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ABSTRACT 
 
Advances in building high-performance camera arrays have 
opened the opportunity—and challenge—of using these 
devices for synchronized 3D and multi-viewpoint capture 
[2]. A requirement of using camera arrays for metric work is 
that their relative poses be known.  With a structured 
array—that is, one whose imagers’ intrinsics and relative 
positions do not change—it is feasible to perform this 
calibration once, before any use. We present progress in 
developing a new approach to this calibration that 
capitalizes on high quality homographies between pairs of 
imagers to develop a global optimal solution delivering 
epipoles and fundamental matrices simultaneously for the 
entire system.  The method exploits what we identify as the 
Rank-One-Perturbation-of-Identity (ROPI) structure of 
homologies in posing a unified SVD estimator for the 
parameters. We summarize the theory, and present both 
qualitative depictions and quantitative assessments of our 
results.  

Index Terms—multi-imager calibration, camera array, 
homography, ROPI, epipole, fundamental matrix 
 

1. INTRODUCTION 
 
1.1. Multi-imager Camera System 
 
In earlier work, we presented a PC-based multi-imager 
camera array based on cell-phone-type inexpensive imagers, 
employed for the task of creating megapixel video 
mosaicked panoramas [2].  This paper reports further 
research in exploiting this camera system. 

Named after an amphitheater at the base of the 
Parthenon, the Herodion camera is a high performance 
capture system built around a direct memory access (DMA) 
PCI interface.  It streams Bayer-format video to PC memory 
through a three-layer tree structure: an imager layer, a 
concentrator layer, and a frame grabber layer.  Up to 24 
imagers, grouped in 6’s, are attached to leaf concentrators. 
Two leaf concentrators connect to a middle concentrator, up 
to two of which can connect to the PCI-bus frame grabber.  
Different configurations are supported, down to a single 
imager.  Details of the camera system can be found in that 
earlier publication.  In distinction to others [8], these data 

are uncompressed, synchronized at the pixel level, and 
running into a single PC. Redesign for PCI-X (for greater 
than 8Gbps bandwidth) is underway, which will give us up 
to 96 synchronized VGA streams (or about 14 HD streams).  
To support community developments in these areas, we 
have licensed the imaging system for commercial sale 
through our system developers [12]. 

Several camera arrays have been designed to application 
requirements (Figure 1), with pixel distribution set to meet 
imaging needs.  

As mentioned, initial developments with this camera 
system have centered on building real-time megapixel video 
mosaics for videoconferencing.  Some of these imagers may 
have fields of view that have considerable overlap with 
others’ (see Figure 3).  In these regions, we wish to exploit 
the multi-perspective imaging by using stereo processing to 
extract range. 

Working in tasks of videoconferencing and document/ 
artifact imaging, we use planar homographies to control 
image composition.  Our interests have now moved to using 
similar multi-imager configurations to provide, in addition, 
scene range, and this has turned our attention to upgrading 
our quite-accurate homographies to derive fundamental 
matrices. 
 
1.2. Line-based Plane Homographies 
 
Traditional 3D calibration has used point correspondence to 
solve for the fundamental matrix between a pair of cameras.  
We were interested, instead, in building upon our good 

Figure 1: Multi-imager camera arrays. 



 

 2

homographies (refined through a global bundle adjustment) 
and achieving a calibration that incorporated the 
information from all imagers simultaneously. 

Planar calibration targets provide an effective 
mechanism for determining projective relationships between 
a pair of cameras [3,6,7,10,11].  We used patterns of lines 
projected to a facing wall as the calibration features in our 
mosaicking work, and determined a globally optimal set of 
homographies that exploited all observations of all imagers.  
This ensured, for example, that lines straight in the scene 
would be straight in the mosaic—even if the observing 
imagers had no overlap.  Homographies are related to the 
fundamental matrix through imager epipoles [4]: 

[ ] HeF ×≅ '  
If we were able to determine the epipoles among all of these 
imagers, then we could provide their 3D calibration, and 
this would permit us to compute range using, for example, 
epipolar-line stereo matching.  Our homographies can 
provide us with these epipoles. 

  
Consider 1H in Figure 2, formed between imager I and 

imager 'I using the calibration plane π1.  If we reposition 
the imagers (or, equivalently, reposition the plane, as 
shown), then we can determine 2H , relating I and 

'I using the calibration plane π2.    We can form a new 
transform 1

1
2

1,2 HHH −= , by observing that 1H  maps 

points in I to 'I through π1  and 1
2
−H  maps points in 'I  

back to I through π2. This combination transform has some 
interes-ting properties.  Formed from two homographies 
between two cameras induced by two planes, it is termed an 
homology [4]. Certain features of an homology are 
invariant.  The epipole e, determined by the imager 
relationships, is unaffected by the planes, with ee =H1,2 . 
Similarly, the intersection line of the planes, determined by 
the plane positions, is unaffected by the relative positions of 

the imagers.  These two invariances provide us with a 
means for combining multi-plane and multi-imager 
observations into an integrated linear epipole estimator. 

Ashdown et al. [1] present a related calibration notion 
also using multiple planes. While each plane can provide 
one homography matrix, the H’s at the intersection of two 
planes (the fixed line invariant) are unlikely to be 
consistent, that is, xHxH 21 ≠ . To resolve this, they 
determine point correspondences along the intersection and 
refine the homographies to force the invariant using a DLT 
algorithm. Since we compute homographies from separate 
images—each with a view filled with the plane—our 
intersection is consistent and forms part of the constraint 
set. 

Given two homographies between two cameras induced 
by two planes, 1

1
2 HH −  can be identified as a "rank-one 

perturbation of identity (ROPI) matrix" [5].  This matrix can 
provide us more information. Zelnik-Manor and Irani [9] 
observed that each homology matrix has two degenerate 
unit eigenvalues, and used this information to get ``true” or 
``corrected-scale’’ versions of the homology.  However, in a 
real scenario with noise, it is problematic to assess such 
equality.  We prove elsewhere [5] that this matrix must have 
second eigenvalue equal to 1, and this provides us a 
normalization mechanism for establishing a set of simul-
taneous equations for solving in a least-squares sense for the 
invariants. 
 

2. MULTI-IMAGER CALIBRATION 
 
Development of the mathematics may proceed from the case 
of two imagers and two planes; instead we leave that 
development to our earlier paper and present the 
formulation for multiple imagers observing multiple planes. 
 
2.1. Estimation of the Epipoles 
 
Consider multiple cameras and multiple planes, where one 
of the cameras provides the frame of reference ( 0=k ).  
Denoting homology matrices )()( 1,

k
j

k
i

k
ji HHH −= ,  

where i and j are planes indices ( 1,,2,1 −= ni K , 
nij ,,1K+= ), and Kk ,,2,1 K=  is the camera index, 

we have [9]:  
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Figure 2: Homology from plane homographies. 
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Figure 3: Corresponding epipolar lines for 2x9 multi-
imager configuration: yellow-cyan alternating 
horizontally, magenta vertically 

 
Together, 2/)1( Knn −  equations can be acquired, and the 

final objective function can be written: 
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where ke is the epipole of camera k corresponding to the 

reference camera, and vji,  is the intersection of planes i and 
j. ke  is only related to cameras k and the reference camera, 

and is independent of the planes. On the other hand, vji,  is 
the intersection of the plane i and j and will be independent 
of the cameras. We can present this formula in matrix form: 
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Defining the left side of the above equation as A, each 

row of A corresponds to one camera. This is also an MLE or 
least-squares problem and different methods can be used to 
solve it (Levenberg-Marquard, etc.).  Using SVD 
with TVUA Σ= , the optimal values for ke and vji,  arise 
from the first singular value1 of the matrix A. 

While we could estimate 'e as eHe i=' , we prefer to 
derive it directly, using the method used to obtain e . This 
we do by reversing the roles of 1H and 2H in the homology. 
 
2.2. Estimation of the Fundamental Matrix 
 
Since [ ] HeF ×≅ ' , given the epipole-pair e  and 'e , and a 

set of homographies, niH i ,,2,1, L= , the optimal 
fundamental matrix, in the Frobenius norm sense, is 

[ ] i
n

i
HeF ∑ = ×=

1
* ' , having rank 2.  We could weight this 

mean using estimate confidences. 
 
 

3. EVALUATION 
 
We demonstrate the performance of our global calibration 
system using the 2x9 multi-imager camera at the top left of 
Figure 1.  In Figure 3 we sketch sample epipolar lines 
across adjacent (horizontal and vertical) imagers. 

Lacking ground truth for our experimental tests, we have 
adopted what seems to be a reasonable method (similar to 

                                                 
1 http://voteview.com/ideal_point_Eckart_Young_Theorem.htm  
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Luong [6] but using RMS error) for evaluating relative 
estimation quality. We presume our homographies are, in 
some sense, ground truth, and determine how well the 
derived fundamental matrices act with respect to them.  We 
justify this assumption by noting that the homographies 
provide a correspondence across imagers for points in their 
plane—mapping x to 'x .  The fundamental matrix 
ensures 0'' == x

TT lxFxx , that is, 'x  lies on the 

epipolar line xl corresponding to x .  We take about 1% of 
the points in one image of a pair, and determine where the 
homography takes each in its paired image.  We then map 
the same points through the fundamental matrix, 
determining their epipolar lines.  Measuring the distance of 
each homography-transferred point from its epipolar line 
gives us a measure of the quality of the fundamental matrix 
for stereo reconstruction.  Since we have demonstrated our 
homographies to be very accurate, this should provide a 
view on the quality of our fundamental matrix and epipole 
estimation. 

In evaluating our solution, we show measures of RMS 
error over all adjacent (i.e., stereo-suitable) imagers at all 
subsets of plane combinations (from 3 to 7), deriving a set 
of measures that reveal decreasing RMS error with 
increasing number of planes.  Figure 4 shows typical results.   
 

4. SUMMARY AND CONCLUSIONS 
 

We have presented results in using a global optimization 
method for estimating the epipoles and fundamental 
matrices of a multi-imager camera system. Preliminary 
homographies are determined using lines projected to a 
planar field, and used in constructing a mosaicked video 
stream.  Homologies are formed from these homographies, 
which can be decomposed as ROPI matrices whose second 
singular values are unity.  This gives us robust matrix 
normalization, which permits us to consider all planes and 
multiple cameras simultaneously without regard for the 
usual “up-to-a-scale’’ issue.  By stacking all homologies 
together, the epipole estimation can be solved by SVD.  
Since we exploit all the constraints between calibration 
planes and cameras, this method is robust to noise.  

Our approach does not depend upon camera intrinsics, 
so it applies to uncalibrated cameras and in situations where 
we don't have metric information about the planes. 

We expect camera systems such as ours will provide the 
mechanisms that enable multi-viewpoint and 3D imaging, 
and optimization techniques such as the one presented here 
will help us exploit these image streams by delivering high 
quality globally optimal calibration models.  Our next 
studies will include using these results for 3D reconstruction 
from camera arrays. 
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Figure 4: Reduction in RMS error with increasing 
number of homology constraints. 


