of U(:,1) and U(:,3) and y is a linear
combination of V (:,1) and V (:,3). Moreover, when the sin-
gular values of H are distinct, then x = aU(:,1) + cU(:,3)

and y = bV (:,1) + dV (:,3) and none of the four scalars
a, b, c, d is zero.

Suppose that H is a ROPR, not orthogonal. Then

UT x =
⎛
⎝

a

0
c

⎞
⎠

and

V T y =
⎛
⎝

b

0
d

⎞
⎠ .

We know (Theorem 3) that σ2 = 1. Thus,

Q = Σ + UT x(V T y)T

=
⎛
⎝

σ1 + ab 0 ad

0 1 0
cb 0 σ3 + cd

⎞
⎠ . (7)

Clearly, the 2 × 2 matrix

Q2 = Q2(a, b, c, d) =
(

σ1 + ab ad

cb σ3 + cd

)
(8)

is orthogonal along with Q, and it has the same determinant.
Thus, the problem of computing the motion parameters

reduces to the diagonal, 2×2 case. Given the computed first
and third singular values

σ1 > 1 > σ3 (9)

of H , (suitably adjusted as above to enforce these relations)
determine the scalars a, b, c, and d so that Q2(a, b, c, d) is
orthogonal and has the desired determinant, namely Δ.

An orthogonal matrix of order 2 having positive determi-
nant is a plane-rotation matrix of the form
(

C S

−S C

)
(10)

where C = cos θ and S = sin θ . Any orthogonal matrix of
order 2 whose determinant is −1 is of the form
(

C S

S −C

)
(11)

for a sine, cosine pair.
While we already showed that none of the four scalars

can be zero, we now have another simple proof of the fact.
We claim that the off-diagonal elements of Q2 are nonzero,
which implies this. For if they, the sines, are zero, then the
diagonal elements, the cosines, are ±1. In order for this to
occur and in view of (9), we would need that both ab and cd

be nonzero, whence the off diagonal entries would also be
nonzero, a contradiction. And if the sines are nonzero then
by (8) none of the four parameters can vanish.

Suppose that Q2(a, b, c, d) has the desired properties.
We claim that Q2(−a,−b, c, d) has them as well. In the
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case that Q2 is a rotation, the sign change alters Q2 from
the plane rotation through the angle θ to the rotation through
the angle −θ ; it is still a rotation, orthogonal, with determi-
nant one. When Δ = −1, the change in the signs of a and
b again changes only the signs of the off-diagonal elements
of Q2, leaving it orthogonal with determinant −1. As none
of the four scalars is zero, this sign change represents an
actual change to the motion parameters R, x, and y. Thus,
when rank(B) = 2, the solutions to the basic problem come
in pairs. We need to prove now that there is just one pair that
satisfies (1), always up to mutual rescaling of x and y.

To do so we simply note that the requirements on Q2

amount to a set of quadratic equations, and that these ad-
mit exactly two real solutions. We have two equations cor-
responding to the form of Q2, either (10) or (11), and one
equation that amounts to C2 + S2 = 1. Because we know
that d �= 0, for the moment we take d = 1, and we renor-
malize later. Let Y ≡ 1 + b2 and let D ≡ σ1 − σ3. From the
assumption that Q2 is a plane rotation we derive the require-
ment

Y = σ 2
1 − σ 2

3

1 − σ 2
3

.

Thus, with Y uniquely determined, we have only two pos-
sibilities for b, namely b = ±√

Y − 1. It turns out that
c = D/Y is unique and a = −bc changes sign along with b.
Similar elementary algebra solves the case Δ = −1 as well.

Theorem 4 Let H have SVD (2) with distinct singular val-
ues satisfying (6). Up to reversal of the signs of x and y,
there are exactly two triples R, x, y with ‖y‖ = 1 sat-
isfying (1), corresponding to the two sets, (a, b, c, d) and
(−a,−b, c, d) of scalars for which the matrix Q2 of (8) is
orthogonal and has determinant Δ.

Theorem 5 A matrix is a ROPR if its second singular value
is one.

Proof Let H be the given matrix. There are three cases. If all
of the singular values of H are one, then Theorem 1 shows
that H is a ROPR. If exactly one of the singular values of H

differs from one, then Theorem 2 shows that H is a ROPR.
And if the second is the only one of H ’s singular values
equal to one, then Theorem 4 shows that H is a ROPR. �

Note that Theorems 3 and 5 are the two halves of a proof
that H is a ROPR if and only if its second singular value is
equal to one. An analog of this result holds for matrices of
arbitrary order. All the singular values except possibly the
first and last are one.

3 Finding the Closest ROPR

A measured homography might be corrupted by noise and
hence lose the ROPR property. How to recover it best? An
obvious question is whether one can compute the closest
ROPR to the given matrix H . A theorem of Nievergelt gives
us a convenient way to do this. Compute the SVD (2)–(3)
of H . If σ2 �= 1 then H is not a ROPR. To find the clos-
est ROPR, set σ2 equal to one, set σ1 to one of it is not
already greater than or equal to one, and set σ3 to one if it is
not already less than or equal to one. After this adjustment
of the singular values, the reconstituted Ĥ = UΣV T is the
ROPR closest to the given H in any unitarily invariant norm
(such as the Frobenius norm). This follows from a theorem
of Nievergelt [4]. When a is an n-vector we write D(a) for
the diagonal matrix of order n having the elements of a on
the diagonal.

Theorem 6 Let A be a given matrix, with SVD A =
UAΣAV T

A . Let a be the ordered vector of singular values,
a = (α1 ≥ α2 ≥ · · · ≥ αn), for which ΣA = D(a). Let ‖ · ‖
be a unitarily invariant matrix norm. Among all matrices
of the same shape as A whose singular values satisfy a
given set of linear equations, the closest approximation in
the given norm to A is the matrix B = UAΣBV T

A that has
the same singular vectors as A and whose singular values
ΣB = D(b) where the vector b = (β1 ≥ β2 ≥ · · · ≥ βn) is
nonincreasing, satisfies the given linear equations and is
closest to a among all such vectors. It is closest with re-
spect to the induced vector norm ‖u−v‖ = ‖D(u−v)‖, the
second quantity measured with the given matrix norm.

Our procedure for adjusting the singular values to en-
force the linear equation σ2 = 1 finds a sorted vector of sin-
gular values closest to the given computed singular values,
whether we are using the matrix Frobenius norm (for which
the induced vector norm is the 2-norm, and the closest vector
is ours, uniquely) or the matrix spectral norm, for which the
induced vector norm is the uniform norm, and our adjusted
vector is closest although possibly not uniquely so.

4 Computation of the Parameters

Let H = R − xyT be a given ROPR. How can we compute
the motion parameters?

We begin with the computation of the singular value de-
composition H = UΣV T . If the computed singular values
fail to satisfy (6) we adjust them to make sure that it holds.
This process is

1. If σ1 < 1 set σ1 = 1.
2. Set σ2 = 1.
3. If σ3 > 1 set σ3 = 1.
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This ensures that we are working with the singular values of
a ROPR, in fact to the ROPR closest to UΣV T .

The solution procedure, naturally, checks the singular
values, and considers three distinct cases. In each case, we
show how the four scalars a, b, c, and d are computed. The
vectors x and y are then obtained as x = aU(:,1)+ cU(:,3)

and y = bV (:,1)+dV (:,3), followed by rescaling to get the
desired normalization of y. Given the four scalar parameters,
we may determine Q from (7), and R as R = UQV T .

When all three of the singular values of H are one, there
are infinitely many solutions to the basic problem. In addi-
tion to indicating that this is the case, we can provide an
exemplary solution by taking

a = b = 0;
and

c = d = 0 when Δ = 1

while

c = −2, d = 1 when Δ = −1.

When σ1 > 1 = σ3 we compute

c = d = 0;
and

a = 1 − σ1, b = 1 when Δ = 1

while

c = −1 − σ1, b = 1 when Δ = −1.

When σ1 = 1 > σ3 we compute

a = b = 0;
and

c = 1 − σ3, d = 1 when Δ = 1

while

c = −1 − σ3, d = 1 when Δ = −1.

In the general case of rank(B) = 2, Tsai offered the fol-
lowing formulas for computation of the elements of Q and
the scalars a, b, c, d :

b = ±
(

σ 2
1 − 1

1 − σ 2
3

)1/2

,

C = σ1 + Δσ3b
2

1 + b2
,

S = ∓(1 − C2)1/2,

a = −S,

c = σ3 − ΔC,

d = 1.

The two solutions are obtained with the two choices for the
sign of b, the sign of S (and thus of a) is always taken to be
the opposite of the sign of b.1

There are several things to observe about these formulas,
from the numerical analysis viewpoint. First, square roots
are involved, and these may be costly. Second and more im-
portant, the occurrences of the differences of the squares of
computed quantities, such as 1−C2 and 1−σ 2

3 , is problem-
atic. Suppose that x is known to nearly full working preci-
sion Suppose, furthermore, that x is close to one: x = 1 − δ

and the difference δ is quite small. When we square x we
get 1 − 2δ + δ2, and if |δ| is smaller than the square root of
machine precision, then this rounds to 1 − 2δ. This roundoff
loses important information; the loss is revealed when we
compute the difference 1 − x2 = 2δ, which is now known
to only half of machine precision. When we take the square
root, we therefore get a result for which only half the digits
are meaningful. That these things lead to difficulties will be
shown by an example below. The problem at hand is in fact
one of solving a certain quadratic equation.2

The Tsai formulas can produce poor results in floating
point for matrices H that are close to orthogonal. Our cri-
terion is backward error; in other words, we want the com-
puted R, x, and y produce small residuals: ‖H −(R−xyT )‖
and ‖I − RT R‖.

All the computations reported here were done in Matlab
on a Pentium PC. On that machine, the machine precision is
>> eps

2.220446049250313e-016

This is the smallest floating-point number ε for which, in
floating-point arithmetic, 1 + ε > 1. It is an upper bound
on the relative error due to roundoff of all the individual
floating-point operations.

1Note that Tsai work with an arbitrarily scaled H , so that they do not
assume that σ2 = 1. Their formulas use σ2 explicitly, but what they
compute is unchanged when H and hence its singular values are di-
vided by the original σ2. So, in effect, we have given the Tsai formu-
las in their application to a matrix that has been rescaled to make it
a ROPR.
2The difficulties arising out of the use of textbook formulas in general
and for quadratic solvers in particular were described by Forsythe in
the 1960s [1, 2].
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We start with a ROPR whose singular values are all close to one.

H =

8.704900920846258e-001 -1.934310566425376e-001 -4.525830596792723e-001
2.129569923832601e-001 9.770290004164705e-001 -7.978204075402978e-003
4.437300068482838e-001 -8.943577959264387e-002 8.916865605979933e-001

(svd(H) - 1) / eps

5.000000000000000e+000
0

-1.500000000000000e+000

so σ1 = 1 + 5ε and σ3 = 1 − 3ε/2.
Using the Tsai formulas we compute

R =

8.704900824376416e-001 -1.934310571519026e-001 -4.525830780164072e-001
2.129569927869023e-001 9.770290002918595e-001 -7.978208561405749e-003
4.437300255795939e-001 -8.943577985229112e-002 8.916865512506879e-001

x =

3.818651214787898e-008
9.341961297641860e-009
1.946547264029802e-008

y =

-8.770580193070293e-001
-1.333886764133851e-002
-4.801992350881847e-001

There is no problem with orthogonality:

>> I - R’*R

1.110223024625157e-016 2.775557561562891e-017 5.551115123125783e-017
2.775557561562891e-017 -4.440892098500626e-016 -2.220446049250313e-016
5.551115123125783e-017 -2.220446049250313e-016 -2.220446049250313e-016

but there is a considerable problem with the residual:

>> H - (R-x*y’):

-2.384480246586662e-008 1.665334536937735e-016 9.992007221626409e-016
-8.597084266703803e-009 -2.220446049250313e-016 1.006139616066548e-016
-3.580365898203652e-008 -1.110223024625157e-016 4.440892098500626e-016

We have evidently lost half of the machine precision in the first column of the residual. Moreover, the computed R is not a
rank one perturbation of the input matrix H ; indeed:
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svd(H - Rt)

2.107342574994512e-008
2.107342383834948e-008
2.052743982474621e-016

The difficulty is with the formula for S. The correct S is
of size O(ε), but the roundoff in forming S2 = (1 − C2)

makes this quantity, which in exact arithmetic is O(ε2),
of size O(ε), whence we compute an approximate S of
size O(

√
ε).

How can we correct the problem? We shall give alterna-
tive computational formulas, that avoid the roundoff error
issues. The key is to work through the problematic roundoff
sensitive places in exact arithmetic (algebraic simplification
of the formulas). By algebraic simplifications, we avoid tak-
ing the square root of the difference of squares of computed
quantities that can be close to one another. Instead we com-
pute

b2 = σ1 − 1

1 − σ3

σ1 + 1

σ3 + 1
,

b =
√

b2,

d = 1.

If Δ = 1 then

c = (1 − σ3)(1 + σ3)

σ1 + σ3

and

a = −cb,

while if Δ = −1 then

c = (1 − σ3)(1 + σ3)

σ3 − σ1

and

a = cb.

We complete the calculation of R thus:

C = σ3 + c

and

R = UQV T

where

Q =
⎛
⎝

ΔC 0 a

0 1 0
cb 0 C

⎞
⎠ .

Note that the off-diagonal elements of Q2 are now computed
as the product cb rather than from the relation S = √

1 − C2,
avoiding the cancellation and loss of precision when S =
O(ε). It is easy to see that in the difficult case in which both
σ1 − 1 and 1 − σ3 are O(ε), the computed b = O(1) and
c = O(ε), so that the computed S = O(ε) as it should be.

5 Computation of the Parameters: Experiment

We tested the proposed procedures for a set of matrices gen-
erated so as to present some challenges to the software. We
formed ROPR test matrices by generating a pair of random
3 × 3 orthogonal matrices U and V , chosen by creating ran-
dom rotation matrices, and then negating the third column
of V in half the cases so as to get some with positive and
some with negative determinant. We specified the singular
values, keeping σ2 = 1 of course, and taking σ1 and σ3 ei-
ther far from, or very close to (a small multiple of machine
precision) or exactly equal to one. Although we begin with
specified singular values, we don’t give these to the soft-
ware. Rather we form H = UΣV T and present it. The sub-
sequent computation of the SVD of this computed H will,
due to roundoff in forming it and in computing its SVD,
yield slightly perturbed singular values. We view this as an
advantage, causing additional, and realistic, difficulties to be
presented to our code.

In tests on over 100,000 such randomly generated ma-
trices, our code never fails to produce accurate results. We
check the determinant of R, check its orthogonality by mea-
suring the largest element of RT R − I , and check the largest
element of the residual H −(R−xyT ). We have never found
a case in which the error exceeds 16ε where ε is the machine
precision. As above, the tests were done in Matlab running
on a Pentium PC.

The Tsai formulas were also tested in this way, and found
to suffer from a number of other failures. They fail with
a divide-by-zero if σ2 = σ3. They can attempt to take the
square root of a tiny negative quantity due to roundoff. Most
important is the failure illustrated above, in which the use of
the computation of a sine from the relation sin = √

1 − cos2

leads to the loss of half the working precision in cases in
which the correct rotation is very close to the identity.

6 Conclusion

We have described several noteworthy properties of the SVD
of a rank-one perturbation of a rotation, which is a matrix
of the form R − xyT with R a rotation. Using these facts,
we were able to show how to find the rank-one perturba-
tion of a rotation closest to a given matrix. And we were
have given numerically robust formulas that allow the effi-
cient and accurate computation of the parameters R, x, and
y given H = R − xyT .
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