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Abstract

The spatiotemporal (ST) surface has been shown to
be a useful representation of projected scene dynam-
ics. Qur previous use of this representation has fo-
cused on geometric recovery of scene static siructure
from the analysis of relative motions on the moving
image plane. That earlier work ezploited the implicit
partitioning of motions along epipolar lines to enable
search-free feature tracking and position estimation.
The ST manifolds provide explicit information about
feature 3D contiguity, and their use leads to the re-
covery of feature 3D position, object 3D contours, and
scene 3D surfaces. We have recently turned our atten-
tion to the task of interpreting non-static scenes, and
track and estimate motions of independently moving
objects and background by their appearance and be-
havior on the ST surface. Selecting the most reliable
and discriminating information in the scene, the sys-
tem demonstrates robust feature tracking over a large
range of feature sizes and velocities. When coupled
with the more mature Epipolar-Plane Image Analy-
sis system, this motion analysis capability will enable
camera solving, dynamics tracking, and scene recon-
struction within a unified framework.

1 Tracking over an Image Sequence

The problem of tracking particular objects through
a series of images has proved to be a challenging
one. The most common tracking techniques include
edge (or more generally, feature) tracking, centroid
tracking, correlation tracking, and gradient-based op-
tic flow analysis. Each suffers from significant disad-
vantages. Edge tracking is problematic because it is
difficult to make a robust association between a par-
ticular group of edges' and the object being tracked.
Centroid tracking is difficult for related reasons: there
is no clear association between scene objects and com-
putable centroids. Correlation tracking is problematic
due to changing aspect of the target with respect to
the tracker; the tracked object can rotate while trans-
lating, changing its image appearance from one frame
to the next. Gradient-based optic flow relates differen-
tial changes in reflectance with orientation or motion
of surfaces in the scene. This relationship is approxi-

lsome of which may be only artifacts of position or
illumination
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mate for short spatial or temporal baselines and quite
inappropriate for long baselines.? Feature analysis has
advantage in that it focuses processing at the most dis-
criminable parts of the imagery with the greatest lo-
calization and provides robustness through lower sen-
sitivity to projective difficulties such as occlusion and
illumination effects.

This paper describes our efforts at utilizing fea-
ture tracking on the space-time surface [2] for motion
analysis. The principal distinction of this space-time-
manifold approach to motion analysis is that it uni-
fies the representation of scene features over space and
time. In feature tracking this alleviates the major dif-
ficulty of feature-based analysis — the correspondence
problem. For EPI analysis it will resolve indepen-
dent motions within the same framework as solving for
scene geometric structure. In discussing our approach
to motion analysis we will begin by summarizing our
earlier research in recovering scene structure from mo-
tion (Epipolar-Plane Image (EPI) Analysis, described
in [3] and [4]), connect the techniques used there with
the more general problem of unknown scene dynamics,
and then discuss our use of the ST surface for motion
tracking.

1.1 ST Manifolds for Scene Structure

In the scene reconstruction task, our use of the spa-
tiotemporal surface involved tracking features as they
moved under known constraints in space-time, and ap-
proximating and maintaining estimates of their posi-
tions through the sequence. The approach bridged
the usual dichotomy of depth sensing in that its large
number of images led to a large baseline and thus high
accuracy, while rapid image sampling gave minimal
change from frame to frame and, with camera knowl-
edge, eliminated the correspondence problem. Within
this framework, we generalized from the traditional
notion of epipolar lines to that of epipolar planes. We
then formulated a tracking process that exploited the
above constraints in determining the position of fea-
tures in the scene.

Our tracker was a sequential linear estimator, im-
plemented as a Square Root filter without the extrapo-
lation phase. Extrapolation was unnecessary since the
camera constraints and the space-time surface told us

2Notice the mapping and resampling necessary in Heel’s work
[9] to make optic flow coherent across time.
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where each feature moved from frame to frame ( there
was no ‘aperture problem’). The work of Matthies[10]
had similarities to ours in its pursuit of scene depth
from the analysis of image sequences, but lacked sev-
eral important elements, including the generality with
respect to view angle that came with our use of a line-
of-sight formulation, the explicit use of spatial connec-
tivity that provides higher-level scene contour descrip-
tors, and our match-free tracking.

While simplifying the problem through the use of
three assumptions — the camera movement was linear,
its position and attitude were known, data capture
was sufficiently rapid that the imagery was temporally
coherent — we developed a system that could a) work
for any camera attitude, b) acquire images at varying
rates, c) operate sequentially in time, and d) provide
spatially coherent results — 3D contours.

Critical to this was the development of a unique
process that constructed, in parallel as the frames were
obtained, a 3D space-time description of the evolving
imagery. This specifies fully the temporal and projec-
tive relationships between scene objects and the sen-
sor. When the scene was stationary and observed by
a moving camera, the representation provided simple,
direct and robust estimates of scene structure. In ex-
tending the analysis of the ST surface representation
for more general dynamic analysis, the major differ-
ence is that we cannot rely on known camera motion
for our tracking, but must actually do the matching
— addressing the correspondence problem. One of the
benefits of the ST manifold is that it greatly simplifies
this problem.

1.2 ST Manifolds for Scene Dynamics

Several issues arise in the move from static to dy-
namic scenes. Since we have to decouple sensor-
induced motion from scene motion, we must be able
to solve for the camera. For distinguishing moving
from stationary objects, we must be able to discrimi-
nate real from sensor-induced motion (moving objects
versus the background), — we must be able to model
the scene static structure. Motion analysis and scene
reconstruction should operate together, with the es-
timated scene geometry aiding in the camera solv-
ing (using known stationary features) and being used
to discriminate object motion (by providing a ‘back-
ground’).

The approach we have taken to motion tracking is
built on our scene structure estimation process within
this unified framework. It’s processing is based upon a
multi-stage scheme involving feature detection, selec-
tion, grouping, and motion classification. First, we
represent the spatiotemporal structure of scene dy-
namics — this is handled by the ST manifold. Us-
ing a localization measure on the space-time surface,
we then isolate features of interest. Propagating from
maxima of the localization measure, we determine the
paths of features through time. Finally, a simple linear
estimator characterizes feature velocity.

Feature ‘edges’ detected in 2D images become sur-
face ‘facets’ in 3D. The connectivity of these facets
gives us our tracking mechanism. We described ear-
Tier [2] how we locate and parameterize those individ-

ual 3D elements — the facets — and structure them
together through time. In brief, we define the man-
ifolds (sheets in space-time) that separate image fea-
tures. These manifolds are 2D surfaces embedded in
the 3D space-time dimensions of our data, and are po-
sitioned at the extrema of smoothed brightness gradi-
ent in the imagery — zero crossings of the Laplacian of
a Gaussian (LOG). By following localizable ‘features’
on these surfaces we track them in time. The following
sections describe our use of these features and provide
details of our tracking method.

Although we have processed a variety of image se-
quences with this tracking process, display of detailed
analyses of large data sets 1s difficult in panchromatic
reproduction. Our displays here will be limited to
simple local indications of the processing — more de-
tail will be presented at the workshop, including var-
ious displays of the moving data; space-time surface
building; representation of space-time surface localiza-
tion; the trackers; the extracted ‘interesting’ features;
superposition of reticles grouping observations on in-
dividual images in the sequences; and extraction of
movement from the ‘background.’

2 Selecting Features for Tracking

Figure 1 left shows frames from a synthetic motion
sequence of a rotating square. The motion is described
by the zero-crossings of a 3D LOG over these data,®
as shown in Figure 2, with time progressing out of the
figure.* Figure 2 right shows a side view of these sur-
faces, oriented so that the temporal structure is more
visible. What should be noticed is that the connec-
tivity captured by the surface-building process is an
explicit representation and grouping of the motion in
the scene. A spatial cut through the 3D zero cross-
ings would produce a 2D spatial, single-image feature
description. The temporal facets provide connectivity
information for the space-time dimension of the data.

Fig. 1: Frames of Rotating Square

33D convolution is a standard means of incorporating tempo-
ral information (for example, see [1], [6] and [8]). In general,
others have not attempted to utilitize or represent the tem-
poral zero crossings.

41t is true; many of the figures presented here are so small and
detailed as to seem unintelligible. Being of 3D data, larger
single figures provide considerably less to appreciate and, in
fact, viewing these in stereo gives very good assessment.
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Tracking requires determining the correspondence
between features in successive views. If we know the
direction in which an object is moving (or conversely,
the direction in which the sensor is moving through a
static scene), then we can use this knowledge in de-
termining their positions in space (as demonstrated
by our EPI work). On the other hand, if we have
no knowledge of the motion of the sensor, or if the
scene can contain objects exhibiting independent mo-
tion, then these constraints do not apply. To track
a feature we must be able to recognize it from frame
to frame and distinguish it from the other features
around it (this raises the aperture problem). Only
a small percentage of the features we have selected
with our 3D detection process can be adequately dis-
tinguished for this. For example, if the object to be
tracked happens to have a square shape, then the only
discriminable parts of it will be the corners. We must
determine a measure to use on the images to locate
features that are discriminable — features that can
be reliably tracked from frame to frame.

Fig. 2: Spatiotemporal Surfaces

2.1 The Autocorrelation Function

The autocorrelation function — convolving a small
window of the image over some larger subset — pro-
vides such a measure. Where the window and the
subset are identically aligned, the convolution will in-
dicate a high correlation; elsewhere, the correlation
will be poorer. A unimodal and highly peaked au-
tocorrelation distribution indicates good localization,
whereas a flat profile indicates ambiguity. Autocorre-
lation is quite expensive to compute, involving evalua-
tion of order mn at every location in the image subset.
Interpreting the autocorrelation structure is problem-
atic.

2.2 Forstner’s Measure

A variety of corner-detecting analogues to autocor-
relation have been suggested, and we work with one
developed by Forstner E] Here, a simple measure
based on a quotient of the determinant and the trace
of the covariance matrix related to a planar fit to the
window specifies the localizability of the feature at
the center of the window. In its full development, the
measure determines a confidence ellipse in which the
feature can be expected to be localized. Three pa-
rameters of the measure define the major and minor
axes of the ellipse and its orientation. These three
parameters are mapped to a single value (FM).

Figure 3 shows a square and, beside it, the image
of its FM. Figure 4 shows an amplified sampling of

342

the localization measures for this image, and similar
measures for the image rotated. These are oriented
ellipses whose minor axis indicates the most reliable
localization direction and whose axis magnitudes show
the quality of the localization.

We have used two modifications to Forstner’s mea-
sure in this work. We do not perform the center-of-
gravity refinement, and we normalize the measure by
the local gradient. The center-of-gravity computation
improves the reliability of the estimation, especially in
the vicinity of sharp corners where the simpler mea-
sure can produce dual peaks to the sides rather than a
stronger peak at the vertex. Since we wish to develop
a local computation mechanism for tracking, we are
forgoing this correction in our initial studies.

Forstner Measure

Fig. 3: Image

Fig. 4: Localization Ellipses

Figure 5 shows the structure of the space-time sur-
face at the top right corner of the data, with dotted
lines indicating the temporal connectivity. Figure 6
shows the relative strengths of the FM along this ro-
tating corner, coded with dots and solid lines in in-
creasing strength. It is clear that the corners of the
square are the discriminable features, and the sides
are poorly localized.
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Fig. 5: Top Right Corner



Fig. 6: FM Indications

2.3 Tracking and Velocity Estimation

The display in Figure 6 shows the features we will
track — it does not show an actual tracking of fea-
tures. Relating the observations indicated together
over time must still be demonstrated. In forming
these observations into unified trackers, we connect
local mazima of these measures. The velocity estima-
tion will then occur at this level of the analysis — as
FM-maxima observations are associated through time,
a sequential filter will be updated and refined with the
new information.

2.3.1 Feature Tracking

The maxima can move in any direction between frames
of a sequence, and can move an arbitrary distance de-
pending on the velocity (translational and rotational)
of the objects of which they are part. This means that
while the spatiotemporal surface can be defined by fea-
ture connectivity, and a particular maximum will be
seen to move along a single spatiotemporal surface,
the matching of maxima cannot be defined strictly on
the basis of proximity. For one thing, they need not
be adjacent from frame to frame; for another, if max-
ima are fairly dense, then there may be significant
difficulty in unambiguous assignment when they come
close to one another. With large motions or repeated
fine patterns, accurate tracking could be difficult.

As well as being accurate, our tracking mechanism
must be designed to work within the framework of the
surface-building process — it must be able to operate
at a local level and be amenable to parallel implemen-
tation. The tracking mechanism we have designed sat-
isfies these criteria. It uses a propagation mechanism,
with each maximum at time T spreading itself for-
ward to neighbors on the spatiotemporal surface and
each maximum at time T" + 1 reaching back to neigh-
bors on the spatiotemporal surface to see if there is a
maximum from which it may have descended. When
only one predecessor can be found, the tracking as-
signment can simply use this pairing, and can deduce
that whatever the history of the feature at time T,
this new observation at time T + 1 shares that history
and affects the estimation of that motion. When there
are multiple choices for the assignment then an adju-
dication must be made to select the most likely. The
tracking process and the adjudication are described in
the next section.

2.3.2 Tracking Maxima on ST Surfaces

The principal intermediary in the tracking propaga-
tion is the set of temporal facets. When a contour
is stationary, it’s spatial facets will be adjacent over
time — there will be no spatial motion requiring tem-
poral representation. However, with spatial motion of
a contour, the temporal facets serve to join these ob-
servations. At time 7"+ 1, the spatiotemporal surface
from T to T'+ 1 must be built, the local FM maxima
be determined, and then be associated with previous
FM maxima at T via the intervening temporal facets.
Several considerations are involved in establishing
these temporal associations. If there is no ambiguity in
the assignment (only one at each time is being consid-
ered for matching with the other), then the association
is made and the tracking propagated. If more than one
1s in contention, then the values of the FM, the local
spatial normal to the ST surface,® the established ve-
locity, and the distance of motion are all considered.
If one pairing is clearly better in position, orientation,
and localization measure, then it is chosen, otherwise
multiple pairings are maintained as being possible. In
the latter case, all contending tracks will be retained,
with the final judgement being made later when more
knowledge of the behavior of the features is available
and a choice minimizing the ambiguity is possible. An-
other measure being evaluated is a correlation score
(SSD) evaluated at contending ST facets. Figure 7
shows the tracking results for this rotating square.

2
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Figure 7: Trackers on Rotating Square

2.3.3 Motion Interpretation

Given a single feature moving in an image sequence,
the best we can do, without other information (such
as stereo or a DTM), is to determine its velocity in
an image-based coordinate system. In our demonstra-
tions here we will estimate only this image-plane veloc-
ity. As an initial approximation we will model feature
motion as piecewise linear in time — that is, piecewise
constant velocity.®

Image-plane motion is determined by solving a sys-
tem of two linear equations defining the velocity vector
in space-time. A sequential least-squares filter is set

5Notice that the 3D surface normal also suggests the direction
of feature motion, as would the eigenvector of the largest
eigenvalue of a 3D version of Fdrstner’s measure.

6See [5] for inferring a rotating and translating 3D model of
object motion.
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up for this estimation, and velocities are determined
for each feature tracked. Velocity is a relative mea-
sure, and its interpretation depends on the activity
around it. We must determine from the image-plane
velocities which features are in motion with respect to
others and which should be considered of importance
for tracking — we must establish a background frame
for velocity reference.

Since observed velocity depends on range, the geo-
metric structure of the scene, if known, can be used to
distinguish moving features from the background. Our
earlier EPI work will provide the depth information for
static components of the scene when it is integrated
with this tracking system. In the meantime, our de-
termination of the ‘background’ for these studies has
been quite simple — we presume it to be planar and
select as ‘interesting’ features those lying outside of
one standard deviation from that estimated plane.

In the interests of demonstrating some preliminary
object-like groupings, in the video demonstrations we
isolate features moving with respect to the ‘back-
ground’ and group together those which are spatially
connected. The reticles displayed over the imagery,
indicating tracked features, enclose these grouped fea-
tures. This demonstrates a primitive form of object
tracking — features are tracked together when they
are seen to be spatially related. Similar results were
obtained by grouping features using their projective
velocities. Qur objective is to use behavior (dynam-
ics) and shape (statics) to couple object tracking with
object identification.

3 EXPERIMENTAL RESULTS

Figure 8 shows several frames of part of a low res-
olution IR sequence of a moving car’ — notice the ve-
hicle moving down to the left while the background
slides right because of a camera panning action. Fig-
ure 9 shows the major-contrast ST manifolds from
these data. The next figure presents a side view,
where the dots show temporal surface elements joining
the solid lines of the spatial zero crossings. Figure 11
shows the final estimations, depicting velocities as dots
through dashes to solid lines, 1n units of velocity stan-
dard deviation.

Figure 8: Moving Car

7These data are part of the workshop database.

—

Figure 9: Spatiotemporal Surfaces

Figure 11: Velocity Estimates

3.1 Tracking Parameters

Recall that our first filtering of the imagery locates
zero crossings of the Laplacian of a Gaussian (LOG)
of the imagery. This operation selects the locally-
largest intensity differences — the ‘edges’ in the im-
ages. The size of this filter determines the range of
contrasts and the spatial extent of these edges. Al-
though in this study we have selected large values for
the filter size to facilitate display, these should be de-
termined automatically by the tracking process — and
determined differentially across the imagery depend-
ing on the character of the features observed. &

From the set of edges determined by the LOG op-
eration, we select those whose gradients are greater
than one standard deviation from the mean of gradi-
ents over all contours. This ensures that the features
(edges) have ‘significance,’ i.e., are not likely to be ar-
tifacts of the detection process or noise. From among
these gradient-selected features we choose those which
are most localizable. In selecting from among the
most-localizable features that are tracked for those we
wish to consider of ‘interest,” we have again used some

8We are addressing the notion of scale filtering on the scale-
space manifold, and are finding that analysis over a range of
resolutions can lead to selecting the ‘best’ filter size for each
feature.




a priori assumptions. Notable among these is the as-
sumption that such features are moving with respect
to the background (our EPI analysis will handle the
converse). We also require, for reliable tracking, that
we have enough observations of a feature to enable an
accurate and consistent estimate of its velocity to be
made. This means that we discard (for our displays)
tracked features that are not viewed for a sufficient
duration.

3.2 Performance Issues

The current surface-building process constructs the
spatiotemporal representations of the imagery at a
rate of about 1000 pixels per second. Evaluation
of Forstner’s measure and the tracking of FM max-
ima reduce this to roughly 500 pixels per second.
Gaussian and Laplacian convolution are not included
in these figures since we compute the filtered im-
ages in an off-line fashion before studying a data
set. These convolution computations are quite sim-
ple, however, as they are decomposable into a total
of eleven 1D convolutions, and could be computed in
a realtime pipeline. The tracking has been designed
with parallel-processing in mind, and most computa-
tions require only a small local support. Such par-
allelism could provide sufficient performance for real-
time analysis.

3.3 Concluding Remarks

Our intented use of this tracking process begins
with estimation of the dynamics of objects in motion
and their subsequent recognition based on behavioral
and shape characteristics. We will also be integrating
the tracker with the original EPI analysis. Features
determined to be stationary will be used for camera
solving, and this will enable processing of non-linear
camera motions. In an intriguing combination of the
two, we are investigating use of derived groupings and
rigid motion interpretations to run the EPI analysis
in reverse over the space-time surfaces (using inverses
of the observed motion parameters), and compute the
3D shape of tracked objects even while they are un-
dergoing independent and arbitrary motion.

The important element to note in this work is not
that we can track features through a sequence — there
are a variety of techniques that can do this, more or
less successfully — but that we can utilize the ST sur-
faces to track and estimate feature motions, distin-
quish moving from stationary objects, and inform EPI
analysis of features to use for camera solving in its ge-
ometric recovery. This is a critical component of en-
abling EPI analysis to be used on non-linear motion
trajectories through dynamic scenes.

345

Acknowledgement

This study has been supported by a research con-

tract from Fujitsu

System Integration Laboratories,

Kawasaki, Japan.

References

B

(2]

B3]

(8]

(]

(10]

Adelson, E.H., and J.R. Bergen, “Spatiotemporal
energy models for the perception of motion,” Jour-
nal of the Optical Society of America A, 2:2 (1985),
284-299.

Baker, H.H., “Building Surfaces of Evolution: The
Weaving Wall,” International Journal of Computer
Vision, Vol.3, No.1 (1989), 51-72.

Baker, H.H., and R.C. Bolles, “Generalizing
Epipolar-Plane Image Analysis on the Spatiotem-
poral Surface,” International Journal of Computer
Vision, Vol.3, No.1 (1989), 33-50.

Bolles, R.C., H.H. Baker, and D.H. Marimont,
“Epipolar-Plane Image Analysis: An Approach to
Determining Structure from Motion,” International
Journal of Computer Vision, Vol.1, No.1 (1987), 7-
55.

Broida, T.J., and R. Chellappa, “Estimating the
Kinematics and Structure of a Rigid Object from
a Sequence of Monocular Images,” IEEE PAMI,
Vol.13, No.6, (1991), 497-513.

Buxton, B.F., and H. Buxton, “Computation of Op-
tic Flow from the Motion of Edge Features in Im-
age Sequences,” Image and Vision Computing, 2:2
(1984), 59-75.

Forstner, W., “Reliability Analysis of Parameter
Estimation in Linear Models with Applications to
Mensuration Problems in Computer Vision,” Com-
puter Vision, Graphics, and Image Processing, 40
(1987), 273-310.

Heeger, D.J., “Depth and Flow from Motion En-
ergy,” Proceedings of the Fifth National Conference
on Artificial Intelligence, Philadelphia (1986}, 657—
663.

Heel, J., “Temporally Integrated Surface Recon-
struction,” Proceedings of the Third International
Conference on Computer Visionn, IEEE Computer
Society, Osaka, Japan (1990), 292-295.

Matthies, L., R. Szeliski, and T. Kanade, “Incre-
mental Estimation of Dense Depth Maps from Image
Sequences,” Proceedings of the Conference on Com-
puter Vision and Pattern Recognition, IEEE Com-
puter Society, Ann Arbor, Michigan (1988), 366-
374.



