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E nabling a robot to function both safely and 
accurately using its own visual processing is a principal 
challenge in robotics. This capability is an equal neces- 
sity far robots working in a factory, exploring in the 
ocean depths, moving on land, or operating somewhere 
in deep space. These devices will have to observe in three 
dimensions, recognize anticipate jects either as land- 
marks or targets, and at the same time build, for later use, 

models of the various objects and terrain they encoun- 
ter. Their visual sensing will have to provide for real-time 
navigation [including following maps and avoiding 
obstacles), object recognition, and object and terrain 
modeling (building maps and object models). Operating 
autonomously with minimal opportunity for manual 
intervention, they will have to carry out these tasks in a 
manner that leaves little chance for failure. 

Robotic vision 
Historically, the task of providing a robot with such 

sensing capability has been addressed with a variety of 
approaches, including the interpretation of single 
images, paired-image or stereo analysis, and the use of 
active ranging devices. Single-image analysis may be 
somewhat useful in image interpretation, where one 
might identify certain known forms from their appear- 
ance in images, but it is generally inadequate when the 
objects are three-dimensional, Moreaver, it cannot pro- 
vide the infarmation necessary for constructing 3I3 
descriptions ofthe scene or its components. Stereo anal- 
ysis can, in many cases, recover 3D scene structure, but 
even the best techniques have never been demonstrated 



Figure 1. Four frames of a 125-frame sequence. 
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Figure 2. (a) Spatiotemporal volume, (b) 
spatiotemporal volume sliced horizontally. 

to be broadly applicable or robust. With the development 
of special scanners, active sensing has become a more 
recent pursuit, yet even when broadcasting the device's 
presence does not compromise its mission, active rang- 
ing has been equally unsuccessful at achieving robust 
performance outside of controlled environments. Besl 
and Jain provide a thorough survey of these sensing and 
modeling requirements for a robotic system.' 

In our research at SRI, we have taken the passive sens- 
ing of stereo, combined with it the redundancy of pro- 
cessing image sequences, and obtained a robust, precise, 
3D vision capability ideal for many of the sensing 
requirements of an autonomous robot. This capability 
was achieved through building a process to construct 3D 
descriptions of the evolution of image data over time and 
then coupling with this an analysis procedure that 
exploits geometric constraints to track and estimate fea- 
tures in the scene. The section on sequence analysis 
describes our first simplified implementation of the 
approach and then develops the general form that more 
fully exploits the spatiotemporal structure of the prob- 
lem. In the section on further applications we describe 
other uses of this space-time processor. 
The visualization issue 

We make extensive use of graphic aids in our work, not 
only for viewing and assessing the data, but also for 
experimenting with analysis algorithms and both dis- 
playing and evaluating the results of our computations. 
Indeed, the formulation we have derived for our 
sequence analysis work would not even have been con- 
ceived without plentiful access to 3D display. The devel- 
opment of this effort has depended heavily on our ability 
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Figure 3. Estimated positions and confidence intei 
vals from one slice. 

to create and examine complex sets of spatiotemporal 
events. This has enabled our approach to depart radically 
from traditional multiple-image analysis. 

In viewing our data and results we rely primarily on 
stereoscopic display, using free fusion, a beam-splitter 
mirror system, or a 120-Hz Tektronix SGS420 LCD cir- 
cularly polarized display. Many of the images we pres- 
ent here are of this stereo type, and are intended for 
crossed-eye viewing. This may alarm some readers, but 
we find such stereo viewing indispensable for work in 
three dimensions. To see the figures presented here in 
three dimensions (for example, Figure 4), view the left 
side with the right eye and the right side with the left eye. 
Special viewers can make this easier. 

Often our visualization needs can be met by rendered 
display of three-space surfaces. Extending this, we can 
compose sequences of these images from various view- 
points to induce a perception of depth through motion, 
either when stereo fusion alone is inappropriate (for 
example, as shown in Figure 22, where the data has 
dimension greater than three), or when viewers are not 
comfortable with or capable of stereo fusion. Print, of 
course, does not allow this dynamic display. Banchoff 
presents a summary of these visualization issues in the 
context of display of point sets from higher dimension 
spaces.2 
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Figure 4. Resulting feature estimates for this sequence. 

Sequence analysis 
The principal problem in stereo vision is to put into 

correspondence, accurately and reliably, features that 
appear in two views of a scene. This correspondence and 
the relationship between the two imaging sites make it 
possible to estimate the 3D position of the features 
viewed. Determining the correspondence, however, is an 
ill-posed problem: Ambiguity, occlusion, image noise, 
and other influences resulting from the differing appear- 
ance of objects in the two views make feature matching 
difficult. In sequence analysis, where rapid image sam- 
pling produces images that change little from one to the 
next, matching is less problematic. In our approach we 
take this to the extreme, with continuous (or nearly so) 
sampling giving us images that vary smoothly between 
views. The result is a temporal continuity similar to the 
obvious spatial continuity in a regular image. With tem- 
poral continuity, matching of features becomes a simple 
matter of contour following. 

Epipolar-plane image analysis 
In our initial implementation of the approach, we 

chose a restricted camera arrangement, one whose 
geometry facilitated the analysis considerably. The cam- 
era moved along a straight path, acquiring images at 
fixed spacings, and looking at right angles to its path. Fig- 
ure 1 shows several frames from a 125-image sequence 
obtained under these conditions. Figure 2a shows a vol- 
ume formed by stacking the images together. The front, 
with (u,v) coordinates, is a regular image-the first in the 
sequence. The visible side of the volume shows the right- 
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most column of each image, and gives a misleading 
impression of also being a normal image. The top looks 
less imagelike, but is a crucial depiction for our pro- 
cessing. 

Figure 2b shows the volume sliced horizontally along 
its middle, cut away to reveal a pattern somewhat like that 
at the top of the volume to its left. This pattern, showing 
the temporal continuity of features, is referred to as an 
epipolar-plane image. Chakravarty, Nichol, and Ono use 
a similar slicing mechanism for display and manipula- 
tion of seismic data.3 The patterns in their slices reveal 
strata of differing acoustical properties; in our work the 
streaks indicate the paths of particular features over time. 
By following these paths (which must be straight lines 
for stationary objects, given our camera geometry), we 
can establish the position of features in the scene; their 
distance from the camera path depends simply on the 
slope of the line. 

Figure 3 shows feature position estimates from one 
slice of the data shown in Figure 2. Each path consists 
of many observations of a particular feature; these over- 
determine its estimate, and the statistical covariance 
gives us a confidence interval. These confidence inter- 
vals are depicted in the figure by ellipses. The coordinate 
system used here is in units of world inches, with the line 
at the bottom indicating the camera's path through the 
scene. Figure 4 is a display created for stereoscopic view- 
ing; it depicts the feature estimates combined from all 
the slices through the data set shown in Figure 2. Figure 
5 shows a stereo view of another scene, with colors cod- 
ing the depth estimates of scene features. 
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Generalizing the camera path 

Figure 5. Color-coding of relative depth for another 
scene. 

WMERAPRINCIPAL POINTS 

Figure 6. Camera attitudes along a linear path. 
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Figure 7. Fifteen frames of a synthesized image 
sequence. 

The restrictions on this straight-path orthogonal- 
viewing arrangement limit its applicability in autono- 
mous navigation tasks: One might need to look where 
one is going, or pan and tilt to track some particular fea- 
ture. It was essential that we generalize the analysis to 
allow such flexibility. First we removed the constraints 
of orthogonal viewing and equally spaced sampling; we 
wanted the camera to be able to look anywhere and even 
change its direction while in motion. Our solution also 
provides for removal of the straight-path restriction, but 
implementation of this capability still lies ahead. Two 
other objectives for our generalization were to produce 
results connected in space (the results shown in Figure 
4 are isolated points) and to have the analysis proceed 
incrementally as the vehicle moves, rather than await 
acquisition of all the data. 

Viewing the geometry of the situation makes it easier 
to appreciate the problems arising from these generali- 
zations. Consider Figure 6, which depicts three cases of 
a camera positioned along a straight path. The simplest 
case is that shown at V,. Notice that this is the case han- 
dled in our earlier implementation-planes were formed 
by collecting successive scan lines, and feature paths in 
these planes were linear so estimation was simple. In 
general the planes are formed by collecting the intersec- 
tions of the image planes with the pencil of planes 
(labeled 8, through en + ,) passing through the camera 
path. Unfortunately, in the situations demonstrated at 
V,, which looks to the same side as V2 but slightly for- 
ward, and at V,, which looks almost straight ahead, the 
structure of these intersections is radial, and not scan- 
line based. Even worse, feature paths in the planes will 
not be straight lines-they will, in fact, be hyperbolic. The 
most complex situation occurs when the camera is 
allowed to change its direction while moving, varying say 
from V, to V, and positions between. Here the structure 
of the planes depends on the direction of the camera at 
each point along its trajectory, and feature paths are nei- 
ther linear nor hyperbolic, but are arbitrary curves. 

Things might have been hopeless; however, an insight 
from mathematical duality4 allowed us to keep the esti- 
mation as a linear problem for all these situations. Still, 
for this to work we needed a way to track features 
through any path in the space-time volume of Figure 2. 
Resampling was a consideration, but the combination of 
singularities in the mapping, the computation required, 
the aliasing that would result, and the disruption of pixel- 
variance measures made this a very unattractive option. 
To better enable this tracking and to attain our other two 
goals of processing the images sequentially and produc- 
ing spatially coherent results, we were led to develop our 
3D surface constructor, the Weaving Wall. Using the 
Weaving Wall and constraints provided by knowledge of 
the camera path, we have been able to achieve a robust 
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Figure 8. A rendering of surfaces. 

Figure 10. Spatiotemporal surfaces of first 10 frames. 

estimation of scene contours for arbitrary viewing 
directions. 

The Weaving Wall 
The Weaving Wall operates as images are acquired, 

knitting together a connected representation of the spa- 
tial and temporal evolution of a sequence over time. In 
effect, it carries out a 3D counterpart of 2D edge detec- 
tion; rather than detecting edges, however, it detects 3D 
facets. The process acts as a loom during surface con- 
struction, with a wall of accumulators weaving the sur- 

Figure 9. First and last images of zoom 
sequence. Top: full resolution; bottom: 
reduced resolution. 

face elements together-hence its name. Figure 7 shows 
a synthesized image sequence: zooming in on a set of 
rectangles. Figure 8 shows a rendering of the spatiotem- 
poral surfaces arising from these images. Here To is at 
the rear, TI4 is in the foreground, and the spatiotem- 
poral evolution is quite apparent. 

The top of Figure 9 shows the first and last images 
obtained with a similar forward camera motion through 
a scene. For simplicity in our analysis and display we use 
a reduced-resolution version of this sequence, the first 
and last images of which are shown at the bottom of Fig- 
ure 9. Figure 10 is a crossed-eye display of the spatiotem- 
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Figure 11. Single 
rendered surface 
(orange exterior, 
light interior). 

Figure 12. Wireframe Figure 13. Constraint 
of spatiotemporal planes intersecting 
surface. s p a t i o t e m p o r a l  

surface. 

Figure 14. 'hacking process in operation. 

poral surfaces produced for the first 10 frames of this 
sequence. Surface facets are determined by convolution 
of the data with a 3D operator (a Laplacian of a 
Gaussian-the smoothing Gaussian sets the resolution, 
while the Laplacian locates gradient extrema). In digi- 
tal images, edges generally coincide with object bound- 
aries (although they can also be texture boundaries or 
noise artifacts), and the same applies to our 3D facets. 

Note in particular the sock-shaped surface at the upper 
left of Figure 10. Its right is formed by the ladder, its top 
by the ceiling and lights, and its left by the cabinets 
against the left wall. These can be seen clearly at the top 
left of the images in Figure 9. Figure 11 shows this sur- 
face rendered in stereo, with its exterior colored orange 
and its interior light. 

Spatiotemporal tracking 
Space-time surfaces are formed by the image-plane 

evolution of scene features. For tracking features on the 
spatiotemporal surface, we apply the constraints derived 
from the known camera geometry. These constraints 
restrict feature movement. Feature trackers on the 
spatiotemporal surface of Figure 12, for example, are 
restricted to lines as shown in Figure 13. In fact, this fig- 
ure shows the intersection of the constraint planes of Fig- 
ure 6 (the 0's) with the spatiotemporal surface of Figure 
12. A tracker is initiated when a surface is first cut by a 
plane; tracking is carried out by passing the tracker along 
sequentially from surface element to element.5 Figure 
14 shows the tracking process operating in the vicinity 
of this surface. The red wire framing indicates the 
spatiotemporal surfaces, !he yellow lines show the track- 
ing of features, red circles encode the initiation of 
trackers, and magenta circles indicate a tracker termina- 
tion. When sufficient observations have been made of 
some feature, an initial estimate of its position is made, 
and this is coded in the display by a yellow circle. As fur- 
ther images are acquired, estimates of the feature's posi- 
tion and confidence interval are updated using a 
least-squares sequential estimator (a Kalman filter6). 

Each of the paths marked in yellow along these sur- 
faces represents a feature in the scene whose position 
and confidence interval are being estimated. Figure 15 
shows the sequential updating of such a feature estimate 
at selected frames over the nine in which it is being 
tracked. The feature is first observed at To; at T4 suffi- 
cient observations have been made for a reasonable esti- 
mate of its position (marked by the cross) and confidence 
interval (the large ellipse, only part of which fits within 
the display frame). These estimates are refined as the fea- 
ture is observed through frame T,. The horizontal line 
at the bottom left of three of the frames is the camera 
path. These figures were made by using a 3D mouse to 
select and query the state of a tracker on the surface 
shown in Figure 14. 

The positional and confidence updating depicted in 
Figure 15 occurs along all tracked paths simultaneously 
and, since we have the surface's 3D connectivity 
explicitly in the representation, we can show the evolu- 
tion of contours in the scene. Figure 16 shows this for a 
set of 11 scene features adjacent on a spatiotemporal sur- 
face. The left frame shows the first estimate of the con- 
tour; the succeeding frames show how this estimate 
evolves as more images are acquired. Estimates of such 
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igure 16. Evolution of feature estimates along a connected contour. 
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contours are formed and refined over the entire space as 
the sequence progresses. Our current representation of 
scene structure is based on these evolving contours. 

Through this analysis, we have met our processing 
objectives: 

0 There is no restriction on the camera's viewing direc- 
tion during the scan; it can both pan and tilt, locking 
onto and tracking specific features of interest in the 
scene as it moves. 

0 The spatial connectivity maintained in the represen- 
tation allows us to build 3D contours, rather than iso- 
lated point sets. 

0 The estimation happens sequentially, with all esti- 
mates and confidences updated as each new image 
is acquired. 

Further applications 
Some exciting secondary applications resulted from 

development of the Weaving Wall spatiotemporal 
surface-building process. Designed to satisfy our track- 
ing needs where the third dimension is time, this process 
has characteristics that make it useful for other applica- 
tions in which coherent descriptions of nearly continu- 
ous 3D data are sought, regardless of what that third 
dimension represents. Most obvious among these is the 
construction of surface models from CT (computed 
tomography) and other medical scanning technologies 
(magnetic resonance, ultrasound, tomographic electron- 
microscopy). Here the third dimension is spatial. In addi- 
tion, we have been applying the algorithm to modeling 
material fractures and the visualization of higher dimen- 
sion analytic functions, the latter of which we discuss in 
the second subsection below. The critical element for 
application of the algorithm is that the 2D data evolve 
gradually over the third dimension, allowing us to track 
that evolution and represent it as a set of evolving 
surfaces. 

Medical data 
The principal approach to surface reconstruction from 

sensed data in the medical imaging field is that of Artzy, 
Frieder, and Herman.7 In that approach, surfaces are 
built consecutively, with each constructed by a sequen- 
tial process that begins at a selected seed voxel and 
traverses the isocontour by means of a connected- 
component search. Wyvill, McPheeters, and Wyvill 
improved on the search efficiency by characterizing local 
surface structure, but maintained the technique's inher- 
ent sequential nature.' Our process, on the other hand, 
operates incrementally in the third dimension, creating 
all surfaces simultaneously. This incremental operation 
was necessary for our tracking work, and is the principal 
distinction of our process. Although currently imple- 
mented to work sequentially within the first two dimen- 
sions (as it must on a sequential machine), it could be 

recoded to perform its processing in parallel over the 
spatial images, and thereby operate in real time. 

Surface element definition is made at a higher reso- 
lution than the sampling raster; facets are positioned by 
interpolation of 3D Laplacian values (or intensities, 
when these are appropriate). The computation is struc- 
tured in a way that makes ancillary calculations (for 
example, cylindrical or line-of-sight transformations, 
epipolar-plane intersections, triangular tessellation for 
rendering, and bounding volume determinations) both 
simple and efficient. The approach grew out of a 2D 
contour-finding a lg~r i thm.~  In three dimensions, a 
binary relation (inside) is defined over the voxels; this 
gives rise to 2" or 256 voxel combinations in a 2 x 2 x 2 
subvolume. These combinations enumerate the various 
ways the surface (or surfaces] can pass through that sub- 
volume."' 

We have applied the algorithm to surface reconstruc- 
tion from CT slice data. Figure 17 shows the evolution 
of surfaces judged to be bone in a 70 x 30 window of a 
52-image CT data set. This shows the incremental nature 
of the surface development. Figure 18 is a view of the 
three major surfaces (jaw, upper teeth, spine) of this data 
set, individually colored. Since these surfaces are dis- 
tinct objects, they may be manipulated for many 
purposes-for example, simulation of kinematics and 
dynamics, as shown in Figure 19, and structural analy- 
sis. Figure 20 shows two stereo views of the spine alone, 
processed at a higher resolution. A recent surface- 
rendering algorithm developed at GE Laboratories, 
Marching Cubes," shares many of these characteristics, 
but, while producing triangular facets for rendering, 
does not create connected surface descriptions and does 
not distinguish surfaces. A by-product of our Weaving 
Wall's processing is a rendering triangulation similar to 
that of Marching Cubes, with the advantage that ours 
handles saddle points correctly." 

Figure 21  shows surfaces from another CT data set, 
this one of 46 slices, each 120 pixels square. Figure 21a 
shows side and front views of the soft tissue. Figure 21b 
is a stereo pair of the skull from the side; Figure 21c is 
a stereo pair showing the cranial vault. Our rendering 
algorithm uses normals computed from 3D Gaussian 
derivatives of the data. Interslice spacing is five times the 
slice resolution, with slice sampling doubling for a sec- 
tion of the data set in the area about the ear. The horizon- 
tal band there suggests the patient moved slightly as the 
scan adjustments were made; the roughness at the jaw 
resulted from X-ray scattering at metal teeth fillings. 

Although the surface display aspects of this technique 
are evidently quite worthwhile, bear in mind that the pri- 
mary representation is a surface model, with all the con- 
nectivity appropriate for full model-based analysis (for 
example, symmetry mappings, elastic deformation oper- 
ations, and computations leading to finite-element anal- 
ysis). These are computational models built directly from 
the data. 
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Figure 17. Evolution of surfaces judged to be bone. 
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Analytic functions 
The Weaving Wall has proved useful in object repre- 

sentation studies. Our research group explores problems 
of representation for object modeling, and has developed 
a representational facility based on superquadrics.” 
H a n ~ o n ’ ~  has developed a hyperquadric generalization 
permitting the description of shapes with arbitrary poly- 
hedral bounds; superquadrics, in contrast, permit only 
shapes having the three orthogonal Cartesian bounds. 
Use of these hyperquadrics enriches the modeling by 
yielding a superset of the superquadric primitives. 
Experimenting with these higher dimension objects is 
complicated by the difficulty in visualizing them. To 
facilitate this, we display sequences of 3D projections of 
these n-dimensional objects (n > 3), using the Weaving 
Wall in the rendering. Figure 22 shows a selection of 
such projections through a four-dimensional surface. 
Viewing such frames as a sequence gives us insight into 
the structure of these objects. Banchoff discusses simi- 
lar issues in assessing the structure of higher dimension 
functions.’ 

Further potential applications of the surface-building 
process employed here include representation of sur- 
faces from other 2D sensing domains (e.g., ultrasound, 
geology), representation of images over scale, and the 
colorization of black-and-white film. In general, this pro- 
cess can be used in any application requiring a descrip- 
tion of the evolution of a 2D pattern varying gradually 
in a third dimension-be it time, space, viewing position, 

rn resolution, or any other dimension. 

Acknowledgments 
This research has been supported by DARPA contracts 

MDA 903-86-C-0084 and DACA 76-85-C-0004. Bob 
Bolles, David Marimont, and Lynn Quam have been cru- 
cial to its development. Alex Pentland, with his Super- 
sketch modeling and graphics system, was very helpful 
in tasks of generating simulated data (Figure 7) and ren- 
dering surface images. Andy Hanson provided the data 
and rationale for the hyperquadric analytic surface dis- 
plays. The medical CT data is courtesy of c. Cuttings, 
MD, New York University, and CEMAX Corporation, 
Santa Clara, California. This article has benefited from 
many suggestions of the editors and reviewers. 

References 
1. PJ. Besl and R.C. Jain, “Three-Dimensional Object Recognition,” 

Computing Surveys, Mar. 1985, pp. 75-145. 
2. T.F. Banchoff, “Visualizing Two-Dimensional Phenomena in Four- 

Dimensional Space: A Computer Graphics Approach,” in Statisti- 
cal Image Processing and Computer Graphics, E. Wegman and D. 
Priest, eds., Marcel Dekker, Inc., New York, 1986, pp. 187-202. 

3. I. Chakravarty, B.G. Nichol, and T. Ono, “The Integration of Com- 
puter Graphics and Image Processing Techniques for the Display 
and Manipulation of Geophysical Data,” in Advanced Computer 
Graphics, T. Kunii, ed., Springer-Verlag, Tokyo, 1986, pp. 318-334. 

4. R.C. Bolles, H.H. Baker, and D.H. Marimont, “Epipolar-Plane 
Image Analysis: An Approach to Determining Structure from 
Motion,” Int’l J. Computer Vision, June 1987, pp. 7-55. 

5. H.H. Baker and R.C. Bolles, “Generalizing Epipolar-Plane Image 
Analysis on  the Spatiotemporal Surface.” To be published in Int’l 
J. Computer Vision, 1988. 

6. Analytic Sciences Corp. technical staff, Applied Optimal Estima- 
tion, A. Gelb, ed., MIT Press, Cambridge, Mass., 1974. 

7. E. Artzy, G. Frieder, and G.T. Herman, “The Theory, Design, Imple- 
mentation, and Evaluation of a Three-Dimensional Surface Detec- 
tion Algorithm,” Computer Graphics and Image Processing, Jan. 
1981, pp. 1-24. 

8. G. Wyvill, C. McPheeters, and B. Wyvill, “Data Structure for Soft 
Objects,” The Visual Computer, Aug. 1986, pp. 227-234. 

9. D.H. Marimont, “Segmentation in Acronym,” Proc. DARPA Image 
Understanding Workshop, Science Applications Int’l Corp., 
McLean, Va., 1982, pp. 223-229. 

10. H.H. Baker, “Building Surfaces of Evolution: The Weaving Wall. ” 
To be published in Int’l J. Computer Vision, 1988. 

11. W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Reso- 
lution 3D Surface Construction Algorithm,” Computer Graphics 
(Proc. SIGGRAPH), July 1987, pp. 163-169. 

12. A.P. Pentland, “Perceptual Organization and the Representation 
of Natural Form,” Artificial Intelligence, May 1986, pp. 293-331. 

13. A.J. Hanson, “Hyperquadrics: Smoothly Deformable Shapes with 
Convex Polyhedral Bounds.” To be published in Computer Vision, 
Graphics, and Image Processing, 1988. 

Harlyn Baker has been a computer scientist in 
the Artificial Intelligence Center at SRI since 
1984 and has been working in computer vision 
for the past 15 years. From 1974 to 1976 he was 
a research associate at Edinburgh University, and 
from 1978 to 1983 he was a research assistant and 
then research associate at Stanford University. 

Baker received his BSc in computer science 
from the University of Western Ontario, MPhil 
in Machine Intelligence from Edinburgh Univer- 

sity, and PhD in computer science from the University of Illinois at 
Urbana-Champaign. He is a member of IEEE, a committee member 
of ISPRS (Commission 11), an  associate editor for Image and Vision 
Computing, and a member of the editorial board of The Robotics 
Review. 

The author can be reached at the Artificial Intelligence Center, 
EK233, SRI International, 333 Ravenswood Ave., Menlo Park, CA 
94025. Electronic mail address: Baker@ai.sri.com. 

July 1988 41 

mailto:Baker@ai.sri.com

