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Abstract 

The previous implementations of our Epipolar-Plane Image Analysis mapping technique demonstrated 
the feasibility and benefits of the approach, but were carried out for restricted camera geometries. The 
question of more general geometries made the technique's utility for autonomous navigation uncertain. 
We have developed a generalization of our analysis that (a) enables varying view direction, including 
variation over time (b) provides three-dimensional connectivity information for building coherent spa- 
tial descriptions of observed objects; and (c) operates sequentially, allowing initiation and refinement of 
scene feature estimates while the sensor is in motion. To implement this generalization it was necessary to 
develop an explicit description of the evolution of images over time. We have achieved this by building a 
process that creates a set of two-dimensional manifolds defined at the zeros of a three-dimensional 
spatiotemporal Laplacian. These manifolds represent explicitly both the spatial and temporal structure 
of the temporally evolving imagery, and we term them spatiotemporal surfaces. The surfaces are construc- 
ted incrementally, as the images are acquired. We describe a tracking mechanism that operates locally on 
these evolving surfaces in carrying out three-dimensional scene reconstruction. 

Introduction 

1.1 Epipolar-Plan Image Analysis 

In an earlier publication in this journal [1], we 
described a sequence analysis technique devel- 
oped for use in obtaining depth estimates for 
points in a static scene. The approach bridged the 
usual dichotomy of passive depth sensing in that 
its large number of images led to a large baseline 
and thus high accuracy, while rapid image sam- 
pling gave minimal change from frame to frame, 
eliminating the correspondence problem. Rather 
than choosing quite disparate views and putting 
features into correspondence by stereo matching, 
with this technique we chose to process massive 
amounts of similar data, but with much simpler 
and more robust techniques. The technique 
capitalized on several constraints we could im- 
pose on the image acquisition process, namely: 

1. The camera moved along a linear path. 

2. It acquired images at equal spacing as it 
moved. 

3. The camera's view was orthogonal to its direc- 
tion of travel. 

With these constraints, we could guarantee that 

1. Individual scene features would be observed 
in single epipolar planes over the period of 
scanning. 

2. Images of these planes could be constructed by 
collecting corresponding image scan lines in 
successive frames. 

3. The motion of scene features in these images 
would appear as linear tracks. 

We termed these image planes epipolar-plane im- 
ages, or EPIs, and the process Epipolar-Plane 
Image Analysis. 
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1.2 Problems with the Previous Approach 

In that earlier paper we commented on our pre- 
vious dissatisfactions with the approach, and the 
limitations that would restrict its usefulness. 
Summarizing, the limitations were 

L~ Orthogonal viewing would preclude many of 
the camera attitudes one would expect to be 
necessary for an autonomous vehicle--no- 
tably that attitude in which the vehicle is 
looking along its direction of motion, or when 
it is to track some particular feature and 
follow it while moving across the scene. 

L 2 A constant rate of image acquisition would be 
difficult to guarantee, and probably not be 
desirable in a general context. Sampling rates 
will be affected heavily by computational 
demands on the system, and vehicle veloci- 
ties may be dictated by higher-level concerns. 

L3 A linear path would be an unacceptable or 
highly improbable trajectory in most every 
situation except extended flight. 

L4 Static scenes are the least likely--winds blow, 
clouds move; often a moving object in a scene 
is the one of most interest. 

The dissatisfactions were 

DI The analysis should proceed sequentially as 
the imagery is acquired. To insist that all data 
be available before scene measurement can 
begin would eliminate one of the principal 
goals of the process--to provide timely infor- 
mation for a vehicle in motion. 
The EPI partitioning, through its selection of 
the temporal over the spatial analysis of im- 
ages, could not provide spatially coherent 
results. It produced point sets. We attempted 
clustering operations on these, but were never 
satisfied with such a post hoc approach. The 
proper approach to obtaining spatial coher- 
ence in our results would begin with not los- 
ing it in the first place. 

02 

2 New Approach to EPI Analysis 

2.1 Generalizations 

We have developed generalizations to our earlier 
approach that enable us to resolve L~, L2, DI, and 

D 2. Arbitrary and varying camera attitudes and 
velocities are permissible in our new formulation, 
and we process the data sequentially as acquired, 
forming estimates, of increasing precision, de- 
scriptive of spatial contours rather than points. 
The generalizations also suggest a mechanism for 
dealing with the nonlinear path issue of L 3. 
Although we have not pursued this as yet, in sec- 
tion 3.4 we outline an approach consistent with 
our EPI analysis. 

Z 4 rises as an incompatibility between our per- 
formance desires for a vision system and our 
definition of the task we choose to address. We 
wish to build three-dimensional descriptions of 
scenes, and it is inappropriate to expect this to be 
possible if our view of the scene is undergoing 
change unrelated to our active pursuit of obser- 
vations. In our previous publication we discussed 
this motion issue, and suggested means to 
recognize its presence in a scene. Once dis- 
tinguished from the static elements, it would be 
possible to invoke higher-order models and filters 
to estimate these objects' dynamics (as done by 
Broida and Chellappa [2] and Gennery [3], but 
our current interest is in modeling static structure. 

It is worth repeating this to clarify our goals in 
the current work. We are not working with chang- 
ing scenes, nor is our aim to build descriptions of 
moving or deforming objects. Our camera is all 
that moves, and any changes in the imagery arise 
strictly from this movement. Our goal is to model 
the geometry of a real static scene through which 
the camera is moving. This distinguishes us from 
most of the current efforts in spatiotemporal 
analysis that use image-plane velocities for 
measuring arbitrary flows (for example Heeger 
[7]), or that combine the measured flow with 
assumptions of constant 3D motion and rigidity 
for estimating known-order analytic surfaces (i.e., 
Waxman and Wohn [4], Waxman et al. [5], and 
Subbarao [6]). 

In common with our earlier work, our new ap- 
proach involves the processing of a very large 
number of images acquired by a moving camera. 
The analysis is based on three constraints: 

1. The camera's movement is restricted to l~e 
along a linear path. 

2. The camera's position and attitude at each im- 
aging site are known. 
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3. Image capture is rapid enough with respect to 
camera movement and scene scale to ensure 
that the data is, in general, temporally con- 
tinuous. 

Within this framework, we generalize from the 
traditional notion of  epipolar lines to that of 
epipolar planesla set of epipolar lines sharing a 
property of transitivity (which we discuss in sec- 
tion 2.2). We formulate a tracking process that ex- 
ploits this property for determining the position 
of features in the scene. This tracking occurs on 

what we term the spatiotemporal surface--a sur- 
face defining the evolution of a set of scene 
features over time. Critical to visualizing this 
space-time approach is obtaining an understand- 
ing of  the geometry of the sensing situation, and 
this is described in the next section. 

2.2 Geometric Considerations of Camera Path and 
Attitude 

Figure 1 shows the geometry pertaining to our 
analysis, indicating several imaging positions 
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Fig. I. General epipolar configuration. 
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and attitudes along a straight path. The camera is 
modeled as a pin-hole with image plane in front 
of the lens. For each feature P in the scene and two 
viewing positions such as V1 and 112, there is an 
epipolarplane that passes through P and the line 
joining the two lens centers. This plane intersects 
the two image planes along corresponding epi- 
polar lines (note that, here, intersection and pro- 
jection are, in a sense, equivalent). An epipole is 
the intersection of an image plane with the line 
joining the lens centers. In motion analysis, an 
epipole is often referred to as the focus of expansion 
(FOE) because the epipolar lines radiate from it. 
The camera moves in a straight line, and the lens 
centers at the various viewing positions lie along 
this line. Notice that the FOE is the image of the 
camera path. This structuring divides the scene 
into a pencil of planes passing through the 
camera path, several of which are sketched (01, 02, 
03, 0, . . . .  , 0,+3). This pencil is crucial to our 
analysis. We view the space as a cylindrical coor- 
dinate system with axis the camera path, angle 
defined by the epipolar plane, and radius the dis- 
tance from the axis. Note that a scene feature is re- 
stricted to a single epipolar plane, and any scene 
features at the same angle (within the discretiza- 
tion) share that plane. This means that, as in our 
earlier work, the analysis of a scene can be par- 
titioned into a set of analyses, one for each plane, 
and these planes can be processed independently. 
In section 3 we describe how we organize the data 
to exploit this constraint. 

With viewing direction orthogonal to the direc- 
tion of travel, as depicted at 112 in figure 1, the 
epipolar lines for a feature such as P are horizon- 
tal scan lines, and these occur at the same vertical 
position (scan line) in all the images. This is the 
camera geometry normally chosen for computer 
stereo vision work. Each scan line is a projected 
observation of the features in an epipolar plane. 
The projection of P onto these epipolar lines 
moves to the right as the camera moves to the left. 
If one were to take a single epipolar line (scan 
line) from each of a series of  images obtained with 
this camera geometry and compose a spatiotem- 
poral image, with horizontal being spatial and 
vertical being temporal, one would see a pattern 
as in the EPI of figure 2. For this type of motion, 
feature trajectories are straight lines, as can be 

Fig. 2. Orthogonal viewing. 

seen. This is the case handled by our previous 
analysis. If, on the other hand, the camera were 
moving with an attitude as shown at V3 in figure 1, 
the set of epipolar lines would form a pattern as 
shown in figure 3. For this type of motion, feature 
trajectories are hyperbolas. Notice that the epi- 
polar lines are no longer scan lines--they are 
oriented radially and pass through the FOE. 
Allowing the camera to vary its attitude along the 
path gives rise to spatiotemporal images as shown 
in figure 4. Here, the epipolar line pattern is not 
fixed from frame to frame, and the paths of 

Fig. 3. Fixed, nonorthogonal viewing. 

Fig. 4. View direction varying. 



Generalizing Epipolar-Plane Image Analysis 37 

features in the EPI are neither linear nor 
hyperbolic--in fact they are arbitrary curves. 

The transitivity property mentioned in section 
2.1 arises from the fact that any pair of lines se- 
lected from the set form a corresponding pair. 
That is, forthe set ofepipolar l inesE ° 0 0 ( e 0 ,  e l ,  . . . , 

e 0) from epipolar plane 0 over images I 0 through I,, 
any two members comprise a pair of correspond- 

e 0 with e °, et cetera. ing epipolar lines--e°o with ej, e3 
This occurs because the camera's linear path 
guarantees that a single pencil of planes defines 
the epipolar mapping over the entire sequence. 
Thus, any mapping done on the basis ofe~ with e~ 
and then e~ with e2 ~ implies the mapping of e°0 with 
e °. A similar argument holds for all pairs of map- 
pings in E °, and the transitivity follows. If the 
camera path were nonlinear, no single pencil of 
planes could be defined, and no such setE ° could 
be formed. The only complicating detail with the 
varying-attitude case (as indicated in figure 4) is 
that the pattern of epipolar lines changes from 
image to image: For a fixed camera attitude the 
pattern is the same for all images in the 
sequence. 

2.3 Keeping the Problem Linear 

Recall that our goal is to determine the position of 
stationary features in the scene: We do this by 
tracking their appearance over time as they pro- 
ject onto these epipolar planes. Obviously in the 
case of orthogonal viewing (e.g., as in figure 2 and 
at V2 in figure 1), the tracking is linear. For general 
camera attitudes, including varying, it is non- 
linear. Computational considerations make it ex- 
tremely advantageous for the tracking to be posed 
as a linear problem. To maintain the linearity 
regardless of viewing direction, we find not linear 
feature paths in the EPIs (figures 2 through 4), but 
linear paths in a dual space. The insight here (in- 
troduced by Marimont [8]) is that no matter 
where a camera roams about a scene, for any par- 
ticular feature, the lines of sight from the camera's 
principle point through that feature in space all 
intersect at the feature (modulo the measurement 
error). A line of sight is determined by the line 
from the principal point through the point in the 
image plane where the projected feature is ob- 

served. From mathematical duality, the duals of 
these lines of sight lie along a line whose dual is 
the scene point (see figure 5); fitting a point to the 
lines of sight is a linear problem. This, then, gives 
us a metric for linear tracking of features: We map 
feature image coordinates to lines of sight, and 
use an optimal estimator to determine the point 
that minimizes the variance from those lines of 
sight. 

Our estimation is done in the scene Cartesian 
space, not the dual space, because the error met- 
tic, nonlinear in the dual space, has more intui- 
tive meaning and better behavior in scene space. 
The estimated error in each observation is a func- 
tion of the size of the Gaussian filter employed 
and the distance of the feature from the camera. 
We currently model only these uncertainties in 
image-plane observations, and not others related 
to the strength of the feature signal or uncertainty 
in the position of the camera. These others will 
have to be modeled in a complete solution. 

2.4 Transformations Required 

Having decided on a representation that restores 
the linearity of our estimator, we must now 
demonstrate a mechanism for extracting the fea- 
ture observations from the individual images in 
which they occur and grouping them by epipolar 
plane. Only in the case of viewing angle orthog- 
onal to the motion is this grouping simple (figure 
2), and this was the case our earlier work ad- 
dressed. To obtain this structuring in the general 
cases, we could take one of two approaches. The 
first is to transform the images from the Cartesian 
space in which they are sampled to an epipolar 
representation (as has been done by Baker et al. 
[9] and by Jain et al. [10]). Because of aliasing ef- 
fects (particularly on the observation variances) 
and nonlinearities in the mapping (it is singular 
when the FOE is in the image, and could require 
an infinite imaging surface for the reprojection), 
we prefer to avoid this transformation. Probably 
the best solution would be to use a sensor that 
delivers the data directly in the epipolar form--a 
spherical sensor having meridian scanning 
would accomplish this (the flow geometry that is 
the basis for such a sensor was discussed by Gib- 
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Fig. 5. Line-of-sight duality. 

son [11] nearly forty years ago). Because such a 
sensor is not yet available, we choose an alternate 
approach: to transform the features we detect in 
image space to the desired epipolar space, the 
cylindrical coordinate system of figure 1. Here the 
singularity at the FOE presents no problem, and 
the observation variances are uniform. The struc- 
ture we have developed for implementing this 
transformation brings us several other advan- 
tages, as the next section describes. 

3 The Spatiotemporal Surface 

3.1 Structuring the Data-- 
Spatiotemporal Connectivity 

We collect the data as a sequence of  images, in 
fact stacking them up as they are acquired into a 

spatiotemporal volume, as shown in figure 6. As 
each new image is obtained, we construct its spa- 
tial and temporal edge contours. These contours 
are three-dimensional zeros of the Laplacian of a 
chosen three-dimensional Gaussian (Buxton and 
Buxton [12] and Heeger [7] also use spatiotem- 
poral convolution over an image sequence), and 
the construction produces a spatiotemporal sur- 
face enveloping the signed volumes (note that, in 
two dimensions, edge contours envelop signed 
regions). The spatial connectivity in this structure 
lets us explicitly maintain object coherence be- 
tween features observed on separate epipolar 
planes; the temporal connectivity gives us, as 
before, the tracking of features over time. See the 
companion paper in this issue [13] for a descrip- 
tion of how these surfaces are constructed. 

The need for maintaining this spatial connec- 
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Fig. 6. Spatiotemporal volume. 

tivity can be observed by viewing our earlier 
results [1], one set of which is shown in figure 7. 
There, in processing the EPIs independently, we 
obtained separate planes of isolated scene feature 
estimates. Wishing to exploit the fact that there 
should be some spatial coherence between these 
sets of points, we used proximity of the resulting 
estimates on adjacent planes to filter outliers. 
Features not within the error (covariance) ellipses 
of those above or below them (i.e., those which 
could not be joined into a 3-space contour) were 
discarded. The remaining point field (figure 7) 
was sparse and fragmented, and not really repre- 
sentative of the continuous solid surfaces visible 
in the scene. The problem, however, did not lie 
with this post hoc filtering but with the loss of spa- 

tial connectivity in the first place. Our separation 
of the data into EPIs, and then subsequent inde- 
pendent processing of these, lost the spatial con- 
nectivity apparent in the original images. We 
maintained instead the temporal connectivity 
that was critical to the feature tracking. For spa- 
tial connectivity in the scene reconstruction, spa- 
tial connectivity in the imagery must be pre- 
served. The next two figures present a simplified 
example of this spatial and temporal connectivi- 
ty. Figure 8 shows a sequence of simulated images 
depicting a camera zooming in on a set of rec- 
tangles; figure 9 shows a rendered view of the 
spatiotemporal surfaces arising from this motion. 
The spatial and temporal interpretation of these 
surfaces should be quite apparent. 
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Fig. 7. Or thogona l ly  viewed scene: Resul ts  (displayed for crossed-eye viewing). 

In our spatiotemporal-surface representation, 
feature observations bear (u, v, t) coordinates, and 
are spatiotemporal voxe l face t s .  Figure 12 shows a 
mesh description of the facets for the spatiotem- 
poral surfaces associated with the forward-view- 
ing sequence whose first and last images are 
depicted in figure 10. These images are much 
more complex than those of figure 8. Let us 
reemphasize that the surface is defined at the 
zeros of a Laplacian of a 3D Gaussian applied 
over the sequence: There is no thresholding, and 
the features are simply zero crossings. In the in- 
terest of clarity, the surface representations we 

Fig. 8. Simulat ion:  L inear  pa th ,  mo t ion  toward  center. Fig. 9. Surfaces  o f  figure 8 rendered  for display.  
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Fig. Itg. Sequence 1 s~ and 128 th images. Fig. 11. 1 s~ and 128 th images at 1/8 resolution. 

will show in the remaining figures are based on a 
simplified version of this imagery--one-eighth 
the linear resolution of the originals. Figure 11 
shows these two frames at the reduced resolution. 

Others have addressed this problem of com- 
bining spatial and temporal information, al- 
though no one has either built surfaces such as 
these or attempted to maintain explicit track of 
the temporal change. Perhaps the closest is Wax- 
man [14], who discusses the use of evolving 
contours--isolated 2D contours whose projec- 
tions over time can be used in deriving the shape 
of a restricted class of analytic surfaces. He pro- 
vides no method for tracking the contours 

through time, however, or for extracting them 
from real images--nor does he develop a method- 
ology for utilizing the temporal evolution of 
individual components of the contours over mul- 
tiple frames. Later work by Waxman and col- 
leagues [15], presenting convected activation pro- 

files, involves spatiotemporal convolution of 
Gaussian gradients applied at features detected 
in the individual spatial images by a DOG 
operator. In this, estimates of image-plane veloci- 
ties are formed from quotients of the spatiotem- 
poral gradients. There is, however, no estimate of 
scene motion, and no notion of motion associated 
with specific objects in the field of view--motion 

Fig. 12. Spatiotemporal-surface representation, first 10 frames. 
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is ascribed to pixels in the plane. Others, for ex- 
ample Hildreth and Grzywacz [16], who work 
with velocity point sets, and Negahdaripour and 
Horn [17], who determine relative motion of a 
plane from image gradients, also do not address 
these issues of local shape, establishing corre- 
spondence over time, associating movement with 
objects, or extracting the measures from real im- 
ages. Although we have directed our efforts only 
at ego motion, our space-time surfaces provide a 
complete representation of these other projective 
velocity measures, and maintain a continuous 
track relating them to their underlying scene 
features. Our work in the future will include look- 
ing into using the surface representation for this 
more general form of motion analysis. 

3.2 Structuring the Data-- 
Epipolar-Plane Representation 

As mentioned in the previous section, for non- 
orthogonal viewing directions, epipolar lines are 
not distinguished by the spatial v scan-line coor- 
dinate. To obtain this necessary structuring we 
develop within the spatiotemporal-surface rep- 
resentation an embedded representation that 
makes the epipolar organization explicit. Over 
each of the sequential images, we transform the 

(u, v, t) coordinates of our spatiotemporal zeros to 
(r, h, 0) cylindrical coordinates (0 indicates the 
epipolar-plane angle (0 e [0,2n]); the quantized 
resolution in 0 is a supplied parameter; and the 
transform for each image is determined by the 
particular camera parameters). In this new coor- 
dinate system, we build a structure similar to our 
earlier EPI edge contours, but dynamically 
organized by epipolar plane. This is done by inter- 
secting the spatiotemporal surfaces with the pencil 
of appropriate epipolar planes (as figure 1). We 
weave the epipolar connectivity through the 
spatiotemporal volume, following the known 
camera viewing direction changes. Figure 13 
shows a sampling of the spatiotemporal surfaces 
as they intersect the pencil of epipolar planes 
(every fifth plane is depicted). You will notice the 
obvious radial flow pattern away from the epipole 
(FOE). Figure 14 shows seven of these surface/ 
plane intersections, along with the associated 
bounding planes (refer to figure 1). The edge that 
all share is the camera path (the epipole). These 
seven planes show exactly the contours one 
would detect in spatiotemporal intensity images 
such as depicted in figure 3. 

In figure 15 we isolate a single surface from the 
top left of figure 12, and shows its spatiotemporal 
structure. Figure 16 shows the same surface struc- 
tured by its epipolar-plane components. The 
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Fig. 13. Epipolar-plane surface representation. 
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Fig. 14. Intersection: 7 epipolar planes, spatiotemporal surfaces. 

Fig. 15. Spatiotemporal surface. Fig. 16. Epipolar planes. 
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companion paper [13] gives details of the inter- 
section operation on the spatiotemporal surface. 
Recall that the displays are in space-time image 
coordinates. If the camera had been allowed to 
vary its attitude, the planes depicted in figure 14 
would appear skewed, perhaps helical, mirroring 
the migration ofepipolar lines as they are project- 
ed on the imaging surface. They might vary in a 
manner similar to that in which figure 4 varies 
from figure 2, and for similar reasons. To facili- 
tate presentation, we have not demonstrated this 
more general camera movement; it is, however, 
covered by our analysis and implementation. 

3.3 Feature Tracking and Estimation 

Our approach to scene reconstruction involves 
tracking scene features as they move in space- 
time, and to use techniques from estimation 
theory in approximating and maintaining es- 
timates of their position. This is in distinction 
with, for example, the work of Hildreth and 
Grzywacz [16], Waxman and Wohn [4], and 
others who do not utilize this particular mathe- 
matics. Researchers who have built tracking sys- 
tems using estimation theory include Broida and 
Chellappa [2] and Gennery ]3], as mentioned, 
Matthies et al. ]18], Dickmanns ]19], and Hallam 
[20]. The latter two describe vehicle navigation 
controllers that work sequentially (as does ours), 
utilizing Kalman and other filters for estimating 
motion parameters. Our tracker is a sequential 
linear estimator, and is implemented as a Kal- 
man filter without the extrapolation phase. Ex- 
trapolation is unnecessary since the camera con- 
straints and the space-time surface tell us where 
each feature will move from frame to frame-- 
there is no need to extrapolate and verify this. 
Notice that this also makes it clear that there is no 
aperture problem in our approach. The work of 
Matthies et al. [18] has similarities to ours in its 
pursuit of scene depth from the analysis of image 
sequences, but lacks several important elements. 
These include the generality with respect to view 
angle that comes with our use of the line-of-sight 
formulation, and the explicit use of spatial 
connectivity--they obtain only scene point es- 
timates (as we had with our earlier approach), 

rather than higher-level descriptors such as scene 
contours. Furthermore, they must establish fea- 
ture correspondence via correlation between 
frames, and this is not necessary with the 
spatiotemporal surface. On the other hand, we do 
not aim currently at producing the dense depth 
maps that they do. Their depth maps are obtained 
through a combination of tracking and regulari- 
zation: When we attempt full-surface reconstruc- 
tion, we will do so with analysis over scale (as dis- 
cussed in the companion paper [13]), and through 
the use of inference on the computed free space 
(the determination of scene free space was shown 
in our earlier paper [1]). 

Figure 17 shows the tracking of scene features 
on the spatiotemporal surfaces in the vicinity of 
the surface of figure 15. The tracking occurs along 
paths such as those shown in figure 16. The final 
pair shows, in crossed-eye stereo form, the result 
of the tracking after 10 frames. The coding is as 
follows: initiation of a feature tracking is marked 
by a circle; the leading observation of a feature 
(active front) is shown as an ×; lines join feature 
observations; 5 observations (an arbitrary num- 
ber, 2 may be sufficient) must be acquired before 
an estimate is made of the feature's position--at 
that point an initial batch estimate is made, and a 
Kalman filter (discussed by Gelb [21] and 
Mikhail [22]) is turned on and associated with the 
feature--this initiation ofa  Kalman filter is coded 
by a square; where two observations merge, the 
tracking is stopped and the features are entered 
into the data base--this is coded by a diamond. 

As mentioned earlier, observations are ex- 
pressed as line-of-sight vectors, and these are rep- 
resented in the epipolar plane by the homoge- 
neous line equation ax + by - c = 0 (its dual is the 
point (a, b, c)--see the description of duality in 
section 2.3). For the initial batch estimation, the 
coordinates (X) of the feature are the solution of 
the normal equations for the weighted least- 
squares system: X = (HXWH)-~HrWC. H is the 
m×2 matrix of (ai, bi) observations; C is the 
vector of ci; and W is the diagonal matrix of 
observation weights, determined by ~ of the 
Gaussian, the distance from the camera to the ob- 
served feature at observation position i, and the 
focal distance. We estimate X first without 
weights, then compute the weighted solution and 
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the desired covariance matrix, V. Given a current 
estimate Xi-1 and covariance VH, the Kalman 
filter at observation i updates these as 

K, = V,_,H~/IHiV,_~H y + w,] 

Vi = [I - KiHi]Vi-1 

X i = X i _  1 + K i [ C I -  H i X i _ I ]  

I~. is the 2X 1 Kalman gain matrix, and w~ is the ob- 
servation weight, a scalar, dependent on the dis- 
tance from the camera at observation position i to 
the estimate Xi-~. 

The tracking of  an individual feature is depict- 
ed in figure 18. The camera path runs across the 
figures from the lower left. Lines of  sight are 
shown from the camera path through the obser- 
vations of  the feature at the upper right. As the 
Kalman filter is begun (T4), an estimate (marked 

by an X) and confidence interval (the ellipse) are 
produced. As further observations are acquired, 
the estimate and confidence interval are refined. 
Tracking continues until either the feature is lost, 
or the error term begins to increase--suggesting 
that observations not related to the tracked fea- 
ture are beginning to be included. This could 
arise because, among other reasons, the zero 
crossing is erroneous, the feature is not stationary, 
or the feature is on a contour rather than being a 
single point in space. Note that although a single 
feature is presented in this tracking depiction, it is 
part of  a spatiotemporal surface. This means that 
we have explicit knowledge of  those other 
features to which this is spatially adjacent. Figure 
19 shows a contour--a connected set of  features 
on such a surface--observed over time as its 
shape evolves. Such contours are being construct- 
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Fig. 18. Sequential  estimation. 
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Fig. 19. Contour evolving over time. 

ed and refined over the entire image as the 
analysis progresses. Our current representation of 
scene structure is based on these evolving 
contours. 

3.4 Generality from the Spatiotemporal Surface 

A crucial constraint of the current epipolar-plane 
image analysis is that having a camera moving 
along a linear path enables us to divide the 
analysis into planes, in fact, the pencil of planes 
of figure 1 passing through the camera path. With 
this, we are assured that a feature will be viewed 
in just a single one of these planes, and its motion 
over time will be confined to that plane. Another 
crucial constraint is the one we generalized from 
the orthogonal viewing case--we know that the 
set of line-of-sight vectors from camera to feature 
over time will all intersect at that feature, and 
determining that feature's position is a linear 
problem. The linearity of the estimator does not 
depend upon the linearity of  the camera path. In 
fact, the problem would remain linear even if the 
camera meandered in three dimensions all over 
the scene. 

This knowledge gives us a possibility of remov- 
ing the restriction that limits us to a linear camera 
path. All that the linear path guarantees is that the 
problem is divisible into epipolar planes. If we 
lose this constraint, then we cannot restrict our 
feature tracking to separate planes. The obser- 
vations will, however, still form linear paths in the 
space of line-of-sight vectors (not to be confused 
with the (u, v, t) observation space): This is 
because the lines of sight will all pass through the 
single feature point. The motion of these obser- 

vations will give us ruled surfaces in this space-- 
visualize pick-up-sticks jammed in a box, with 
the sticks being the rules. The rules can be used in 
the same way they have been with the linear path 
constraint, to determine the positions of features 
in the scene. The difference is that the linearities 
must be located--and the spatiotemporal surface 
is just the place for doing this. It would also be 
possible to track using the epipolar constraints 
that apply pairwise between images--that the 
constraints are limited to pairwise use arises 
because, for a nonlinear path, the images will not 
have the transitivity property we cited earlier. 

It is equally worth noting that, when the camera 
attitude and position parameters are not pro- 
vided, the spatiotemporal surface contains every- 
thing that is necessary for determining them. This 
is, of course, another problem, but one that must 
be addressed for a realistic vision system. Our ini- 
tial work in this involves locating distinctive pro- 
jective features on the spatiotemporal surface-- 
dihedrals selected using FOrstner's measure 
[23]--and tracking them. Depending upon 
knowledge of  the features chosen, these can en- 
able estimation of both relative and absolute 
camera parameters [24]. 

This generality suggests there is even broader 
application for the technique than we had initial- 
ly thought--it seems quite adaptable to nonlinear 
camera paths; and should be usable equally in 
refining the camera model or solving for its un- 
known parameters. 

4 C o n c l u s i o n s  

We showed, in our earlier work, the feasibility of 
extracting scene depth information through 
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Epipolar-Plane Image Analysis. Our theory applies 
for any motion where the lens center moves in a 
straight line, with the earlier implementation 
covering the special case of camera sites equidis- 
tant and viewing direction orthogonal to the 
camera path. 
The generalizations obtained through spatio- 
temporal-surface analysis bring us the advan- 
tages of 

• Incremental analysis 
• Unrestricted viewing direction (including di- 

rection varying along the path) 
• Spatial coherence in our results, providing con- 

nected surface information for scene objects 
rather than point estimates structured by 
epipolar plane 

• The possibility of removing the restrictions that 
fix us to a known linear path 

The current implementation, running on a 
Symbolics 3600, processes the spatiotemporal 
surfaces at a 1-KHz voxel rate. The associated in- 
tersecting, tracking, and estimation procedures 
bring this rate down to about 150 Hz, 75 percent of 
which is consumed in the surface intersection 
(the surface intersection would not be required if 
we had a sensor of the appropriate geometry). 
Both the feature tracking and the surface-con- 
struction computations are well suited to MIMD 
(perhaps SIMD) parallel implementations. With 
these considerations, and the process's inherent 
precision and robustness, spatiotemporal-sur- 
face-based epipolar-plane image analysis shows 
great promise for tasks in real-time autonomous 
navigation and mapping. 
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