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Abstract 

We present a technique for building a three-dimensional description of a static scene from a dense se- 
quence of images. These images are taken in such rapid succession that they form a solid block of data in 
which the temporal continuity from image to image is approximately equal to the spatial continuity in an 
individual image. The technique utilizes knowledge of the camera motion to form and analyze slices of 
this solid. These slices directly encode not only the three-dimensional positions of objects, but also such 
spatiotemporal events as the occlusion of one object by another. For straight-line camera motions, these 
slices have a simple linear structure that makes them easier to analyze. The analysis computes the three- 
dimensional positions of object features, marks occlusion boundaries on the objects, and builds a three- 
dimensional map of "free space." In our article, we first describe the application of this technique to a 
simple camera motion, and then show how projective duality is used to extend the analysis to a wider class 
of camera motions and object types that include curved and moving objects. 

1 Introduction 

One of the fundamental tasks of computer vision 
is to describe a scene in terms of coherent, three- 
dimensional objects and their spatial relation- 
ships. Computing this description is difficult in 
part because of the enormous diversity of objects 
and the almost limitless ways in which they can 
occur in scenes. A deeper problem is an image's 
inherent ambiguity: since the process of forming 
an image captures only two of the three viewing 
dimensions, an infinity of three-dimensional 
scenes can give rise to the same two-dimensional 
image. It follows, therefore, that no single two- 
dimensional image contains enough information 
to enable reconstruction of the three-dimensional 
scene that gave rise to it. 

Human vision, on the other hand, routinely cir- 

cumvents this limitation by utilizing (a) knowl- 
edge of scene objects and (b) multiple images, 
including stereo pairs and image sequences 
acquired by a moving observer. A typical use of 
object knowledge is to restrict alternative three- 
dimensional interpretations of part of an image to 
a known object or objects. We shall not discuss 
such techniques here, however. Using more than 
one image makes it theoretically possible, under 
certain circumstances, to elicit the three-dimen- 
sional scene that gave rise to the images, there- 
by eliminating the ambiguity inherent in the inter- 
pretation of a single image. This power comes 
at the cost of much more data to process, since 
there are more images, and the added complexity 
of additional viewpoints, which if unknown must 
usually be determined from the images. 

We shall be describing a technique for building 
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a three-dimensional description of a static scene 
from an extended sequence of images. We started 

. ~esearch with two ideas for simplifying this 
process. The first was to assume that the camera 
motion parameters would be supplied to the 
motion analysis procedure by an independent 
process, perhaps an inertial-guidance system. Thus, 
instead of having to estimate both the camera mo- 
tion parameters and the object locations from the 
data, as is commonly done in motion-analysis 
techniques, we decided to concentrate solely on 
the estimation of object locations. This known- 
motion assumption is appropriate for autono- 
mous vehicles with inertial-guidance systems 
and some industrial tasks, such as measuring the 
height of objects on a conveyor belt passing in 
front of a camera. 

Somewhat surprisingly, this assumption has not 
been employed as a primary constraint in motion- 
analysis techniques, and, moreover, has generally 
been viewed as defining a degenerate and prob- 
ably uninteresting special case. In stereo analysis, 
however, this assumption has been applied exten- 
sively. The "epipolar" constraint, which reduces 
the search required to find matching features 
from two dimensions to one, is derived from the 
known position of one camera with respect to 
the other. As far as we know, this epipolar-type 
constraint has never geen generalized to apply to 
the three or more images typically required by 
motion-analysis techniques. 

Our second idea was to simplify the matching 
of features between successive images by taking 
them very close together. Matching, after all, is 
one of the most difficult steps in motion proces- 
sing. This idea, unlike the first, was hardly new. 
In stereo analysis, for example, it is well known 
that the difficulty of finding matches increases 
with the distance between the lens centers. In 
addition, the accuracy of scene feature estimates 
improves with the baseline between the cameras. 
An example of a technique designed to circum- 
vent this trade-off between matching difficulty and 
expected accuracy is the nine-eyed "slider stereo" 
procedure developed by Moravec [64]. It achieves 
a large baseline by tracking features through nine 
moderately spaced images. We take this idea 
one step further and collect hundreds of images 
instead of just a few. 

Our willingness to consider hundreds of images 

was a logical development of our previous re- 
search. In a project to recognize objects in range 
data, we had developed an edge detection and 
classification technique for analyzing one slice of 
the data at a time. This approach was adapted to 
our range sensor, which gathered hundreds of 
these slices in sequence. The sensor, a standard 
structured-light sensor, projected a plane of light 
onto the objects in the scene and then triangu- 
lated the three-dimensional coordinates of points 
along tile intersection of the plane and the 
objects. The edge detection technique located 
discontinuities in one plane and linked them to 
similar discontinuities in previous planes. 

Although it seems obvious now, it took us a 
while to appreciate fully the fact that the spacing 
between light planes makes a significant differ- 
ence in the complexity of the procedure that links 
discontinuities from one plane to the next. When 
the light planes are close together relative to the 
size of the object features, matching is essentially 
easy. When the planes are far apart, however, the 
matching is extremely difficult. This effect is anal- 
ogous to the Nyquist limit in sampling theory. If 
a signal is sampled at a frequency that is more 
than double the signal's own highest frequency, 
the samples contain sufficient information to 
reconstruct the original. However, if the signal 
is sampled less often, the information in the 
sampled signal is not sufficient for accurate re- 
construction. In slices of range data, the objects 
in the scene have discontinuities that make it 
impossible to apply the sampling theory directly. 
However, the basic idea appears sound: there is a 
sampling frequency below which matching is 
significantly more difficult. 

With our interest in simplifying depth measure- 
ment, we decided to take a large number of close- 
ly spaced images and see how the matching pro- 
cess was affected. To do this, we borrowed a one- 
meter-long optical track and gathered 40 images 
while moving a camera manually along it. For this 
first sequence, we aimed the camera along the 
track and moved it straight ahead. Before gather- 
ing the data, we had predicted the approximate 
image speeds for some features in the scene. 
Afterward, however, it became clear that it would 
be easier to make such measurements if we aimed 
the camera perpendicularly to the track instead. 
We knew that the epipolar lines would then be 
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Fig. 1. Lateral motion. 

horizontal scan lines, or rows, in the images. 
Therefore, we gathered a second sequence of im- 
ages moving right to left along the track, as shown 
in figure 1. Figure 2 shows the first and last images 
from this sequence of 32. 

We again predicted the image velocities for 
some of the scene features, one of which was the 
plant with thin, vertical leaves that appears on the 
right of the image. To visualize the positional 
changes caused by the moving camera, we dis- 
played one row from each image. We extracted 
row 100 from each image and displayed these one 
above another forming a small rectangular image 
(see figure 3). This image is a spatiotemporal im- 

Fig. 3. Spatiotemporal image. 
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Fig. 2. First and last images from lateral motion sequence. 



10 Bolles, Baker and Marimont 

age in which the spatial dimension is horizontal 
and the temporal dimension vertical, with time 
advancing from bottom to top. In constructing 
this image, we formed what we were to later 
name an epipolar-plane image, or EP1 for short. 
(We explain the origin of this name in section 3.) 
Since then we have learned that other research- 
ers, working independently, have constructed 
similar images (e.g., Yamamoto [99], Bridwell 
and Huang [13], Adelson and Bergen [1], and 
Atherton [4]). 

To our surprise, the  EPI consisted of simple 
linear structures that seemed promising prospects 
for automatic analysis. Even though the spatial 
images in figure 2, which were used to construct 
it, contain quite complex shapes and intensity 
changes, the EPI is essentially composed of 
homogeneous regions bounded by straight lines. 
Upon seeing this structure, our first thought was 
to verify whether the image path of a scene point 
(i.e., the path of a scene point's projection) 
formed in this way had to be linear. By analyzing 
the diagram in figure 4, which illustrates the 
geometry of lateral motion, we determined that it 
did. The one-dimensional images are at a distance 
h in front of the lens centers, while the feature 
point p is at a distance D from the linear track 
along which the camera moves right to left. From 
similar triangles, 

A U = u 2 _ u l _ h * ( A X + X )  h*X 
D D 

: A x *  h__ (1) 
D 

where A X  is the distance traveled by the camera 
along the line, and A U the distance the feature 
moved in the image plane. This expression shows 
that the change in image position is a linear func- 
tion of the distance the camera moves. (The 
jagged appearance of the feature paths in figure 3 
is caused by inaccurate manual positioning of the 
camera on the optical track.) 

Equation (1) can be rearranged as follows to 
yield a simple expression for the distance of a 
point in terms of the slope of its line in the EPI: 

D = h* A X  (2) 
A U  

Given this expression, we outlined the following 
strategy for building a three-dimensional map of a 

scene: take a sequence of closely spaced images, 
form an EPI for each row, locate lines in these 
EPIs, and compute the three-dimensional co- 
ordinates of the corresponding scene features. 
We elaborate on this process in section 4. 

After deriving this depth-from-slope rela- 
tionship, we considered spatiotemporal paths 
produced by a camera moving straight ahead 
rather than laterally. We obtained an equation 
showing that such paths are hyperbolic. A gener- 
alization of this derivation is presented in section 
4. 

After looking at several EPIs like the one in 
figure 3, we also observed that EPIs encode the 
occlusion of one object by another directly. It 
may therefore be possible to detect higher-level 
properties of the scene in addition to computing 
the depths of isolated points. For example, one 
might mark the occlusion edges of objects, a task 
that has posed problems for such traditional 
image-analysis techniques as stereo processing. 

In the remainder of this article, we shall ex- 
plore the concept of epipolar-plane images in 
more detail. In section 2, we briefly describe re- 
lated research in the analysis of image sequences. 
In section 3, we consider the geometric factors 
involved in the formation of EPIs. In section 4, we 
describe the results of our experiments analyzing 
EPIs constructed from lateral motions (dia- 
grammed in figure 1). This discussion includes 
descriptions of techniques for marking occlusion 
boundaries, building three-dimensional maps of 
free space, and transforming imagery to produce 
EPIs when the camera pans and tilts as it advances 
in a straight line. In section 5, we show how the 
principle of projective duality can be used to 
apply this basic technique to a wider class of tasks, 
including arbitrary motions in a plane and mo- 
tions through a world in which the objects may 
be curved and moving. And finally, in section 6, 
we birefly discuss the technique's strengths and 
weaknesses and outline some current and future 
directions for our work. 

2 Related Research 

The starting point for most research in image 
sequence analysis is a model of image formation 
that predicts the image of a scene feature from 



the camera's position and orientation. The scene 
feature is usually a point, but could also be a 
line, curve, or surface patch, as long as a three- 
dimensional description of the feature relative to 
the camera is available. The role of the image 
formation model is to predict a two-dimensional 
description of the corresponding image feature: a 
point, line, curve, or region of smoothly varying 
intensity. 

When the camera moves through a static scene, 
the image formation model predicts a moving im- 
age feature in most cases. Given a suitable collec- 
tion of moving image features, it is sometimes 
possible to "invert" the image formation model 
and to estimate the motion of the camera and the 
three-dimensional descriptions of the scene fea- 
tures that gave rise to the image features. This 
process is usually divided into two stages: first, 
estimation of the image feature's motion; second, 
estimation of the camera's motion and corre- 
sponding scene features. 

Our review is divided into four subsections, 
each of which represents one class of approaches 
to this problem. The first is based on the inter- 
relationship of differential camera motions, scene 
features, and the corresponding differential 
motions of image features. The second samples 
the camera path at widely spaced locations and 
attempts to recover changes between camera loca- 
tions and scene features from the corresponding 
widely spaced image features. A third approach, 
which has received far less attention than the first 
two, considers an image sequence from a densely 
sampled camera path, and estimates camera mo- 
tion and scelae features from the resulting "paths" 
of image features; EPI analysis itself belongs to 
this class. The final approach does not really fit 
within this framework at all, for it does not 
require the estimation of image feature motion as 
a preliminary to estimating camera motion and 
scene features. 

2.1 Techniques Based on Differential Camera 
Motion 

Differential camera motion through a stationary 
scene induces differential motion of image fea- 
tures. When the image and scene features are 
points, the differential motion of image features is 

Epipolar-Plane Image Analysis 11 

called the optical velocity field. Research in this 
area deals for the most part with two issues: esti- 
mating the optical velocity field from images, and 
inferring the scene structure and differential 
camera motion that induced it. 

Estimating the optical velocity field is difficult 
for a number of reasons. First, local information 
alone is insufficient, even under ideal circum- 
stances, since only one component of a point's 
two-component velocity is available directly [35]. 
Thus, additional constraints are necessary if the 
problem is to be well posed. Second, since image 
sequences are sampled in time as well as in space, 
any spatial or temporal image derivative must 
be approximated discretely. Finally, images are 
noisy; differentiating them only aggravates this 
characteristic, as well as making it more difficult 
to track points in regions where variations in in- 
tensity are of the same order as sensor noise. 

A variety of approaches has evolved in an 
attempt to cope with these difficulties. Horn and 
Schunk [35] require that optical velocity vary 
smoothly in regions of the image where intensity 
is smoothly varying. Nagel [66] describes a more 
general technique applicable to regions contain- 
ing edges. Hildreth [31] estimates optical velocity 
from image contours, rather than from a region of 
intensities; she too requires that the resulting 
optical velocity field be smoothly varying. Heeger 
[30] estimates optical velocity locally by using 
Gabor filters to reconstruct the spatiotemporal 
power spectrum of a translating texture. 

Interpreting the optical velocity field means 
estimating not only the differential camera mo- 
tion, which consists of a translational velocity and 
an angular velocity, but also, as a rule, aspects of 
the scene structure. Some work has concentrated 
on the analysis: determining the relationships 
among quantities of interest and, wherever possi- 
ble, finding closed-form solutions. Computational 
approaches deal more with implementing these 
solutions and developing strategies to cope with 
noisy input data. Because estimates of camera 
motion and scene features are particularly sensi- 
tive to image noise when the camera locations are 
close together, techniques based on differential 
camera motion pose a special problem. 

There has been a great deal of analysis based 
on local properties of the optical velocity field. 
Koenderink and Van Doorn [46,47,50] study the 
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relationship between the optical velocity field and 
its first and second spatial derivatives on the one 
hand, and geometric properties of the scene (sur- 
face orientation, sign of Gaussian curvature, etc.) 
and the components of camera velocity (trans- 
lational and angular) on the other. Their em- 
phasis is mainly on qualitative, geometric analysis 
rather than on algorithms and computations. 
Longuet-Higgins and Prazdny [55] show how to 
obtain camera velocity and surface orientation 
from the optical velocity field and its first and 
second spatial derivatives. Hoffman [33], who 
bases his analysis on orthographic instead of per- 
spective projection, uses the optical velocity and 
acceleration fields, along with the first spatial de- 
rivative of the velocity field, to estimate angular 
velocity and surface orientation for rotation-only 
camera movement. 

Waxman and Ullman [92, 93] derive and imple- 
ment a method to compute camera velocity as 
well as the slope and curvature at a point on a 
scene surface from the optical velocity field and 
its first and second spatial derivatives at the 
corresponding image point. Waxman and Wohn 
[94,95] implement this scheme by estimating the 
optical velocity field and the necessary derivatives 
along image contours. Subbarao [78] develops a 
formalism to estimate camera velocity and surface 
orientation at a scene point from the first spatial 
and temporal derivatives of the optical velocity 
field at the corresponding image point. 

All these techniques use only local information 
in the optical velocity field and thus are sensitive 
to noise. Other techniques compute motion and 
structure parameters over larger regions of the 
field. Prazdny [72] presents a two-stage algorithm 
that first obtains camera velocity from five image 
points and their velocities, then computes relative 
depth and surface orientation from the optical 
velocity field everywhere in the image. Bruss and 
Horn [16] employ a least-squares method to esti- 
mate camera velocity (but not scene structure) 
from the entire optical velocity field. Similarly, 
Prazdny [73] uses the entire optical velocity field 
to extract the direction of translational velocity. 
Lawton [51] considers translational motion only 
and estimates its direction from point features 
detected by an interest operator; his approach is 
unusual in that the features are matched and the 
direction of motion determined simultaneously. 

2.2 Techniques Based on Widely Separated Views 

Another class of techniques is based on sampling 
the camera path a widely separated locations 
rather than differentiating it. Here the problem is 
usually to match corresponding image features in 
two or three images and then to infer from them 
the corresponding scene features, as well as the 
translation and rotation between the camera loca- 
tions. Because the camera locations are farther 
apart than in the case of differential motion, esti- 
mates based on corresponding image features 
tend to be more stable. On the other hand, estab- 
lishing correspondences between image features 
is far more difficult, since the widely separated 
camera locations mean that each feature may 
have moved to a new position in the image, or the 
scene feature to which it corresponds may have 
moved out of the camera's field of view or behind 
another object in the scene. The larger the range 
of possible image positions (including not being 
in the image at all), the more computation is 
required for each feature. 

As in the case of differential camera motion, 
most research in this area deals with point 
features in images and scenes; furthermore, it 
assumes that the correspondences are given. 
Photogrammetrists were among the earliest to 
formulate the problem for two or more perspec- 
tive views of points in space. Thompson [80] de- 
velops an iterative solution for two views of five 
points involving five simultaneous third-order 
equations. Wong [97] reviews modern photo- 
grammetric techniques for multiple overlapping 
views of large numbers of points; these tech- 
niques also involve iterative solutions of nonlinear 
equations. Roach and Aggarwal [76] analyze the 
problem of point correspondence in two and 
three views and conclude that six correspon- 
dences are required to overdetermine the solution 
if there are two views, and four correspondences 
if there are three; the equations involved are non- 
linear. Ullman [88] deals with point correspon- 
dences under orthogonal projection and explores 
the trade-offs between the minimum number of 
points and views required for a complete solution. 

Longuet-Higgins [53] describes a linear method 
for solving the problem of two views of eight or 
more points, although his technique has some 
stability problems and does not seem to have won 



over many photogrammetrists. Tsai and Huang 
[87] independently derive similar results and also 
consider the question of the uniqueness of solu- 
tions. Tsai and Huang [85,86] also consider the 
problem of two views of a set of points con- 
strained to lie on the same plane; they extract the 
camera motion by solving a single sixth-order 
equation and performing a singular value decom- 
position. 

Other authors avoid the use of point corre- 
spondences by relying on aggregate features that 
are more reliable to estimate and easier to put 
into correspondence. Yen and Huang [101], Liu 
and Huang [52], and Mitiche, Seida, and Aggar- 
wal [63] all develop solutions for the problem of 
three views of a set of lines in space. Tsai [83,84] 
considers two views of a single conic arc. Aloimo- 
nos and Rigoutsos [3] combine stereo and motion 
to estimate the camera motion from an image 
sequence of coplanar points based on the detec- 
tion of image points but without the individual 
correspondences. Kanatani [42,43] uses features 
computed along entire image contours to estimate 
and track planar surface motion. 

2.3 Integrating Information Along the Camera 
Path 

The two approaches discussed so far typically 
analyze only two or three images at a time. Now 
we turn to techniques that analyze longer image 
sequences and, in effect, integrate information 
from images collected along densely sampled 
intervals of the camera path. This class of tech- 
niques has the potential to combine some of the 
best characteristics of the approaches already dis- 
cussed. Since images are sampled densely, image 
features shift very little from image to image and 
so correspondences are easier to establish, as 
in the case of differential camera motion. Since 
longer image sequences are involved, the camera 
moves enough to increase the stability of esti- 
mates of structure and motion, as in the case of 
widely separated views. Stability is also improved 
because more images contribute to these esti- 
mates than in either of the other two approaches. 

An early example of this approach was pro- 
vided by Moravec [64], who built a mobile robot 
equipped with "slider stereo," a camera mounted 
on a track that takes nine moderately spaced im- 
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ages as it slides across. Webb and Aggarwal [96] 
process a long sequence of images generated by 
people moving in a dark room with lights attached 
to certain of their joints; the goal is to infer 
jointed motion from the point correspondences. 
(Hoffman and Flinchbaugh [34] consider a simi- 
lar problem but use no more than two or three 
images at a time.) Ullman [90] proposes the 
"incremental rigidity method," which estimates 
the three-dimensional structure of a smoothly mov- 
ing (and possibly smoothly deforming) object 
incrementally from point correspondences in a 
sequence of orthographic images. Gennery [26] 
uses an approach similar to nonlinear Kalman 
filtering to lock onto and to track a known three- 
dimensional object. Broida and Chellappa [14, 
15] apply a nonlinear Kalman filtering technique 
to point correspondences in an image sequence to 
estimate motion and three-dimensional structure. 

Buxton and Buxton [17,18] extend the Marr- 
Hildreth theory of edge detection [59] to spatio- 
temporal imagery, experiment with detecting 
edges in closely spaced images of moving blocks, 
and speculate on the possibility of extracting 
depth information from the edges tracked over 
time. Adelson and Bergen [1] emphasize the 
coherence of image motion in the spatiotemporal 
block and propose linear spatiotemporal filters to 
detect such motion. Their figures showing slices 
of the spatiotemporal block to illustrate simple 
image motion are strikingly similar to EPIs, 
although they are not concerned with three- 
dimensional interpretations. 

For Yamamoto [99], the goal is to analyze 
closely spaced images from a stationary camera 
viewing a busy street scene. As in EPI analysis, 
the method involves interpreting each scanline 
separately over time, although the justification 
for this decomposition is not clear. The tracking 
of image points and the detection of occlusions, 
developed in more detail below, are discussed 
here as well. Bridwell and Huang [13] report a 
method of image sequence analysis involving 
lateral camera motion that constrains the projec- 
tions of a point in space to a single scanline of the 
image. However, they used widely spaced images 
that made it difficult to put image points into 
correspondence and apparently did not further 
analyze the image point motion resulting from 
this camera motion. 



14 Bolles, Baker and Marimont 

2.4 Techniques That Do Not Require 
Correspondence 

A final class of techniques estimates structure and 
motion from image sequences without first solv- 
ing the correspondence problem, so that no track- 
ing of image features is necessary. Because the 
correspondence problem is so difficult if tech- 
niques are employed that are based on widely 
separated camera views--and somewhat less so 
but still the focus of active research in techniques 
based on differential camera motion--the possi- 
bility of circumventing the problem has great 
appeal. These "direct methods," as Negahdari- 
pour and Horn [67] and Horn and Weldon [36] 
call them, are just beginning to be explored, so it 
is not yet clear how useful they will be. 

Blicher and Omohundro [11] compute camera 
velocity only from first temporal derivatives of 
intensity at six image locations using Lie algebra 
methods. Negahdaripour and Horn [67] show 
how to recover camera velocity relative to a 
planar surface and the three-dimensional descrip- 
tion of the planar surface itself directly from image 
intensity and its first spatial and temporal deriv- 
atives; the solution entails an iterative, least- 
squares method applied to a set of nine nonlinear 
equations. Negahdaripour [68] presents a closed- 
form solution to the same problem that involves a 
linear system and the eigenvalue decomposition 
of a symmetric matrix. (Subbarao and Waxman 
[79] also attack this problem but assume that 
the optical velocity field is available.) Horn and 
Weldon [36] propose a least-squares method of 
estimating camera velocity from image intensity 
and its first spatial and temporal derivatives; the 
technique is applicable in cases of pure rotation, 
pure translation, and when the rotation is known. 

2.5 Discussion 

The three correspondence-based approaches to 
motion analysis reviewed above are in essence 
three ways to interpret the paths of features 
across images as a camera moves. The first relates 
the derivative of the feature paths to scene fea- 
tures and to the derivative of the camera path. 
The second relates samples of the feature paths at 
wide intervals to scene features and to samples of 

the camera path at wide intervals. The third 
relates the entire feature paths to scene features 
and to the entire camera path. 

None of these approaches is without disadvan- 
tages. With the derivative approach, establishing 
the correspondences may be feasible, but stability 
problems associated with the use of derivatives 
and small camera motions seem inevitable. With 
the sampled approach, the correspondence prob- 
lem is very difficult and possibly even insoluble. 
The entire path approach avoids these pitfalls at 
the cost of enormously greater computational 
requirements. Techniques that do not require 
correspondence are promising exactly because 
the correspondence problem is so far from solved, 
despite all the research devoted to it. 

3 Epipolar-plane Images 

In this section, we define an epipolar-plane image 
and explain our interest in it. We first review 
some stereo terminology and then describe the 
extension of an important constraint from stereo 
processing to motion analysis. Next, we use this 
constraint to define a spatiotemporal image that 
we call an epipolar-plane image, and show how to 
construct EPIs from long sequences of closely 
spaced images. Finally, we briefly restate the 
approach derived from our original ideas for 
simplifying depth determination. 

3.1 Stereo Terminology 

Figure 5 depicts a general stereo configuration. 

p Epipolar Eplpolar Plane . A Image 
~ N ~  \ L'ne2 / ~  Epipolar / tPlanel 

Image Plane21 - \  /~ ~ 1  ~ 1 - - ~  ~f I 

1 enterl 

CenLer2 

Fig. 5. General stereo configuration. 
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The two cameras are modeled as pinholes with 
the image planes in front of the lenses. For each 
point P in the scene, there is a plane, called the 
epipolar plane, that passes through the point and 
the line joining the two lens centers. The set of all 
epipolar planes is the pencil of planes passing 
through the line joining the lens centers. Each 
epipolar plane intersects the two image planes 
along epipolar lines. All the points in an epipolar 
plane are projected onto one epipolar line in the 
first image and onto the corresponding epipolar 
line in the second image. The importance of these 
lines for stereo processing is that they reduce the 
search required to find matching points from two 
dimensions to one. Thus, to find a match for a 
point along an epipolar line in one image, all that 
is necessary is to search along the corresponding 
epipolar line in the second image. This geometric 
relationship is termed the epipolar constraint. 
Finally, an epipole is the intersection of an image 
plane with the line joining the lens centers (see 
figure 5). When the camera is translating, the 
resulting epipole is often called the focus of ex- 
pansion (FOE) because the epipolar lines radiate 
from it. 

3.2 An Epipolar Constraint for Motion 

In stereo processing, the epipolar constraint sig- 
nificantly reduces the search required to find 
matching points. Since we wanted to simplify the 
matching required for motion analysis, we looked 
at the possibility of extending this constraint to se- 
quences of three or more images. We found that 
there is indeed such an extension when the lens 
center of the camera moves in a straight line. In 
that case, all the lens centers are collinear, so that 
all pairs of camera positions produce the same 
pencil of epipolar planes. A straight-line motion 
thus defines a partitioning of the scene into a set 
of planes. The points on each of these planes act 
as a unit. They are projected onto one line in the 
first image, another line in the second image, and 
so on. This partitioning of the scene into planes is 
a direct extension of the epipolar constraint of 
two-camera stereo to linear path sequence analy- 
sis. To find matches for points on an epipoiar line 
in one image, all that is necessary is to search 
along the corresponding epipolar line in any other 

image of the sequence. 
The camera can even change its orientation 

about its lens center as it moves along the line 
without affecting the partitioning of the scene 
into epipolar planes. Orientational changes move 
the epipolar lines around in the images, but, since 
the line joining the lens centers remains fixed, the 
epipolar planes remain unaltered. 

If the lens center does not move in a line, the 
epipolar planes passing through a scene point 
differ from one camera pairing to the next. The 
points in the scene are grouped one way for the 
first and second camera positions, a different way 
for the second and third, and so on. This makes it 
impossible to partition the scene into a disjoint set 
of epipolar planes, which in turn means that it is 
not possible to construct EPIs for such a motion. 
The arrangement of epipolar lines between im- 
ages must be transitive for EPIs to be formed. 

3.3 Definition of an Epipolar-plane Image 

Since the points on an epipolar plane are pro- 
jected onto one line in each image, all the 
information about them is contained in that se- 
quence of lines. To concentrate this information 
in one place, we constructed an image from this 
sequence of lines. We named this image an 
epipolar-plane image because it contains all the 
information about the features in one epipolar 
plane. 

Since an EPI contains all the information about 
the features in a slice of the scene, the analysis of 
a scene can be partitioned into a set of analyses, 
one for each EPI. This ability to partition the 
analysis is a crucial element for our motion- 
analysis technique. The EPIs can be analyzed 
independently (possibly also in parallel), and the 
results then combined into a three-dimensional 
representation of the scene. 

3.4 Cons~uc~onofEPIs 

We began this research with two ideas. The first 
was to use knowledge of camera motion to reduce 
the number of parameters to be estimated. 
However, as a result of our investigation of the 
geometric constraints that could be derived from 
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Fig. 6. First three of 125 images. 

/ 

/ / 

Fig. 7. Spatiotemporal solid of data. Fig. 8. Lateral motion with solid. 

such knowledge, our application of this idea has 
undergone some revision. Rather than monitor 
the motion of the sensor, we now restrict the 
motion to straight lines. This allows us to parti- 
tion the three-dimensional problem into a set of 
two-dimensional analyses, one for each epipolar 
plane. 

Our second initial idea was to take long se- 
quences of closely spaced images to obtain a long 
baseline by tracking features through many simi- 

lar images. To pursue this idea further than was 
possible with the few image sequences described 
in the introduction, we took some longer se- 
quences in which the images were so close together 
that no single image feature moved by more than 
a few pixels from image to image. (Figure 6 shows 
the first three images from one of our sequences 
of 125.) This sampling frequency guaranteed a 
continuity in the temporal domain similar to that 
of the spatial domain. Thus, an edge of an object 
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because the epipolar lines are horizontal scanlines 
that occur at the same vertical position in all im- 
ages (see figure 8). Figure 9 shows one of these 
slices through the solid of data in figure 7. Figure 
10 is a frontal view of that slice. In this image, 
time progresses from bottom to top and, as the 
camera moves from right to left, the features shift 
toward the right. 

Fig. 9. Sliced solid of data. 

t (time) 

tJ 

Fig. 10, Frontal view of the EPI. 

in one image appeared temporally adjacent to 
(within a pixel of) its occurrence in both the pre- 
ceding and following images. This temporal con- 
tinuity made it possible to construct a solid block 
of data in which time is the third dimension and 
continuity is maintained over all three dimensions 
(see figure 7). This solid of data is referred to as 
spatiotemporal data. 

An EPI is a slice of this solid of data. The posi- 
tion and shape of the slice depend on the type of 
motion. An EPI for a lateral motion, whereby the 
camera is aimed perpendicularly to its path, is a 
horizontal slice of the spatiotemporal data. This is 

l Top of last image 

t Bottom of first image 

Fig. 11. EPI with portions of the spatial images. 

t2 ~ENE FEATURE 

STRIPE 

EP~POLAR LINES 

Fig, 12. Relationship of scene features to feature paths. 
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Figure 11 is another way of displaying the EPI 
in figure 10 that makes it easier to identify objects 
in the scene that are associated with patterns in 
the EPI. In this figure, the lower part of the first 
spatial image is displayed below the EPI, while 
the upper part of the last spatial image appears 
above it. Note, for example, that the tall, thin- 
leafed plant, which is visible at the top of the pic- 
ture, is associated with the dark parallel lines that 
start in the lower left corner of the EPI. The 
closest leg of the ladder produces the white stripe 
at the lower right of the EPI. 

To be more precise about what we call a feature 
in an EPI, consider figure 12, which shows the re- 
lationship between the patterns in an EPI and the 
objects intersected by the corresponding epipolar 
plane. The front wall of the house in the scene 
produces a stripe in the EPI. We refer to the 
edges of this stripe as feature paths or paths and 
the corresponding points on the sides of the block 
as scene features, or features. Our motion-analysis 
technique locates feature paths in an EPI and 
then uses properties of these paths to estimate the 
three-dimensional coordinates of the correspond- 
ing scene features. 

For a feature path to be continuous in an EPI, 
the images in the sequence have to be taken close- 
ly enough together to make the stripe in figure 12 
continuous. If the images are too far apart, the 
stripe degenerates into a sequence of discon- 
nected sections (see figure 13). Therefore, three 
factors affect the continuity of feature paths in an 
EPI: the width of the object in the scene, the dis- 
tance of the object from the camera path, and the 
distance between lens centers. To guarantee the 
continuity of paths associated with thin objects, 
we generally take images closely enough together 
so that nothing moves more than a few pixels 
between images. 

It is easy to construct EPIs for motions in which 
the camera is aimed perpendicularly to its trajec- 
tory because the epipolar lines are image scan- 
lines. However, if the camera aims forward or 
changes its orientation as it moves, the construc- 
tion is more complicated. Figure 14 illustrates the 
sequences of epipolar lines produced by three 
different types of motion. The top sequence 
shows the simple case of perpendicular viewing. 
The middle one shows the case in which the 
camera is aimed at a fixed angle relative to its 

path. The third sequence illustrates the case in 
which the camera pans, tilts, and rolls as it moves. 
The images to the right are EPIs from these cases. 

In the first case, an EPI is constructed by 
extracting one row of each image and inserting 
it into a new image. For the second case, the 
construction is a little more difficult because the 
epipolar lines are not horizontal. The epipole, 
however, is at a fixed position in the images, since 
the camera is at a fixed orientation relative to its 
trajectory. (Recall that the epipole is the intersec- 
tion of the line between the lens centers and the 
images.) In this case, the epipolar lines associated 
with an epipolar plane are at a fixed angle and 
radiate from the epipole. To construct an EPI, 
one must extract a line at a specific angle from 
each image and insert it into a new image. Since 
the lines form the same pattern in all images, their 
extraction can be quite simple. For this type of 
motion, an EPI is a planar slice through the solid 
of data that passes through the epipoles and is at 
different angles for different epipolar planes. 

For the most complicated case, i.e., when the 
camera is altering its orientation as it moves, the 
position of the epipole changes from one image to 
the next. In addition, the orientations of the cor- 
responding epipolar lines change, and this makes 
their extraction more difficult. In this case, an EPI 
corresponds to a slice through the solid of data 
that undulates and shifts as the camera's orienta- 
tion changes. In sum, we can say that it is possible 
to construct EPIs for all straight-line motions, but 
there are three levels of difficulty in doing so. 

3.5 Discussion 

Both of the ideas we started will lead to ways of 
simplifying the matching of features, the most dif- 
ficult task in motion analysis. The first idea- -  
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Fig. 13. Discontinuous "str ipe" in an EPI. 
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EPIPOLAR LINE 
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PROJECTION OF SCENE POINT 
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FRAME 21 FRAME 41 FRAME 61 

R IGHT-TO-LEFT LATERAL MOTION 

EPIPOLE EPIPOLAR LINE PROJECTION OF SCENE POINT 

FORWARD MOTION WITH A FIXED CAMERA ORIENTATION 

EPIPOLE EPIPOLAR LINE PROJECTION OF SCENE POINT 

FORWARD MOTION WITH PANNING, TILTING,  ROLLING CAMERA 

Fig. 14. Sequences of epipolar lines for different types of 
motion. 

using knowledge of the camera's motion to re- 
duce the number of unknown parameters--led us 
to restrict that motion to straight lines. This made 
it possible to partition the three-dimensional 
problem into a set of two-dimensional problems. 
Combining this tactic with the second idea of 
working with a sequence of closely spaced images 
changed the problem from one of matching fea- 
tures in spatial images to finding feature paths in 
spatiotemporal images. This approach led to a 
technique that employs spatiotemporal proces- 
sing to determine the locations of object features 
in disjoint two-dimensional slices of the scene, 
and then combines these separate results to form 
a three-dimensional description of the scene. 

4 Linear Camera Motion 

In section 3, we explained how the analysis of 

straight-line motion sequences could be decom- 
posed into a set of planar analyses. In this section, 
we describe the techniques of planar analysis. We 
start by obtaining an expression that describes the 
shape of a feature path in an EPI derived from a 
linear motion in which the camera is aimed at a 
fixed angle relative to its path. Then, after dis- 
cussing occlusions and free space, we describe the 
results of an experimental system for analyzing 
EPIs produced by lateral motion. Finally, we de- 
s, ribe the analysis for a camera looking at some 
arbitrary angle relative to its path. 

4.1 Feature Path Shapes 

In an epipolar plane, scene points are two- 
dimensional and the image is formed along a line, 
so we refer to the image line instead of the usual 
image plane. For the time being, let the camera 
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x = (x, Y) 

Fig. 15. One-dimensional camera geometry. 
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y = f (P, q) 

Fig. 16. Rotated and shifted one-dimensional camera. 
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center (which, in this context, is called the center 
of projection) be at the origin, a scene point be at 
x = (x, y),  and the image line be y = f ( s ee  figure 
15). The central projection of x onto the image 
line is simply the intersection of the ray from the 
origin through x, which is (fx/y, f). We drop the 
second coordinate, since it is the same for all 
image points, and take the coordinate along the 
image line to be u = fx/y. 

If the scene point's coordinate system differs 
from the camera's, we must first transform the 
scene point into the camera's coordinate system 
and then project as before. This is the situation 
depicted in figure 16. As before, the internal 
camera coordinate system is defined with the 
camera center at the origin and the viewing di- 
rection along the positive y-axis. Let the camera 

center be at p -- (p, q) in the global coordinate 
system and let the camera coordinate system be 
rotated counterclockwise by 0. The relationship 
between a point in the global coordinate system 
x0 and one in the camera coordinate system x is 

x0 = Rx + p (3) 

so that 

x = Rt(xo - p) (4) 

where the rotation matrix R is 

(cos0 - s in0]  
R = ~sin0 cos0] (5) 

As before, the projection of the point x is u = 
fx/y; using equation (4) we find that, in terms of 
the global coordinates of the scene point, 

(Xo - p)  cos0 + (Yo - q )  sin0] 
u = f  ~--~-Z~0) S-=l-l~n0T(yo _ q) cos0] (6) 

If the camera is moving and is aimed in a fixed 
direction, its position p is a function of time; 
because equation (6) is still valid, u will be also a 
function of time. 

Without loss of generality, we take the camera 
path to begin at the origin, at time t = 0, moving 
along the positive x-axis (see figure 17). With a 

Yo 

PRINCIPAL RAY OF CAMERA ~ Y _ 

y = f  

\ ,Xo 

L, 
Ng. 17. Linear camera motion in a plane. 
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slight loss of generality, we let this movement be 
at a constant speed a, so that p = (at, 0). If we 
substitute this choice of p into equation (6), we 
find, after some rearranging, that 

autsinOo + (y0cos00 - xosinOo)u + aftcosOo - 
f(xocosOo + y0sin0o) = 0 (7) 

Note that a perpendicular viewing direction 
means that 00 = 0, so that equation 7 reduces to 

you + aft - xof  = 0 (8) 

The feature paths are therefore linear. 
The linearity of feature paths in epipolar 

images greatly simplifies their analysis. The algo- 
rithm for each epipolar image's initial processing 
is as follows: detect and link edges, fit straight- 
line segments to the edges, and then use the 
parameters of each line segment to estimate the 
position of the corresponding scene point. This 
estimate is obtained quite simply from equation 
(8). Consider a typical epipolar image, with the 
image coordinate u on the horizontal axis and t 
on the vertical. If we then rearrange equation (8) 
in standard slope-intercept form, as in 

(-y0 ]u  + x0 (9) 
t = \  a f ]  a 

the slope of the line gives the corresponding scene 
point's perpendicular distance from the camera 
path, while its u-intercept gives the distance along 
the path. 

Note that no matter what the value of a, the 
speed of the camera, may be, a line that is more 
vertical than another corresponds to a scene point 
whose perpendicular distance from the camera 
path is greater than that of the scene point corre- 
sponding to the less vertical line. This is because 
the larger the magnitude of the slope, the more 
vertical is the line. This agrees with our intuition 
that image points that traverse the image more 
rapidly correspond to closer scene points. Also, it 
should be noted that the direction of motion, or 
sign of a, determines the sign of the slopes of the 
image paths. If the camera moves along the posi- 
tive x-axis and looks to its left (0 = 0), we expect 
points in the image to move from right to left, 
which means the lines have a negative slope. In 
this case, a is positive and, since a real camera can 
see only what is in front of it, Y0 is always positive, 
so obviously a line given by equation (9) has a 

p 
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Fig. 18. A simulated planar scene. 
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negative slope. 
Consider the simulated planar scene in figure 

18. The scene and camera path are on the left, 
and the feature paths are on the right. The scene 
consists of the triangle pqr. The camera path is a 
straight line from a to b, with the camera's view- 
ing direction perpendicular to the path and to- 
ward the triangle. In the EPI on the right, the spa- 
tial dimension, which is the u-coordinate, is on 
the horizontal axis and the temporal dimension is 
vertical, increasing upward. Both image forma- 
tion and edge detection are simulated; in effect, 
the camera "sees" only the vertices of the trian- 
gle. The feature paths in the EPI are linear, as 
expected. The one corresponding to q, which is 
the point closest to the camera path, is the least 
vertical. The other two paths, which correspond to 
scene points at the same depth from the camera 
path, are parallel but have different u-intercepts, 
reflecting the difference in their distances along 
the camera path. 

Note that in the simulated EPIs, such as the 
one in figure 18, the feature paths have negative 
slopes, unlike the paths in the real EPI in figure 
10. This difference lies in the camera's viewing 
direction relative to its path. In the simulation the 
camera was aimed to the left, causing features to 
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Fig. 19. Occlusions and disocclusions. 
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move from right to left across the camera's image 
plane, while in the case of the real EPI the camera 
faced toward the right, so the feature paths ran 
from left to right as the camera progressed. 

4.2 Occlusions and Disocclusions 

Occlusions and disocclusions, the emergence into 
visibility of a point from behind an occlusion, in- 
duce a branching structure in the image feature 
paths, as depicted in figure 19. On the left is a 
planar scene containing a triangle and a straight 
path along which the camera moves from a to d, 
again looking perpendicular to the path toward 
the triangle. On the right are the image point 
paths. Two types of branches exist. Both are Y's 
formed from two line segments. They differ, 
however, in their orientation relative to the direc- 
tion of motion. The first is a merge, like the point 
m in the image, where one line segment meets 
another and stops, while the other continues. The 
other is a split, like the point s in the image, where 
a line segment is spawned by an existing one, 
which continues. 

A merge corresponds to an occlusion of one 
scene point by another, while a split is the emer- 
gence into visibility of a previously occluded scene 

.,~..--- ¥ 
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Fig. 20. Scene feature visible three times. 

point. Consider the situation in figure 19. Be- 
tween points a and b, the camera can see all three 
vertices of the triangle. Between b and c, the 
point p is occluded; between c and d, all three 
vertices are again visible. In the image on the 
right, all three vertices are visible until m, at 
which juncture the image feature path corre- 
sponding to p merges into that corresponding to q. 
This occurs when the camera is at b, which is col- 
linear with p and q, so that their images must be 
identical. Past b, p is occluded, so its image fea- 
ture path terminates; q is still visible, however, so 
it continues. Only two image point paths are pres- 
ent until s, when the image feature path corre- 
sponding to p splits off from that corresponding to 
r. This occurs when the camera is at c, which is 
collinear with p and r, so their images are identi- 
cal. Past c, p is visible, so its image feature path 
begins again, and all three image feature paths 
are present until the end of the camera path. 

Since an occlusion of one point by another 
always involves occlusion by the closer point of 
the one farther away, the upside-down "Y"  cor- 
responding to the occlusion always consists of 
the more horizontal path's cutting off the more 
vertical one. Conversely, the disocclusion of a 
point formerly occluded by another always in- 
duces a rightside-up "Y"  where the more ver- 
tical path splits off from the more horizontal one. 

One advantage of analyzing long sequences of 
images is that a scene feature may be visible 



several different times along a path. Figure 20 
illustrates a situation in which point p is visible 
three times, as indicated by the shaded regions. If 
the processing can identify the three line seg- 
ments in the EPI as belonging to a single feature, 
it can compute a significantly more precise esti- 
mate of the feature's location than if it used but a 
single segment. 

4.3 The Free Space Map 

It may seem at first glance that the topology of the 
epipolar-plane image, as determined by the splits 
and merges, is irrelevant to the goal of building a 
map of the scene. After all, estimating the pa- 
rameters of a linear image feature path enables 
us to estimate the location of the corresponding 
scene point, so what is to be gained by devoting 
attention to the question of which points were 
visible at any given moment? 

The problem is that we can estimate the param- 
eters of linear image feature paths with reason- 
able accuracy only at image edges, which occur 
relatively sparsely in the image. To rely complete- 
ly on these parameters means that our map of the 
scene will be sparse as well. The advantage of 
using these split-merge events and their implica- 
tions is that they provide information about what 
is happening in the scene at points other than 
those that result in image edges. 

The essential idea here is that, when a scene 
point is visible, the line of sight from the camera 
center to the point must intersect no other objects 
(we exclude the possibility of nonopaque ob- 
jects). If images are acquired continuously as the 
camera moves around a scene, the line of sight to 
a given scene point sweeps out the three-sided 
area formed by the path and the initial and final 
lines of sight. If nothing is moving but the camera, 
and the feature is viewed continuously, this area 
then contains no objects; in other words, it is free 
space. 

Others have used similar ideas to construct a 
map of free space. Some who have taken more 
sophisticated approaches involving the use of 
probabilistic knowledge are Moravec and Elfes 
[65] (from sonar rather than intensity images) and 
Chatila and Laumond [19]. Bridwell and Huang 
[13], mentioned earlier in connection with their 
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Fig. 21. The free-space map for a simple scene. 

use of straight camera paths and perpendicular 
viewing directions, also computed a map of free 
space. 

Here we take a very simple approach to the 
construction of a map of the free space in a scene. 
The area swept by lines of sight must be approx- 
imated, since images cannot be acquired and 
processed continuously; instead the images are ac- 
quired at a sampling of positions along the camera 
path. If this sampling occurs frequently relative to 
the spacing of objects in the scene, it is reasonable 
to approximate the free space by computing it as 
if points visible in consecutive images had been 
continuously visible along that portion of the 
camera's path between which the two images 
were formed. Figure 21 illustrates this process for 
a simple scene. The fact that images must be 
taken in rapid succession to obtain an accurate 
estimate of free space is another argument for the 
approach employed here and, at the same time, 
against the practice of relying exclusively on wide- 
ly spaced images. 

Note that the computation of free space de- 
pends on knowing the camera path and the loca- 
tion of the scene points. The free space itself is 
the union of all areas in the scene through which 
the camera has observed features, so the comple- 



24 Bolles, Baker and Marirnont 

ment of free space is the area in the scene through 
which no features have been seen. The comple- 
ment of free space has as part of its boundary 
a subset of those scene points whose locations 
are known, but little information is available on 
the other points in this "not free space." For ex- 
ample, the "not free space" could contain any 
opaque object that does not result in image edges 
(for example a rear wall), and the imagery would 
be identical. 

U 

Fig. 22. EPI to be analyzed. 

41- 

t (time) 

4.4 Experimental Results 

We have implemented a sequence of programs to 
explore the techniques described in the previous 
sections. Here, we briefly describe two versions of 
a program to build three-dimensional descriptions 
of scenes by analyzing EPIs constructed from 
lateral motion. The first version of the program 
consisted of the following steps: 

1. Three-dimensional convolution of the spatio- 
temporal data. 

2. Slicing the convolved data into EPIs. 
3. Detecting edges, peaks, and troughs. 
4. Segmenting edges into linear features. 
5. Merging collinear features. 
6. Computing x - y - z  coordinates. 
7. Building a map of free space. 
8. Linking x - y - z  features between EPIs. 

In this section, we illustrate the behavior of this 
program by applying it to the data shown in figure 
6. 

The first step processes the three-dimensional 
data to determine the spatiotemporal contours 
to be used subsequently as features (as well as, 
incidentally, to reduce the effects of noise and 
camera jitter). This is done by applying a se- 
quence of three one-dimensional Gaussians (see 
also Buxton and Buxton [17]). 

The second step forms EPIs from the con- 
volved spatiotemporal data. For a lateral motion 
this is straightforward, as the EPIs are horizontal 
slices of the data. Figure 22 shows an EPI selected 
to illustrate steps 3-7. This slice contains a plant 
on the left, a shirt draped over the back of a chair, 
part of a tabletop, and, in the right foreground, a 
ladder. 

The third step detects edgelike features in the 
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Fig. 23. Edge features in EPI. 

EPI. It locates four types of features in the differ- 
ence of Gaussians: positive and negative zero 
crossings (see Marr and Hildreth [59]) and peaks 
and troughs. A zero crossing indicates a place in 
the EPI where there is a sharp change in image 
intensity, typically at surface boundaries or sur- 
face markings; a peak or trough occurs between a 
positive and a negative zero crossing. Zero cross- 
ings are generally more precisely positioned than 
peaks or troughs. Figure 23 shows all four types of 
features detected in the EPI shown in figure 22. 

The fourth step fits linear segments to the 
edges. It does this in two passes. The first pass 
partitions the edges at sharp corners by analyz- 
ing curvature estimates along the contour. The 
second pass applies Ramer's algorithm (see Ramer 
[75]) to recursively partition the smooth segments 
into linear ones. Color figure 56 shows the linear 
segments derived from the edges in figure 23. The 
segments are color-coded according to the feature 
type that gave rise to them: red, negative zero 



Fig. 24. Merged lines. 

crossing; green, positive zero crossing; blue, 
peak; and yellow, trough. 

The fifth step builds a description of the line 
segments that links together those that are col- 
linear. The purpose is to identify sets of lines that 
belong to the same feature in the scene. By bridg- 
ing gaps caused by occlusion, the program can 
improve its estimates of the features' locations 
as well as extract clues about the nature of the 
surfaces in the scene. The dashed lines in figure 
24 show those linear features that are linked 
together. Line intersections indicate temporal 
occlusions. For each intersection, the feature with 
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the smaller slope is the one that occludes the 
other. 

The sixth step computes the x-y-z locations 
of the scene features corresponding to the EPI 
features. The scene coordinates are determined 
uniquely by the location of the epipolar plane 
associated with the EPI as well as with the slope 
and intercept of the line in the EPI. To display 
these three-dimensional locations, the program 
plots the two-dimensional coordinates of the 
features in that particular epipolar plane. Figure 
25 (left) shows the epip01ar plane coordinates 
for the features shown in figure 56. In figure 25 
(right), the ellipses indicate estimates of the 
error associated with each scene feature. The 
horizontal line across the bottom of the-figures 
indicates the camera path. 

The scene feature errors are estimated as fol- 
lows. Each scene feature is related in a simple 
way to the parameters of the corresponding line 
in an EPI. However, errors in detecting the image 
features to which the line is fitted result in errors 
in the line parameters and thus an error in the 
scene feature. To estimate the scene feature 
errors, we assume that the error in detecting 
image features is Gaussian and approximate the 
relationship between scene and image features 
with a linear function. It is therefore natural to 
approximate the error in the scene feature esti- 
mate with a two-dimensional Gaussian. (For 
details on this simple application of estimation 
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Fig. 27. Crossed-eye stereo display of all x - y - z  points. 

theory, see Beck and Arnold [9] or Melsa and 
Cohn [62].) Each ellipse in figure 25 (right) is the 
contour of equal likelihood at the 3-standard- 
deviation level, so that, if all of our assumptions 
are correct, the probability that the true scene 
feature lies inside the ellipse is greater than .99. 
In general, more observations of a scene feature 
reduce the size of its error ellipse, and observa- 
tions over a longer baseline reduce its eccen- 
tricity. 

The seventh step builds a set of two- 
dimensional maps of the scene, indicating regions 
that are empty. This construction is demonstrated 
for a few points in figure 26 (left). As mentioned, 
the principle here is that, if a feature is seen con- 
tinuously over some interval by a moving camera, 

then nothing is occluding it during that motion. 
Since nothing occludes it, nothing lies in front of 
it, and the triangle in the scene defined by the fea- 
ture and its first and last points of observation 
constitutes empty space. We build a map of this 
free space by constructing one of these triangular 
regions for each line segment found in an EPI, 
and then or'ing them together. In figure 26 (left), 
the black triangles are free space; they are all 
bounded on one side by the camera path, with the 
opposing vertex of each at the feature. Note that 
the left feature is viewed just once, while the 
other is seen in three distinct intervals, thus yield- 
ing three free space triangles. The row of small 
ellipses across the middle is the shirt visible in the 
foreground of figure 6. Figure 26 (right) shows 
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Fig. 28. Crossed-eye stereo display of filtered x - y - z  points. 

the full free space map constructed for the EPI 
features of figure 25. An estimate of free space 
volume could be obtained by combining the free 
space regions of individual EPIs over some verti- 
cal interval. Such a free space volume would be 
useful for navigation; a vehicle could move freely 
in that volume, knowing that it would run not into 
obstacles. 

Figure 27 is a stereo (crossed-eye) display, 
showing the full set of points derived from all the 
EPIs. The display is relatively dense, since all 
points, including those arising from quite short 

segments, are depicted. The eighth step filters 
these matches by eliminating those that do not 
have similar features in adjacent EPIs. It links 
features between adjacent EPIs if their error 
ellipses overlap, and discards features that do 
not have at least one matching feature from an 
adjoining EPI. Figure 28 displays the filtered set 
of features. Figure 29 shows, for reference, the 
actual scene from nearly this perspective. Note 
the shirt, the chair at the middle left, the tall plant 
in the center, and the diagonal bar. Color figure 
57 shows a color-coded depiction of the scene 
features visible from frame 123.1 

a It will be obvious in looking at some of the figures in this 
article that we have come up against the standard graphics 
display problems in this work. In research of this sort, where 
massive amounts of data are being manipulated, it is crucial to 
be able to display results graphically. The intrinsic three- 
dimensionality of our results makes this especially difficult. In 
our laboratory, we have tools that make possible rapid display 
of image sequences (using motion to induce the perception of 
depth),  both anaglyphic and polarizing displays of stereo pairs 
(for perception of stereoscopic depth), and ample use of color 
for coding other  dimensions• Many of these techniques are not 
appropriate for print and, even in the laboratory, people vary 
in their preferences among different display methods. Our dis- 
play techniques include the following• In the laboratory, we 
can view the original data as a sequence, presenting successive 
frames at near-video rates. For viewing estimates of scene 
points, we can display color-coded superpositions of points 
over the imagery, and view these as a dynamic display. Color 

figure 57 is one frame from such a display. The colors indicate 
distances of scene points from the camera: green, less than 
than 76 inches; red, between 77 and 153; yellow, between 154 
and 229; purple, between 230 and 306; and red, between 307 
and 382. A similar display can be made for the occlusion 
edges, as shown in color figure 59. Similarly, we can build 
rotating displays of isolated or linked 3-D points, one frame of 
which can be seen as figure 29. None of these adapt well to 
either print or NTSC videotaping: in videotaping, resolution is 
an issue, and our displays tend to be quite large. When we are 
interested in displaying an isolated part of the results, we find 
the form of color figure 58 to be our most successful. That 
figure shows a voxel display of the nearest tree of the outdoor 
sequence, and is again one frame of a dynamic display. We 
expect to have an even bigger job in showing our processing 
stages as we continue the development of our current spatio- 
temporal surface version of the EPI analysis. 
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Fig. 29. S c e n e  v i e w e d  f r o m  p e r s p e c t i v e  s i m i l a r  to  a b o v e .  

The second version of this program differs from 
the first in four ways. First, it no longer detects 
and analyzes peaks and troughs. These do not 
necessarily correspond to scene features. They 
are as likely to be artifacts of the zero crossing 
process as actual details, and, if they are the 
latter, are extremely sensitive positionally to 
variations in illumination. 

The second difference is that the new program 
does not link features between EPIs. We found 
that, to track vertical connectivity reliably, a 
model of the expected spatial variation of features 
is necessary in addition to the error ellipses. For 
example, features on the shirt of figure 28 are 
positioned to an accuracy, in x and z, of a few 
hundredths of an inch, so their error ellipses are 
quite small. At this distance, adjacent epipolar 
planes have a vertical separation of about a quar- 
ter of an inch, while the pattern on the shirt has a 
lateral drift of up to about a tenth of an inch. This 
means that features may shift laterally several 
times their accuracy limits between EPIs. Instead 
of continuing with this approach of trying to re- 
compute spatial connectivity, we are exploring a 
technique for detecting the connectivity directly 
from the spatiotemporal data. In this work we 
locate spatiotemporal surfaces (3-D), rather than 
contours (2-D), in the three-dimensional solid of 
data. A surface description has connectivity both 
temporally (as in the EPI analysis above) and spa- 
tially (as is apparent in a normal image); the tem- 
poral components enable the EPI analysis, while 
the spatial components allow vertical integration 
(plus other advantages, such as increased feature- 

tracking support, a capability for handling fea- 
tures lying horizontally in the EPI, and a structure 
that we think will be crucial for moving to non- 
linear camera paths). As this three-dimensional 
analysis has not yet been completed, it is not 
included in this second version of the program. 

The third difference is the incorporation of a 
process to mark the occlusion boundaries of scene 
objects. This is done by analyzing the patterns of 
line intersections in the EPIs. Since most of the 
intersections are only implicit in the set of lines 
produced by the earlier analysis, this step extends 
each line until it intersects another (see figure 30). 
It then counts the number of lines "stopped" by 
each line, thus obtaining a measure of that fea- 
ture's significance as an occluding contour. 

The fourth and principal modification in this 
version of the program was a restructuring of the 
analysis to allow utilization of the duality results 
presented in the next section. Basically, what dif- 
fers here is that image features are represented by 
the corresponding lines of sight, rather than EPI 
plane coordinates, and that the analysis is carried 
out by means of homogeneous representations of 
features and feature paths. This enables us to 
handle any camera viewing geometry as a linear 
problem and to eliminate the analysis of hyper- 
bolas discussed earlier. The next section discusses 
this approach in more detail. 

To illustrate this second version of the EPI 
analysis technique, we consider the outdoor scene 
of figure 31. Figure 32 shows the first and last im- 
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Fig. 31. Outdoor scene. 

Fig. 32. First and last images in a sequence of 128. 
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Fig. 33. EPI from outdoor scene. 
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Hg. 34. Edge features in EPI. 

ages of a sequence of 128 taken of this scene by 
the SRI robot. The robot looked to its right as it 
moved ahead. Unfortunately, the vehicle rolled 
slightly on the uneven sidewalk as it advanced, so 
that the vertical positions of the epipolar lines 
changed from image to image. To compensate for 
this ,  we implemented a correlation-based tracker 
to follow points from one spatial image to the 
next. We used this to estimate the vertical shift 
caused by the roll and then created a new set of 
images that approximated the lateral motion 
without roll. Note that the viewing direction in 
this data set is again orthogonal to the camera 
path; the new EPI analysis handles the general 
case, but the process of restructuring the data by 
epipolar planes has not yet been fully imple- 
mented. 

Figure 33 is an EPI from this sequence. Since 
the features are finer than those of the room scene 
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Fig. 35. Merged lines. 
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Fig. 36. x-z  points of EPI features (horizontal ellipses denote 
approximate scene objects). 

(much of the scene consists of grass and leaves), 
we applied a smaller zero crossing operator to 
detect scene edges. Figure 34 shows the edges 
detected in the EPI of figure 33. Figure 35 shows 
the merged lines for that EPI, while figure 36 
shows the estimated positions for features in the 
corresponding epipolar plane. The large horizontal 
ellipses are the approximate locations of trees and 
bushes, as measured with a tape, and, once again, 
the lower horizontal line is the camera path. 
Figure 37 shows a free space map, where the white 
region is "not free space," that is, indiscernible 
space. Figure 38 is another crossed-eye display, 
this one showing the full set of three-dimensional 
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points for the two nearest trees and the stump be- 
tween them; no vertical adjacency filtering has 
been applied for this display. Color figure 58 is a 
perspective view of the points established for the 
tree in the foreground (created with the aid of 
Pentland's Supersketch modeling and graphics 
system [70]). Each three-dimensional point is rep- 
resented by a small cube colored according to its 
height above the ground. The intensity of each 
cube is a function of its distance from the camera 
path, with closer points being brighter. Color 
figure 59 shows the principal occluding contours 
in the scene (those that occlude more than two 
other features and are more than 10% nearer 
than those they occlude). In figure 39 (left) we 
show the occlusion record of a single feature at 
the left side of the tree in the foreground. It is 
seen to occlude a large number of features situ- 
ated behind it. The dashed lines indicate extra- 
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polations of the occluded features to the position 
(in time) when they move behind (are occluded 
by) the tree feature. Note that a few of the fea- 
tures are tracked across the occlusion. Figure 39 
(right) shows a similar record for a feature from 
the right of the tree (as indicated by the arrow in 
color figure 59). 

4.5 Nonperpendicular Camera Viewing 
Directions 

The case of fixed camera orientations that are not 
perpendicular to the direction of motion is de- 
scribed by equation (7) above. Recall that a, 00, 
x0, Yo, and f are constant, so that the left-hand 
side is a polynomial in u and t. When the camera 
orientation is perpendicular to the direction of 
motion, 00 is either 0 or 7r, the coefficient of the ut 
term is zero, and the polynomial degenerates into 
the line discussed earlier. Otherwise it is a hyper- 
bola with asymptotes parallel to the coordinate 
axes, since in this case it can be rewritten 

(u + fcotOo)(t + 1 (y0cot00 - x0)) 
a 

fYo (10) 

a sin 200 

This form makes the locations of the asymptotes 
obvious. Consider figure 40. One asymptote is the 
line u = - fcot00,  which is the image location of 
the epipole, where the camera path intersects the 
image line. A scene point that projects to this 
location must lie on the x-axis, i.e., the camera 
path, and its image does not move. The other 
asymptote is the line t = (1/a)(yocotOo - Xo); at 
that time, the camera center is positioned so that 
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Fig. 40. Asymptotes of hyperbolic feature paths. 

the line from it to the scene point is parallel to the 
image line, so the image of the point is formed "at 
infinity," (if the camera has a wide enough field 
of view). In the neighborhood of this location, a 
scene point's image coordinate becomes arbitrari- 
ly large. 

4.6 Straightening Hyperbolic Paths 

While the analysis of the hyperbolic feature paths 
arising from nonperpendicular viewing directions 
is fairly easy, we wanted to find a way to trans- 

form these hyperbolas into lines, which are easier 
to detect. Since the hyperbolas are restricted to a 
two-parameter family, it seemed likely that such a 
transformation was possible. Two approaches are 
suggested by Marimont [57]. In this section, we 
describe the first, a technique to transform the im- 
ages so that they look as they would have, had the 
viewing direction been perpendicular to the direc- 
tion of travel. In the next section, we describe the 
second approach, which is based on projective 
duality. 

As an aside, we note that various authors have 
shown (e.g., Koenderink and Van Doorn [50] and 
Prazdny [73]) that the component of image mo- 
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Fig. 41. Reprojecting an image point u. 



tion caused by the camera motion's rotational 
component contains no information about the 
depths of scene points. It is therefore not surpris- 
ing that it is possible to compensate for the cam- 
era's viewing direction without knowing anything 
about the scene. 

Our algorithm for transforming the images is as 
follows. First we compute the equations of the 
lines from the camera center through specific im- 
age points, which is possible because we know the 
camera's position and orientation. Once we know 
these lines, we can intersect them with a synthetic 
image plane that is parallel to the direction of mo- 
tion, and thus create a new image. This image is 
what the camera would have seen, had it been 
looking perpendicularly to its path (and if the 
effects of a finite field of view are ignored). 

Consider figure 41. The camera is centered at 
the origin with image line y = f, and is looking 
along its y-axis. Suppose that the camera is pro- 
ceeding along a line at an angle ~b with respect to 
this axis. To convert the original image into one 
formed on an image line parallel to this line, we 
need to reproject the points onto the line 
-(sin~b)x + (cos~b)y = f. The line through the 
camera center and an image point (u, f )  on the 
original image line has the equation y = fx/u. To 
reproject this image point onto the new line, we 
merely find the intersection of the line through 
that point with the new image line. If we let the 
new image coordinate be u', we find after some 
algebra that 

/ucos~b + fsin~b 1 
u' = f l - f ~ - u s ~ n ~ ]  (11) 

This transformation has a singularity at u = 
fcot~b, which, by analogy with the t-asymptote of 
the hyperbola in equation (10), is that value of u 
for which the line of sight is parallel to the second 
image line; the line of sight thus has no finite in- 
tersection with the second image line. It follows 
that the line of sight to a point on the camera path 
has no intersection with the new image line. Since 
it would never move in the new image, the sin- 
gularity results in no loss of information. 

Thus, if the orientation of the camera coordi- 
nate system is 00, we can always linearize the 
feature paths by letting ~b = -00 and transforming 
the images by means of equation (11). Figure 42 
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(top) illustrates this process for a simulated planar 
scene. On the left is the scene containing a few 
polygonal objects and a straight camera path. The 
short line segments splitting off from the path 
indicate the camera's viewing direction, while the 
numbers to the right are the "times" at which the 
camera was at that point on the path. In the cen- 
ter are the hyperbolic feature paths, with the 
times labeling the vertical axis. On the right are 
the straightened feature paths. 

It may seem that little is gained through this 
transformation, since the same two parameters-- 
the plane coordinates of the scene point--  
determine both the hyperbola and the line. Even 
so, lines are far simpler to deal with, both analyti- 
cally and computationally. 

Perhaps even more importantly, the linearizing 
transformation is applicable even when 00 varies 
with time, since each image can be transformed 
independently with a ~b that varies with time as 
well. When 00 varies, there is no single hyperbola 
or line that can be fitted to an image feature path 
and from whose parameters the location of the 
corresponding scene point can be inferred. See 
figure 42 (bottom) for an example; the figure is 
basically the same as figure 42 (top), except that 
the line segments in the former indicate that the 
camera's viewing direction varies along the path. 

The situation in three dimensions is analogous 
and will not be discussed here. The derivation can 
be found in Marimont [57]; Kanatani [45] inde- 
pendently obtains similar results. 

4. 7 Discussion 

To date, we have processed three image se- 
quences of complex scenes (a partial analysis of the 
third is presented in section 5.6). The success of 
the feature tracking, even in the areas of grassy 
texture in the foreground of the outdoor se- 
quence, suggests that the technique is robust. The 
processing is basically identical for the different 
data sets; only the selection of the space constants 
for the convolutions requires manual intervention 
(the finer texture of the outdoor scene called for 
smaller Gaussians). Selecting the appropriate 
scale for analysis is a difficult problem in many 
areas of vision; in our case, performing the analy- 



~ 
_1

 
./

 
I 

1 
\ 

\ 
--

. 
--

- 

®
 

~>
 

It 
tl 

i 
l 

II 
II 

i 
I~

 

I 
I 

l 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

i 
i 

i 
P 

i 
~ 

i 
t 

i 
i 

i 
i 

i 
i 

~ 
T 

i 
i 

i 
i 

h 



sis at several scales simultaneously may resolve 
the issue. 

The linearity of feature paths is an obvious 
advantage of this approach over traditional 
correspondence-based approaches. Matching else- 
where is dependent upon the local appearance 
of a feature. If the feature's appearance differs 
significantly between views, which can happen 
when it is seen against different backgrounds or 
near an occluding contour, it is unlikely to be 
matched correctly. With our approach, the fea- 
ture's location in space, determined by the param- 
eters of its linear path, is the principal measure 
for merging observations; its local appearance 
plays less of a role. This means that we can collect 
observations of a feature wherever it is visible in 
the scene, even if it is seen against different back- 
grounds and under different illumination. 

The linear motion constraint at the heart of EPI 
analysis can also be used to constrain the search 
required to track features from one image to the 
next. In this approach, the first step is to select 
distinctive features to be tracked; the second is to 
track them. Just as in EPI analysis, the epipolar 
planes defined by the linear motion constrain the 
feature matches to lie along epipolar lines, there- 
by reducing the search to one dimension. In addi- 
tion, if the scene is static, locating a feature in a 
second image is sufficient to compute the three- 
dimensional coordinates of the corresponding 
scene feature. Once the feature's three- 
dimensional position has been computed, it is 
possible to predict its locations in all the images in 
the sequence. These predictions can reduce the 
search further by restricting it to a small segment 
of the epipolar line. Finally, when a scene feature 
has been located in three or more images, a fitting 
procedure can be applied to improve the estimate 
of its three-dimensional position, which in turn 
can reduce the size of the segment to be searched. 

The difference between this approach and EPI 
analysis is that, in EPI analysis, the acquisition 
and tracking steps are marged into one step: 
finding lines in EPIs. Locating a line in an EPI is 
equivalent to acquiring a feature and tracking it 
through many images. Therefore, in addition to 
simplifying the matching process, EPI analysis 
provides the maximum amount of information to 
the fitting process that computes the three- 
dimensional location of the associated scene fea- 
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ture. Finally, EPIs encode occlusion events in a 
direct pictorial way that simplifies their detection 
and interpretation. 

One difficulty with EPI analysis is that it pro- 
duces depth measures only for those features with 
a component perpendicular to their epipolar 
plane. A feature that runs along the plane, like 
the horizontal rail running across the lower mid- 
dle of the scene in figure 6, may be detected at its 
endpoints, but not elsewhere. The current effort 
to build a spatiotemporal surface description will 
enable us to represent these horizontal structural 
elements. 

5 The Relevance of Projective Duality 

Our approach to the analysis of image sequences 
has a number of properties that are desirable in a 
more general scene-analysis technique. The class 
of camera motions to which it applies directly-- 
straight-line translation with the viewing direction 
fixed--produces a sequence of images whose 
analysis can be decomposed into the analysis of 
separate EPIs, each of which contains informa- 
tion about a different planar slice of the scene. 
The structure of each EP! is both simple and in- 
formative: the image point paths are either linear 
or hyperbolic, and are simply related to the loca- 
tions of the corresponding scene points. The 
occlusions and emergences into visiblity of scene 
points as the camera moves are given by the 
topology of the image point paths. Moreover, as 
we showed at the end of the previous section, it is 
possible to transform imagery taken with a 
varying camera viewing direction so that all the 
fixed viewing direction results will be valid. 

Still, the technique, in its present form, applies 
only when the camera motion is linear and only to 
stationary point objects. In this section, we use 
concepts from projective duality to extend the 
technique to more general camera paths, curved 
objects, and independently moving objects. First, 
using duality in the projective plane, we treat the 
case of planar camera motion. A sequence of 
images collected by a mobile robot, moving along 
a planar but nonlinear path, is analyzed to recon- 
struct the planar slice of the scene that contains 
the camera motion. Finally, using duality in pro- 
jective space, we outline some generalizations of 
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these results to the three-dimensional world. 
Others have applied projective duality to prob- 

lems in machine vision, although we appear to be 
the first to use it in motion. For example, Huff- 
man [38,39] and Mackworth [56] deal with inter- 
preting line drawings of polyhedra, while Roach 
and Wright [77] consider problems in manipulat- 
ing polyhedra. 

5.1 P lanar  C a m e r a  M o t i o n  

In the previous section, we introduced the planar 
world because linear camera motion makes it 
possible to decompose a spatial scene into planar 
slices that can be reconstructed independently. 
Now we study the planar world both for its own 
sake and because the techniques applicable to the 
planar world have analogues for the spatial world. 

Here we use duality in the projective plane to 
extend EPI analysis to arbitrary camera motions, 
curved objects, and moving objects in a planar 
world. These planar techniques can be used to re- 
construct only that portion of the scene that lies in 
the plane of the camera motion. This is because it 
is the only epipolar plane shared by every pair of 
locations along a nonlinear but planar camera 
path. Full three-dimensional scene reconstruction 
and arbitrary three-dimensional camera motion 
require duality in projective space. 

Consider the motion of a camera around a 
point in a planar scene; let us assume for the mo- 
ment that the point is always in the camera's view. 
As the camera moves, the lines of sight from the 
camera center to the point are a subset of the pen- 
cil of lines through the scene point. At each point 
on the camera's path, if the camera's position and 
orientation are known, the parameters of the line 
of sight can be computed from the image coordi- 
nate of the projection of the scene point and the 
camera center. Now let us consider a stationary 
camera viewing several points in a scene. The 
lines of sight from the camera center to the scene 
points are a subset of the pencil of lines through 
the camera center. Here, too, if the camera's 
position and orientation are known, the param- 
eters of each line of sight can be computed. 

The principle of duality in the projective plane 
states that any axiom or theorem remains true 
when the word "point" is interchanged with 

"line" (and, as appropriate, certain words like 
join and meet, collinear and concurrent, vertex 
and side) [20]. For example, two points determine 
a line, so that, by the duality principle, two lines 
intersect in a point. A point is said to be dual  to a 
line, and vice versa. In particular, the point with 
homogeneous coordinates (a, b, c) is dual to the 
line which satisfies the equation ax l  + bx2 + cx3 = 

0; the line is said to have homogeneous l ine co- 
ordinates (a, b, c). 

All lines that intersect at p are dual to points 
that lie on the line 1 dual to p. Moreover, if we 
add the point at infinity to the line 1, so that the 
line is topologically equivalent to the circle (since 
it "wraps around" at the point at infinity), the 
ordering of the lines through p induced by their 
orientation is the same as the linear ordering of 
their duals along 1. 

Now let a scene point be p and the lines of sight 
from a camera path to p be li. The duals of these 
lines of sight must be points that lie on the line 
dual to p no  mat ter  w h a t  the camera  pa th .  A s  the 
lines of sight sweep out a "wedge" centered at p, 
the duals of the lines of sight trace out a portion of 
the line dual to p, as illustrated in figure 43. 

If the camera path is known, the homogeneous 
parameters describing the lines of sight can be 
computed and the point dual to each line found. 

/ the DUAL of ~h~ U~ i~ I 
\ / . the originM . . . . .  ~oint 

are points lying on a line 
| 

SCENE SPACE DUAL SPACE 

Fig. 43. Points dual to lines of sight through a scene point. 
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Fig. 44. A planar scene (lefi); the image history (center); the dual scene (right). 

Then a line can be fitted to these dual points. 
Since these points are dual to the lines through 
the scene point, the fitted line is dual to the scene 
point. Thus, the parameters of the fitted line give 
the homogeneous coordinates of the scene point. 
This is quite similar to the analysis of a line in an 
EPI that we discussed in the preceding section, 
except that there the line appears in the image, 
whereas here it must be computed from the duals 
of the lines of sight. 

The dual to the camera center also has a simple 
geometric interpretation. When the camera can 
see several points in the scene at once, its lines of 
sight to them all pass through the camera center. 
These lines are dual to points that must lie on the 
line dual to the camera center. As the camera 
moves, the duals to the lines of sight to each scene 
point trace out a line segment, but the trace 
proceeds along a line that is dual to the camera 
center. Each image's "contribution" consists of 
those points that are dual to the lines of sight. 
But, at any given image, all these lines of sight 

pass through the camera center. That image's 
contribution must therefore lie along the line dual 
to the camera center. 

Although the linearity induced by duality sur- 
prised us initially, it means merely that solving for 
the location of a scene point is a linear problem if 
the camera motion is known. This is obvious (in 
retrospect), since in that case it amounts to 
finding the point at which all the lines of sight in- 
tersect. The points dual to the lines of sight form a 
picture of this linear problem. Our goal in this 
section is to show that these dual structures are a 
generalization of those we have already analyzed 
in EPIs. 

Figure 44 depicts a simulated planar scene 
(left), the image history (center), and the "dual 
scene" (right), the duals of the lines of sight. The 
scene contains several polygonal objects and a 
curved camera path, jutting out from which are 
short line segments that indicate the camera's 
viewing direction at that point. The numbers next 
to the path indicate the time at which the camera 
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passed that point. Throughout  this article, the 
units of time chosen are identical to the number 
of images formed up to that time; in this scene, 
the camera forms a total of 100 images. 

The column of numbers at the left of the image 
history indicates which image is represented along 
that horizontal line; consequently, the first image 
is at the bottom and the last one at the top. Note 
that the topology of the dual scene is identical to 
that of the image history, but that in the dual 
scene all paths are linear. Each such path corre- 
sponds to a single scene point whose location can 
easily be estimated by fitting a line to the path; 
the scene point is the dual of that line. 

5.2 Collineations 

Some of the figures in this section involving points 
dual to the lines of sight have had collineations 
applied to them to make them easier to interpret. 
(Recall that a collineation is a nonsingular linear 
transformation of the projective plane and can be 
represented as a 3 × 3 matrix.) This is often 
necessary for two reasons: first, a collineation can 
have the effect of a generalized scaling, which can 
increase resolution in the areas of interest; 
second, points "near"  the line at infinity can be 
arbitrarily far away from the origin and thus hard 
to draw in a finite area. Fortunately, collineations 
leave the properties of those points that are of 
interest to us here invariant--most  importantly 
topology and collinearity. And even though the 
coordinates of a collineated point change, since a 
collineation is invertible, the original coordinates 
can always be recovered if the collineation is 
known. Thus, while a collineation can change the 
appearance of a figure, the analyses of the figures 
presented here either remain the same or require 
only trivial modification. 

5.3 Occlusions and Disocclusions 

The situation with occlusions and emergences 
into visibility of points in the scene is similar to 
that in EPI analysis, but must be somewhat gener- 
alized. We saw earlier that a merge of two image 
paths in an EPI corresponded to a merge of the 
corresponding lines of sight, which in turn corre- 

sponded to an occlusion. A split of one image path 
in an EPI into two corresponded to a split of the 
corresponding lines of sight, which in turn corre- 
sponded to an emergence into visibility. 

The situation with the duals to the lines of sight 
is even simpler, since each point in the dual is 
dual to a line of sight. A line of sight whose param- 
eters are continuously changing gives rise to a 
dual curve whose points are likewise continuously 
changing. Two lines of sight whose parameters 
are continuously changing and that ultimately 
coincide at an occlusion give rise to two curves 
that ultimately meet,  so an occlusion corresponds 
to a merge in the duals of the lines of sight. A 
similar argument shows that a split in the dual 
corresponds to an emergence into visibility. 
Loosely speaking, we rely here on a suitably 
defined topological equivalence between lines of 
sight in the scene and the points to which they are 
dual. 

The orientations of the dual lines at splits and 
merges are not related quite as simply to one 
another as before. Consider the situation at a split 
or merge illustrated by figure 45. The camera cen- 
ter a and two scene points b and c determine a 
line 1, with b closer to the camera center than c. 
The duals of the three points are lines a ' ,  b ' ,  and 
c ' ,  which pass through the point I' dual to !. 

Recall that the ordering on the lines through a 
point induced by their orientation is the same as 
the order of the points to which they are dual 
along a line if the point on the line at infinity is 
included to make the line topologically equivalent 
to a circle. Note that every point at infinity (Pl, 
P2, 0) is dual to a line through the origin plx + P2Y 
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Fig. 45. The camera center and two scene points at a split or 
merge (left); the dual scene (right). 
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Fig. 46. A scene with a curved object (left); the image history (center); the dual scene (right). 

= 0. The point on I at infinity must be dual to the 
line through the origin and I'. 

If we begin at a and move along l in the direc- 
tion of h and c, we pass through points that are 
dual first to a ' ,  then to the lines through 1' rotated 
from a' in the direction of b'. Moving along 1 in 
the other direction means rotating from a' in the 
other direction, so that, just as the point at infini- 
ty is encountered before b and c, the line through 
the origin will be encountered before b' and c'. 

Our goal is to establish a rule specifying which 
of the two lines at an intersection (both of which 
are dual to a scene point) "cuts off" or "spawns" 
the other at a split or merge. This is equivalent to 
knowing which scene point is closer. From the 
above discussion, it is clear that, when a' ,  b ' ,  and 
e' are given, whichever line is encountered first 
when a' is rotated away from the line through the 
origin is dual to the scene point that is closer to 
the camera center. 

The one exception to this rule occurs when the 
dual scene is drawn after some collineation has 

been applied to the lines. In this case, we replace 
the line through the origin with one that passes 
through the point dual to the line at infinity. 

5.4 Curved Objects 

In the plane, a curved object is simply a curve. 
Image edges are formed at the projections of 
those points on the curve that have lines of sight 
tangent to the curve; such edges are called limbs. 
As the camera center moves around the object, 
the lines of sight trace out the tangent envelope of 
the curve, and the scene point corresponding to 
the image edge point actually moves along the 
curve. Because the imaged point is not stationary, 
the analysis of image paths above is not appli- 
cable. 

Fortunately, the dual of a curve has a simple 
and useful interpretation in this context. The dual 
of a differentiable curve is the dual of its tangent 
envelope. That is, at any point on the curve, there 
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is a line tangent to the curve at that point. The 
dual to the curve at that point is the dual to that 
line. For example, it is well known that the dual 
of a conic is also a conic. The equation of a conic 
can be written xtAx = 0 ,  where x = (xl, Xz, x3Y 
and A is a 3 x 3 matrix. The tangent envelope of 
this conic is the set of lines that satisfies I/A-11 = 
0, where I = (11, 12, 13)' and represents the line that 
satisfies l~xl + 12X2 + 13X3 = 0. The dual of the 
conic A is the set of points dual to the lines that 
make up its tangent envelope A-~; this set of 
points is obviously also a conic. 

Because the image edge path corresponding to 
the limb of a curved object arises from the lines of 
sight that trace out the tangent envelope of the 
curve, the dual of the lines of sight must therefore 
be the dual of the curve. In general this dual will 
not be a straight line. To recover the shape of the 
original object, we fit a curve to the dual of the 
lines of sight and take the dual of this fitted 
curve--which is, of course, the original curve. 
Note the similarity to the case of stationary 
points. There the dual of the image edge path is a 
straight line. To recover the location of a station- 
ary point, we fit a line to the dual of the lines of 
sight and take the dual of this fitted l ine--which 
is the original point. One advantange of this 
approach is that it is not necessary to distinguish 
between image edge paths corresponding to 
stationary points and those that correspond to 
curved objects, since in the dual scene the type of 
curves that arise makes the distinction obvious. 

Such an approach could be applied to the situa- 
tion depicted in figure 46. The scene consists of an 
ellipse viewed from points on a curved path. The 
dual scene, computed from the camera path and 
image history, shows part of the hyperbola that is 
dual to the ellipse. To recover the part of the 
ellipse that was actually viewed, we must fit a 
curve to the dual scene data; the dual to the fitted 
curve is the part of the ellipse we seek. 

5.4.1 Occlusions and Disocclusions. The occlu- 
sions and disocclusions of curved objects have the 
same branching structure or topology as that of 
polygonal objects. This is because the number 
and continuity of the lines of sight are the same in 
both cases, and the topology of the dual is identi- 
cal to the topology of the lines of sight. The other 
issue in the interpretation of occlusions and dis- 

occlusions is the orientation of the image paths in 
the dual. In the case of stationary scene points, 
the orientation is directly linked to the locations 
of the points relative to the camera and thus 
makes it possible to predict which image path 
would be terminated or spawned at a merge or 
split. 

Since the dual of a curve is the dual of its tan- 
gent envelope, the dual of the dual's tangent en- 
velope must be the original curve. That is, at any 
point on the dual, the dual of the line tangent to 
that point is a point on the original curve. This 
means that at a split or merge involving two 
curved objects, the tangents to the dual curves are 
dual to the points on the objects involved in the 
occlusion or disocclusion. Thus the situation 
locally is identical to that when two polygonal ob- 
jects are involved, since the tangents to the image 
paths there are dual to the scene points involved 
also; the only difference is that in this case the 
tangents are constant over the entire path. The 
analysis of the orientations of the paths for 
stationary scene points therefore is applicable. 

OBJECT 

In this section, we consider objects that are mov- 
ing independently of the camera. Suppose, for the 
moment,  that the object consists of a single point, 

CAMERA 

5.5 Moving Objects 

Fig. 47. A moving point object. 
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Fig. 48. A moving object and the flee-space map. 

as in figure 47. The lines of sight from the camera 
to the object are known, as usual, and, if the mo- 
tion of the camera and the object satisfy certain 
smoothness conditions, their dual is a continuous 
curve. This dual corresponds to the tangent en- 
velope described by the lines of sight, except that, 
unlike the case of curved objects, whose curve is 
formed by the lines of sight, the tangent envelope 
does not correspond directly to a scene object. 

Let us imagine, however, that the scene con- 
tains a curved object with the same tangent en- 
velope. Since this implies that the dual would be 
unchanged, the image history would not change 
either. That is, the motions of the point-object 
and the camera define a unique equivalent station- 
ary curved object (ESCO) that could replace the 
moving object in the scene and result (locally, at 
least) in exactly the same image edge path. (The 
reason for the restriction of locality is that the 
ESCO may be self-occluding when considered as 
a whole, so that it would have to be transparent 
and still yield the appropriate limbs to produce 
an identical image history.) 

Because the lines of sight to the moving object 
are tangent to the ESCO, and, furthermore, the 
free space induced by the moving object has these 
lines of sight as one boundary, the tangent en- 
velope of that boundary of the free space is, 
under certain conditions, the same as that of the 
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ESCO. In figure 48, the outline of the ESCO, 
which in this case is the curved, leftmost bound- 
ary of the free space, can be seen quite clearly. 

Since every moving object has a unique inter- 
pretation as an ESCO, it is important to ask 
whether other attributes of the dual scene can be 
used to distinguish between moving and station- 
ary objects. If a rigidly moving object gives rise to 
several image edge paths, it may be possible to 
determine whether the ESCOs should be unique- 
ly interpreted as a rapidly moving object. The 
existence of one rigid motion that explains all the 
image paths is powerful evidence that one rigidly 
moving object, rather than a group of unrelated 
curved objects, is in the scene. As this level of 
interpretation is somewhat higher than the others 
we have been considering, we shall not pursue it 
here. 

The other approach to distinguishing between 
moving and stationary objects is to use occlusions 
and disocclusions, if they are available. Because a 
moving object can give the impression of being 
a stationary curved one, it is possible that the 
evidence in the dual scene of the occlusions and 
disocclusions connected with the moving object 
has no consistent interpretation. For example, 
suppose that a moving object is being occluded by 
a stationary one, and that the moving object's 
ESCO is closer to the camera than the stationary 
object. The occlusion in the dual scene will show, 
on the basis of local evidence alone, that a farther 
object is occluding a closer one; therefore, a mov- 
ing object must be involved. 

This situation is depicted in figure 49. The 
scene shows a triangle moving in the direction in- 
dicated by the arrows between a larger triangle 
and the camera. The two "snapshots" of the mov- 
ing triangle are taken at time 27, as the lower left 
vertex of the larger triangle becomes visible, and 
at time 89, as the upper right vertex of the larger 
triangle is occluded. Note the corresponding split 
and merge in the image history. In the dual scene, 
the lines corresponding to the camera centers are 
approximately vertical and move from right to 
left. The rightmost dashed line corresponds to 
time 27, the leftmost to 89--so that these lines 
intersect the split and merge, preserving the 
topology of the image history. 

The small black square at the lower right of the 
dual scene marks the point dual to the line at 
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Fig. 49. A moving object and an inconsistent occlusion. 
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infinity. We want to determine which of the two 
points corresponding to the paths that split at 
time 27 is closer to the camera center, so we use 
the method discussed in an earlier section. The 
camera center dual line at time 27 must be rotated 
clockwise to coincide with one of the tangents to 
two paths before coinciding with the line deter- 
mined by the split and the point dual to the line at 
infinity. Thus, it coincides first with the line 
spawned by the split, and the corresponding scene 
point must be closer than the one that corre- 
sponds to the tangent to the other path. But a split 
marks an emergence into visibility, so the path 
spawned by the split must always be dual to the 
farther scene point. We thus have a contradiction, 
which in this case arises because the other path 
corresponds to a moving scene point. 

Now we determine which of the two points cor- 
responding to the paths that merge at time 89 is 
closer to the camera center. Again the camera 
center dual line at time 89 must be rotated clock- 
wise. This time it coincides first with the path ter- 
minated by the merge, so the point dual to this 

line must be closer to the camera. Since a merge is 
an occlusion, however, the path terminated by 
the merge must always be dual to the farther 
scene point. Again a contradiction arises because 
the other path corresponds to a moving scene 
point. 

5.6 Experimental Results 

In this section, we describe the results of some 
experiments designed to test the methods pro- 
posed for analyzing images induced by planar 
camera motion. A sequence of 128 images was 
collected by the SRI mobile robot as it moved 
along a circular path with its camera viewing 
direction fixed to be perpendicular and to the left 
of its direction of motion, so that the camera was 
looking toward the center of the circle. At that 
center stood a table on which there was a col- 
lection of typical office objects: some books, a 
computer  terminal, a briefcase, a cup, and a 



Epipolar-Plane Image Analysis 43 

Fig. 50. The SRI mobile robot collecting images. 

pumpkin. 2 The path covered about 135 degrees of 
arc, and at its midpoint the robot was directly in 
front of the table. Each image contains 240 scan- 
lines by 256 pixels. Figure 50 shows the scene as 
the robot was moving around; figure 51 (top) dis- 
plays several frames from the acquired sequence. 

Since the camera's motion is planar and its 
viewing direction is fixed, the techniques dis- 
cussed above for inferring the structure of planar 
scenes apply to the scanline in the sequence con- 
tained in the epipolar plane that coincides with 
the plane of the camera motion. In this case, it is 
the middle scanline, no. 120. Figure 51 (center) 
shows a slice of the images through this scanline; 
that is, the slice is an image of 128 rows, each con- 
sisting of 256 pixels. The i th row of this EPI 
(counting from the bottom) is the 120 th scan line 
of the i th image. 

The methods employed to analyze the image 
sequence require that the camera's position and 
orientation at each image be known. In these ex- 
periments, the robot's onboard dead-reckoning 
system was the only source of this information. 
This so-called "trajectory integrator" combines 
readings from shaft encoders on the two indepen- 
dently controlled wheels to compute a running 
estimate of the robot's position and orientation. 

Once the trajectory information has been 
obtained, it is possible to transform the intensities 
of the EPI in figure 51 (center) so that edges in 
the scanline image that correspond to stationary 
scene points become straight in the "dual image." 
This is because each [rectangular] pixel in the EPI 
maps to some quadrilateral in the dual scene that 
is painted (after some resampling to avoid alias- 
ing) with the pixel's intensity. Figure 51 (bottom) 

2Typical, that is, around Halloween, at which time the experi- 
ment was performed. 
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Fig. 51. Frames from the image sequence collected by the mobile robot (top); the EPI from the middle scan line (center); the EPI 
transformed to straighten edges (bottom). 



shows the result, after the first and last few images 
have been clipped to increase the resolution in the 
rows of the transformed image corresponding to 
the middle of the image sequence. Note that most 
of the curves in figure 51 (center) are now 
straight, although there are still small wiggles in 
places (probably because of noise in the trajec- 
tory integrator). 

The positions of the objects on the table were 
measured manually to provide a standard for re- 
constructing the scene. From these manual 
measurements, a model of the planar slice of the 
scene imaged by the middle scanline was con- 
structed. The robot's path, as reported by the 
trajectory integrator, was added; the resulting 
planar scene is depicted in figure 52 (left), where 
the point features giving rise to edges in the simu- 
lator are marked with small black squares (i.e., 
the limbs of curves are unmarked). To test the 
fidelity of the simulated scene, we then simulated 
its imaging along the camera path; the result is 
figure 52 (right). Only the vertices of polygons 
and the limbs of curved objects give rise to image 
edges in the simulated EPI. There are a few 
minor differences between the real scanline image 
in figure 51 (center) and the simulation. 

In the experiments that were performed, the 
location of scene points corresponding to image 
edge point paths in the EPI had to be estimated 
from the duals of the paths. There are two ways to 
compute these dual paths. Either the image edge 
point paths can be detected in the original EPI 
and their duals computed by using the camera 
path, or the duals of such paths can be detected 
directly in the transformed imagery. In noise-free 
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images, these two approaches are for most prac- 
tical purposes equivalent, but, because the trans- 
formed intensities constitute a variable stretching 
and shrinking of the original image, where the 
statistics of the noise are fairly uniform, the com- 
parable statistics in the transformed image vary 
from pixel to pixel. This makes it difficult to de- 
tect edge points. For this reason, we choose here 
to perform edge detection only in the original, 
untransformed imagery. 

To analyze the EPI of figure 51 (center), the 
program used in analyzing the linear-camera-path 
image sequences discussed above was modified to 
incorporate the theories introduced in this sec- 
tion. The steps in the analysis are as follows: (1) 
detect edge points, (2) link edge points into lists 
(called ledgels), (3) break ledgels so no ledgel 
corresponds to more than one scene point, (4) fit 
a scene point to each linked edge list, (5) merge 
ledgels judged to correspond to the same point, 
and (6) compute a final scene point estimate for 
each merged ledgel. Even though there were 
some curved objects in the scene, we decided to 
keep the implementation simple by interpreting 
all ledgels as corresponding to stationary scene 
points. 

Figure 53 (left) displays the original set of linked 
edge point lists. The edge points are the zero 
crossings of a difference-of-Gaussians operator; 
they are linked into ledgels on the basis of local 
information. The final estimates of the scene 
points after the processing of these ledgels are dis- 
played in figure 53 (right). A simple least-squares 
fitting technique was used. Each scene point esti- 
mate is marked with an "x" and the scene model 

6 ~  . . . .  7 6  e 0  9 0  1 9 0  j 

Fig. 52. Model of planar slice through scene and the robot's path (left); edges simulated by using model and path (right). 
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Fig. 54. Error ellipses of scene point estimates (left); wedges indicating ranges of camera locations from which some ellipses were 
viewed (right). 

is superimposed for reference. 
It is useful to have a measure of the uncertainty 

associated with each scene point estimate. The 
covariance of each estimate was computed as in 
the preceding section (see Marimont [57] for 
further details). Figure 54 (left) shows the covar- 
iances of the scene point estimates of figure 53 
(right). As before, each covariance is displayed as 
an ellipse that should contain the true scene point 
at a confidence level exceeding 99%. Figure 54 
(right) shows for a few of the scene points a 
wedge indicating from which camera locations the 
point at the vertex of the wedge was viewed. The 

size of the ellipses understates the uncertainty of 
the estimates because the ellipses account only for 
that portion of the uncertainty that is attributable 
to image noise, whereas in fact the camera path, 
the camera model (i.e., the focal length, optical 
distortion, area of the sensor, etc.), and even the 
model of the scene are all unreliable to varying 
degrees. 

5.7 Extensions to Space 

All the above results apply to one-dimensional 



views induced by a planar path through a planar 
scene. To generalize them to two-dimensional 
views induced by a three-dimensional path 
through a three-dimensional scene, we need the 
concept of duality in projective space. In this 
section, we briefly review duality in projective 
space and suggest some possible applications to 
the three-dimensional analogues of the problems 
studied above. 

In projective space, a point in homogeneous 
coordinates (a, b, c, d) is dual to the plane that 
satisfies axa + bx2 + cx3 + dx4 = 0. The planes 
passing through a point p are dual to the points 
contained in the plane dual to p. The dual of a 
line is another line; the planes that intersect in a 
line I are dual to points on the line dual to 1. The 
dual to a space curve consists of the duals to its 
osculating planes. 

The tangent envelope of a differentiable sur- 
face consists of the planes tangent to the surface. 
The dual to a surface is the set of points dual to 
the planes of its tangent envelope. Quadric sur- 
faces in space are analogous to conics in the 
plane; quadrics are second-order surfaces, while 
conics are second-order curves. Just as the dual of 
a conic is a conic, the dual of a quadric is a 
quadric. 

We shall use a standard perspective-projection 
model of image formation in space: the location 
on the image plane of the image of a scene point is 
the intersection of the line through the camera 
center and the scene point with the image plane. 
For the moment,  we consider images after edges 
have been detected, so that curves and their in- 
tersections are the only features in the image. 

If the camera's position and orientation are 
known in some global coordinate system, so is the 
location of the image plane. The location of a fea- 
ture in the image coordinate system on this plane 
thus implies the feature's location in the global 
coordinate system. From a point in the image, we 
can compute the parameters of the line of sight 
determined by the point and the camera center. 
From a line in the image, we can compute the 
parameters of the plane determined by the line 
and the camera center. Moreover, the line deter- 
mined by a point in space and the camera center is 
the same as that determined by the projection of 
the point in space onto the image plane and the 
camera center, and the plane determined by a line 
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in space and the camera center is the same as that 
determined by the projection of the line in space 
onto the image plane and the camera center. In 
the following, we shall refer to lines and planes 
determined by space points and lines and camera 
centers without mentioning that in fact they are 
computed by using image points and lines, which 
in general are the only data available. 

We now apply duality to viewing the simplest 
geometric objects in space. Consider a point in 
space p viewed along a camera path that is a poly- 
gonal arc {qi}, as in figure 55. Let the line of sight 
through p and qi be li. Since all the |i intersect at 
p, their duals ii lie in the plane ~ dual to p. Be- 
cause adjacent lines of sight li and li + 1 determine 
a plane ai, they intersect at the point hi dual to a i. 
Since the next plane ai + 1 is dual to ~, + 1, which is 
the intersection of I i + 1 and I i + 2, the hi with i = 1, 
n form a polygonal arc. To estimate the location 
of a scene point from its views along a known 
camera path, we therefore estimate the plane in 
which lie the duals to the lines of sight. 

Inferring the position of a line 1 by viewing it 
from along the [polygonal arc] camera path qi is 
even simpler. Each camera location qi and I deter- 
mine a plane a i. Since these planes intersect in a 
line, their dual points hi lie on the line I dual to 1. 
Thus, to estimate 1, we simply fit a line 1 to the 
points dual to the ai and take its dual. 

It is also possible to reconstruct a smooth sur- 
face by viewing its limbs from a smooth camera 
path. The planes determined by the camera cen- 
ter and the line tangent to each point on the limb 
are the subset of the surface's tangent envelope 
which is tangent to the limb. As the camera center 
moves, the limb sweeps out a section of the sur- 
face, and the tangent planes determined by the 

~5 q5 

~4 
~1 ~2 ~3 q4 

q~ 

Fig. 55. Viewing a point along a camera  path in space (left); 
duals of  lines of  sight (right). 



48 Bolles, Baker and Marimont 

tangents to the moving limb and the camera cen- 
ter sweep out a portion of the surface's tangent 
envelope. The points dual to the planes of that 
portion of the surface's tangent envelope also 
form a surface. The dual of the tangent envelope 
of this surface is the original surface; therefore, to 
recover the original surface, we fit a surface to the 
points dual to the original surface's tangent 
envelope, find its tangent envelope, and take its 
dual. 

We have also obtained results for inferring the 
location (a) of a polygonal arc in space given a 
polygonal camera path and (b) a smooth curve in 
space given a smooth camera path (see Marimont 
[57] for details). 

5.8 Discussion 

In this section, we have sought to generalize the 
analysis of features in EPIs arising from linear 
camera motion to more general camera motion. 
There were a number of properties of EPI analy- 
sis in the linear case that we hoped to preserve. 
First, since each EPI corresponds to a planar slice 
of the scene, we can reconstruct the scene, one 
slice at a time, by analyzing each EPI indepen- 
dently. Second, there exists a simple linear rela- 
tionship between features in the EPI and the loca- 
tion of the corresponding stationary scene points. 
Third, the topology of EPI edge features encodes 
the occlusions and disocclusions of scene objects. 

Unfortunately, only linear camera motion pre- 
serves the stable epipolar planes that make scene 
reconstruction possible by analyzing EPIs inde- 
pendently. With planar camera motion, there is 
only one stable epipolar plane and one EPI, thus 
only one plane in the scene that can be recon- 
structed with these techniques. Here we have 
used projective duality in the plane to show that a 
"dual scene," consisting of the points dual to the 
lines of sight, is the appropriate extension of an 
EPI arising from linear camera motion. A simple 
linear relationship exists between features in the 
dual scene and the location of corresponding 
stationary scene points, and the topology of dual 
scene features encodes the occlusions and dis- 
occlusions of scene objects. Moreover, duality 
facilitated the analysis of objects other than 
stationary points, which were the only objects 

considered in the linear camera motion case. 
We have considered in detail both curved and 
independently moving objects. 

Projective duality in space is necessary for the 
analysis of general camera paths in space; while 
the treatment here is necessarily superficial, we 
feel that the results from the planar motion case 
can be generalized in a reasonably straightfor- 
ward way. The principal loss incurred in going 
from the handling of three-dimensional informa- 
tion in the linear motion case to that in the gener- 
al motion case is that it is then no longer possible 
to decompose the reconstruction of the scene. 

However satisfying these generalizations may 
be from a conceptual standpoint, their computa- 
tional implications are unclear. By and large, an 
image feature and its dual are related nonlinearly, 
so that estimating scene features based on duals 
of noisy image features becomes problematic. An 
even more fundamental criticism is that duality is 
irrelevant to obtaining the results described in this 
section. In a sense, it is not really even a trans- 
formation, but simply a reinterpretation of the 
coordinates of geometric objects: points as lines, 
curves as tangent envelopes, and so on. (The non- 
linearities are introduced when projective coor- 
dinates are interpreted as Euclidean coordinates.) 
If a problem is linear in the dual scene, it must 
have been linear in the original scene as well, so 
why not solve it there and thus avoid the costly 
and complicated nonlinear transformations? 

In fact, the programs we have implemented 
compute directly with lines of sight and the scene 
features that give rise to them, rather than with 
their duals. But duality was critical to the analysis 
on which these programs are based; it facilitated 
the insights that suggested avenues for analysis, 
and it simplified details of the analyses them- 
selves. Projective geometry is a rich and mature 
area of classical mathematics; establishing its 
relevance to the structure-from-motion problem 
is itself worthwhile, however small may be the 
direct effect on the programs we write. 

Perhaps even more importantly, the use of 
duality in the case of planar Camera motion led to 
a generalization of the analysis for a single EPI 
arising from linear camera motion. The gener- 
alization is complete in the sense that all aspects 
of the original EPI analysis are extended appro- 
priately. Moreover, the generalization subsumes 
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the original analysis because it is possible to show 
that, with the appropriate collineation, the dual 
of the lines of sight in an EPI arising from linear 
camera motion is precisely the EPI itself (see 
Marimont [57]). EPIs arising from linear camera 
motion are thus special cases of the general analy- 
sis: no transformation is necessary to take advan- 
tage of the inherent linearity in reconstructing 
the scene when the camera motion is known. In 
part, this is what makes these EPIs so attractive 
computationally: the linearity is explicit in the im- 
age, instead of being extractable solely through a 
nonlinear transformation (which depends exclu- 
sively on the camera motion). 

6 Conclusion 

EPI analysis is a simple, effective technique for 
building a three-dimensional description of a 
scene from a sequence of images. Its power is de- 
rived from two constraints on the imaging pro- 
cess. First, the camera is limited to a linear path 
(except for one special case of planar motion). 
Second, the image sequence is expected to con- 
tain a large number of closely spaced images. 
These two constraints make it possible to trans- 
form a difficult three-dimensional analysis into a 
set of straightforward two-dimensional analyses. 
The two-dimensional analyses involve only the 
detection of lines in images that contain approx- 
imately homogeneous regions bounded by lines. 

EPI analysis combines spatial and temporal 
information in a fundamentally different way 
from most motion-analysis techniques. By taking 
hundreds of closely spaced images, we achieve a 
temporal continuity between images comparable 
to the spatial continuity within an image. This 
makes it possible to construct and analyze spatio- 
temporal images. Since these new images have 
essentially the same properties as conventional 
images, conventional techniques can be applied. 
For example, edge dectection techniques can be 
applied to EPIs, which are spatiotemporal im- 
ages. However, the detection of an edge in one of 
these images is equivalent to selecting a feature in 
a spatial image and tracking it through several 
frames. 

In addition to estimating the depths of scene 
features, EPI analysis provides two types of 

higher-level information about the scene. The 
first is a list of occlusion edges, the second a map 
of free space. Occlusion edges are important for 
segmenting the scene into solid objects; yet they 
have been difficult to identify with other image- 
understanding techniques. They are identified in 
EPI analysis by examining the patterns of line in- 
tersections in EPIs. The map of free space is an 
iconic representation of the scene that indicates 
which areas are known to be empty. It is con- 
structed from regions swept out by lines of sight 
from the moving camera to scene features. These 
two types of information make it possible to build 
significantly more complete models of a scene 
than can be done from a mere list of three- 
dimensional points. 

We believe that EPI analysis can be im- 
plemented efficiently for two reasons. First, the 
basic processing of each EPI is independent of 
other EPIs, making it possible to analyze them in 
parallel. Second, the analysis of an EPI involves 
only the detection of lines, which can be im- 
plemented efficiently in special-purpose hardware 
performing a Hough-type analysis. To make EPI 
analysis more practical, however, we plan to de- 
velop a version that works incrementally over 
time. This process, starting with an analysis simi- 
lar to the one described in this article, would pro- 
vide mechanisms for introducing new features as 
they appear and then updating the positions of 
previously detected features as they are tracked 
over time. 

We are currently developing a technique for 
detecting and representing surfaces in the spatio- 
temporal block of data. These surfaces encode 
the spatial and temporal continuities along par- 
ticular zero crossings in the data, thereby provid- 
ing a direct way to link features from one EPI to 
another. This capability will make another crucial 
piece of information available for the modeling 
process. Furthermore, the surface detection oper- 
ates incrementally over time. To explore the next 
step in this modeling process, we plan to develop 
techniques for representing three-dimensional 
objects that will enable the descriptions to grad- 
ually evolve as more detailed information is 
acquired. 
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Fig. 56. Linear segments. 

Fig. 57. Color-coded display of z - y - z  points. 
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Fig. 58. Perspective image of voxels. 

Fig. 59. Principal occlusion boundaries. 
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