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Abstract

Analysis of synchronized real-time multi-camera video
can be facilitated by calibration tailored to its intended
use. Calibration methods appropriate for two-view stereo
processing become less so for tasks such as dense linear-
array synchronous imaging for metric reconstruction or
stereoscopic visualization where additional constraints ap-
ply. Calibrating for the construction of an Epipolar-Plane
Image (EPI) volume, we introduce a novel method – based
on a rank constraint on image homologies – for simultane-
ous high quality epipole estimation. Epipoles form the ba-
sis for recovering the fundamental matrices and, eventually,
epipolar rectification parameters for the system. We present
this new approach, discuss its characteristics in comparison
with traditional metric multi-camera calibration, and show
its utility in 3D display.

1. Introduction

Acquisition, analysis, and presentation of three dimen-
sional scene information arise in areas including environ-
ment capture, autonomous navigation, immersive interac-
tion, 3D cinema, gaming, augmented reality, and remote
collaboration. Multi-viewpoint imagery has a central role
here in providing the three-dimensional world viewport.
Synchronized real-time multi-camera capture to support
this is now available, and issues in calibrating these sys-
tems present an immediate hurdle to the proper exploita-
tion of the data they deliver. For many applications such
as capturing and communicating video for 3D interaction
the number of required cameras can grow quite large (tens
to hundreds). With these cameras come more as well as
different constraints. A number of calibration methods use
planar targets for robustly recovering multi-camera param-
eters [1, 2, 3, 4]. We take a related approach with different
objectives.

Our work deals with a multi-camera system specially
configured (i.e., not generally positioned) for linear stereo

with 3D display – and we want the best estimate of camera
rectification parameters that serve this configuration. Not
satisfied with pose estimates from traditional metric cali-
bration [5] when used for epipolar alignment [6] (see Fig-
ure 4d), we suggest it’s more important that ganged rec-
tification be enabled than that derived pose parameters be
respected. The problem lies partly in good estimation of the
centers of projection and epipoles across pairs of cameras.
Epipoles form the basis for recovering the fundamental ma-
trices of a multi-imager camera system and for the rectifi-
cation needed in both metric reconstruction and 3D display,
so getting them right is important.

Figure 1. Simultaneous panoramic+multiview camera

An application of our camera system calls for multi-
imager mosaicking for wide panoramic capture coupled
with multi-viewpoint imaging for 3D acquisition. The de-
vice capturing these data is shown in Figure 1. The calibra-
tion requirements of these two cases are orthogonal: mo-
saicking analysis works in projective space (with homogra-
phies) while 3D calls for metric analysis; mosaicking tends
to minimal feature overlap while multiview tends to maxi-
mal. Merging these, we wish to see if it is feasible to attain
quality calibration in both spaces through upgrade of the
simpler projective homographies where point-feature cor-
respondence of metric analysis may be almost unavailable.

We introduce a novel method for high quality estimation
of epipoles across a collection of imagers. For our special
case – where the baseline of the system is known to be lin-
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ear – optimization tunes these estimates to enable ganged
analysis of the data with epipolar properties. This case has
great value in two situations in particular: EPI-type recon-
struction [7] and autostereoscopic 3D display [8]. While
short of full metric character, the data transformations we
present facilitate bulk multi-baseline ranging analysis and
re-presentation of the imagery for free-viewpoint autostereo
display. Our goal here is to show that we can facilitate these
stereo and 3D display tasks through a coupled analysis in-
volving simple but highly redundant use of image homogra-
phies. In this way, we can optimize our results for the mea-
sures that most concern us – epipolar alignment to facilitate
ranging and 3D display – and bypass other pose parameters
whose inclusion may interfere with deriving the transforms
that best support this rectification.

Section 2 describes the role of calibration in the areas we
are addressing and provides background on related meth-
ods for considering the problem of image calibration and
epipolar alignment. In section 3 we present our calibration
innovation for recovering a robust estimate of the funda-
mental matrix using a rank constraint on a derived image
homology. Section 4 applies this development to epipolar
rectification of a multi-imager camera array. In section 5
we highlight our experiments in evaluating this mapping.
Section 6 uses this rectification for autostereo display. Fi-
nally, in section 7 we provide conclusions about this ap-
proach and sketch plans for further applying this analysis to
passive multi-camera ranging.

2. Technical Background

The fundamental matrix (F ) and epipoles (e and e′) are
key parameters relating stereo cameras. While a planar cali-
bration target provides a simple mechanism for determining
an homography relating camera and scene geometries, used
singly it is inadequate for determining parameters such as
the fundamental matrix and epipoles [1]. We ask a ques-
tion here that has been asked before – can we use multiple
instances of planar targets to jointly determine these param-
eters for a set of cameras. We answer this in a way that is
different from others and present a novel constraint on the
solution space. We use homographies to form objects called
homologies that reveal inter-camera epipoles in a more di-
rect and robust manner than previous efforts have delivered.
These epipoles and associated homographies give us supe-
rior measures of the imaging system’s fundamental matri-
ces, and a special optimization on these permits us to rec-
tify images for stereo and 3D display purposes. We provide
a description and visualization of these geometric objects,
and detail the mathematics around the homographies and
homologies of the analysis.

2.1. Previous Work

Luong [1] present a method for estimating F from sev-
eral homographies. The calibration scene contains multi-
ple planes, for each of which an H can be robustly es-
timated using either the Direct Linear Transform or non-
linear methods. They then use the compatibility condition
on F and H: FTH should be an anti-symmetric matrix,
so FTH + HTF = 0. Each homography matrix H can
provide 6 linear equations for F . Since F has 8 degrees of
freedom – up to scale – 2 or more planes (H’s) are needed to
determine F . However, because F is a rank-deficient ma-
trix, it has sensitivities that make reliable estimation diffi-
cult. They suggest that increasing the number of planes be-
yond three is counter productive [1], a conclusion we chal-
lenge; by using separate images for plane observations, our
solution can ensure constant quality homographies, so we
continue to gain from redundancy.

Zelnik-Manor [9] exploit homologies in their 3D calibra-
tion work. Given two homographies H1 and H2 between
two cameras induced by two planes, we point out that the
homology H−1

2 H1 can be parameterized as a ”rank-one per-
turbation of identity (ROPI) matrix” (derived from a rank-
one perturbation of a rotation (ROPR) matrix [8]). This
matrix provides special information, as we now describe.

2.2. Homographies

An homography serves as a transfer function between
projections of a 3D plane π1 across a pair of cameras, say
mapping points in image 1 to points in image 2 via the ho-
mography computed for π1. If we have two such planes π1

and π2 (Figure 2), we can map points separately via their
two derived homographies, H1 and H2. Mapping points
from image 1 to image 2 through H1 and then back to im-
age 1 using the inverse of H2, gives something resembling
an identity – points return to the image from which they
originated. But only some features return to their original
positions, and these are of two types: (a) the image v of the
line of intersection of the two planes, v, and (b) the single
point, e, located at the epipole in image 1 (defined by the
relative positions and orientations of the two image planes).
That these features are fixed points of the homology pro-
vides us a means to estimate them from a set of homologies.

The difficulty in using homographies (and homologies)
is that they are defined only up to scale. Zelnik-Manor [9]
referenced this point, and used the fact that each homol-
ogy matrix has two degenerate unit eigenvalues to normal-
ize them, removing the scale. However, in a real scenario
with noise, it is problematic to assess such eigenvalue equal-
ity. Singular values, being on the order of the square root
of the eigenvalues, provide a more stable environment for
these calculations.

Our concern here is with estimation of e. While this ho-
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Figure 2. Imagers I and I ′, transfer planes π1 and π2, camera
centers C and C′, epipoles e and e′, transfer point x and x′ via
plane points X1 and X2, and homographies Hi with homologies
a,bH

mology fixed-point constraint provides a way to estimate
epipoles with high precision, normalization issues make it
difficult to use redundancy in these matrices to derive good
estimates. Below, we show how a character of the ho-
mology matrix permits a more robust normalization, better
epipoles, and more robust F s.

3. Fundamental Matrices
In this section, we discuss our methods for robustly esti-

mating the fundamental matrices for a linear multi-camera
array. We discuss the simplest case of two planes and two
cameras, elevating to multiple planes and cameras, and the
constraints that provide robust epipole and fundamental ma-
trix estimation.

3.1. Homology matrix and normalization

Given two cameras C and C ′, with projection matrices
P = K[I, 0] and P ′ = K ′[R, t], respectively, the ho-
mographies induced by plane π1 = (nT

1 , d1)
T and π2 =

(nT
2 , d2)

T can be parameterized as:{
H1 ∼ K ′(R − tn

T
1

d1
)K−1,

H2 ∼ K ′(R − tn
T
2

d2
)K−1

respectively. Where (R, t) is the Euclidean transformation
of the camera C ′ with respect to C, d1 and d2 are the per-
pendicular distances from the camera to the planes, and the
equality ∼ means up to scale. The homology matrix, de-
noted as: 1,2H = H−1

2 H1, can be decomposed [9, 10, 11]
as:

1,2H = s(I − λevT ) (1)

where s is a scaling factor, I is a 3 by 3 identity matrix and

λ ≡
1

1 +
nT
2

d2
R−1t

, e ≡ KR−1t, vT ≡
(
nT
1

d1
−

nT
2

d2

)
K−1

Zelnik-Manor [9] and Criminisi [10] pointed out that e is
the epipole up to scale, and v is the image of the intersec-
tion of the two planes in camera C. Of course, the epipole
e depends only on the camera configuration, and the im-
age v of the intersection of π1 and π2, v, depends only on
the scenes (i.e., the planes). This separability inspires us
to consider the whole multi-camera array as a unified sys-
tem. However, with use of homogeneous coordinates, there
is an intrinsic scale factor s in Eqn.(1) and, in order to put
multiple-cameras and multiple-planes together, we have to
normalize the homologies to an appropriate scale level.

Eqn.(1) defines a family of matrices of the form A =
I − xyT , which we term a Rank-One Perturbation of Iden-
tity (ROPI) matrix. It is easy to prove that the eigenvalues
of a ROPI matrix have the form (µ, 1, 1) up to scale, i.e., it
has two repeated and one non-repeated eigenvalues. Zelnik-
Manor [9] and others [3] use this repeated eigenvalue to
normalize the homology 1,2H , that is, µ = 1

repeated eigenvalue .
In real applications with noise, however, it is numerically
unstable to find this repeated eigenvalue, especially for the
case where the three eigenvalues are similar (for example,
for a larger-baseline camera rig).

To get a more robust normalization factor s, we establish
the following property: The ROPI matrix I + xyT has sec-
ond singular value 1. Therefore the second singular value
σ2 of 1,2H can serve as a better normalizer. We obtain:

1,2H =
1

σ2
(1,2H) = I − λevT (2)

where 1,2H is the normalized homology. On eliminating s,
we normalize all the homology matrices to a unified scale.
This enables us in the next section to consider multiple-
plane and multiple-camera elements in a single framework.
Elsewhere, we have demonstrated methods for computa-
tionally stable solution of this singular value problem [8].

3.2. Generalizing the solution

With the above section showing normalization of the ho-
mology for the two-camera two-plane situation, here we
generalize to the multiple-camera multiple-plane scenario.
We have C cameras observing P planes. Without loss of
generality, we choose one camera C0 as our reference. The
notations we use are: For a camera-pair Cc and C0, the ho-
mography induced by plane πp is pHc, the homology be-
tween plane πp and πr is prHc, where p, r = 1, . . . , P and
c = 1, . . . , C. prHc is the normalized version of the ho-
mology prHc, and prH̃c =

pr Hc − I .
Repeatedly considering Eqn.(2), we obtain:{

prH̃c = λrcecv
T
pr, c = 0, 1, . . . , C, p, r = 1, 2, . . . , P

}
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where λrc = 1

1+
nT
r

dr
RT

c tc
, ec = K0R

T
c tc is the epipole

between camera Cc and reference camera C0, vTpr =(
nT
p

dp
− nT

r

dr

)
K−1

0 is the image of the intersection of plane

πp and πr in C0, which will be shared by multiple cameras.
We estimate all epipoles ec through this minimization:

min
||ec||22=1,

||vpr||22=1

J({λrc}, {ec}, {vpr}) =
P∑

r=1

P∑
p=1

C∑
c=1

||prH̃c−λrcecv
T
pr||2F

(3)

Unity constraints ||ec||22 = 1 and ||vpr||22 = 1 elimi-
nated scale ambiguity in Eqn.(3). We seek e, not v, but
solve for both because of their connection through the joint
constraint. Also, it is clear that, for p = r, we have
prH = (rpH)

−1 and prH̃ = 03×3.
In the next section, a general solution is given first and

then several special cases are considered. After estimating
epipoles, we can easily calculate the fundamental matrices.

3.3. Deriving the epipoles

To facilitate solving for the optimization in Eqn.(3), we
define some simplifying notation.{

Hrc =
(

1rH̃c
2rH̃c . . . PrH̃c

)
Vr =

(
vT1r vT2r . . . vTPr

)T (4)

The objective function in Eqn.(3) can be re-written:

min
||ec||22=1,

||Vr||22=1

J({λrc}, {ec}, {Vr})J =

P∑
r=1

C∑
c=1

||Hrc − λrcecV
T
r ||2F

(5)
Different methods can be used to solve this type of

constrained optimization, for example gradient descent.
Extending to a large number of cameras, we propose
an alternate least-squares method with a rapid-converging
monotonic-decreasing objective function.

Theorem 1. The optimal value for λrc is:

λ∗
rc = V T

r HT
rcec (6)

Proof. The objective function Eqn.(5) can be further writ-
ten as:

J(λrc) =

P∑
r=1

C∑
c=1

tr
(
HT

rcHrc − 2λrcV
T
r HT

rcec + λ2
rc

)
Setting the first derivative about λrc to zero, we have:

∂J

∂λrc
= 2λrc − 2 · V T

r HT
rcec ≡ 0

Therefore, λ∗
rc = V T

r HT
rcec.

Theorem 2. Let us define:

Ar ≡
C∑

c=1

HT
rcece

T
c Hrc, Bc ≡

P∑
r=1

HrcVrV
T
r HT

rc (7)

then the optimal V ∗
r and e∗c are the singular vectors corre-

sponding to the largest singular values of matrices Ar and
Bc, respectively.

Proof. Substituting λ∗
rc in Eqn.(6) into Eqn.(5), we can

rewrite our objective function as:

J =
P∑

r=1

C∑
c=1

tr
(
HT

rcHrc − 2λ∗
rcH

T
rcecV

T
r + (λ∗

rc)
2
)

=

P∑
r=1

C∑
c=1

tr
(
HT

rcHrc − V T
r HT

rcecV
T
r HT

rcec
)

Thus, writing the minimization as a maximization problem:

max
||ei||22=1,

||Vr||22=1

F ({ec}, {Vr}) =
P∑

r=1

C∑
c=1

(
V T
r HT

rcecV
T
r HT

rcec
)

(8)
which we further rewrite separately as:

max
||Vr||22=1

F ({Vr}) =
P∑

r=1

V T
r

(
C∑

c=1

HT
rcece

T
c Hrc

)
Vr (9)

max
||ec||22=1

F ({ec}) =
C∑

c=1

eTc

(
P∑

r=1

HrcVrV
T
r HT

rc

)
ec (10)

Based on the definitions of Ar and Bc, from the first max-
imization, the optimal V ∗

r is the eigenvector of Ar corre-
sponding to its largest eigenvalue, and the optimal e∗c is the
corresponding largest-eigenvalue eigenvector of Bc.

3.4. Best estimate of fundamental matrices

After obtaining the epipoles ec in Section 3.3, it is easy
to estimate the e′c on camera Cc: e′c ∼ (pHc)ec. The funda-
mental matrices Fc can be calculated as Fc = [e′c]×(

pHc)
or Fc = (pHc)

−T · [ec]× [11].
To increase accuracy, we average Fc for camera Cc

across all planes:

F ∗
c =

1

P

P∑
p=1

(pHc)
−T · [ec]×. (11)

Because [ec]× is a rank-two asymmetric matrix and pHc is
a full rank matrix, F ∗

c will automatically be rank two, as
required. Note that as a mathematical convenience in our
formulation we constrain ec and Vr to have unit length.

Although we minimize algebraic rather than geometric
error, this works well in our application (see the evaluations
in section 5). The algorithm runs very fast, with only 3 ∼ 5
iterations needed for convergence.
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4. Linear array rectification
Recall that our goal is to have rectified EPI data for mul-

tiview stereo and 3D display. Here, we rectify our linear
camera array using the fundamental matrices as estimated
above. Our method consists of: 1) forming an initial es-
timate from F’s; 2) refining the result using a non-linear
optimization focussing around EPI alignment and linearity
constraints. For comparison purposes, we also employ a full
geometric calibration baseline algorithm as reference.

4.1. Initial mappers from F ’s

Given a multi-camera array, {C0, C1, . . . , CC}, C0 our
reference camera, we seek a set of homographies Ĥi, i =
0, . . . , C, such that after applying Ĥi to Ci, the mapped
images will have collinear scanlines where disparities are
only horizontal.

For a post-rectified stereo pair, a fundamental matrix
should have the form:

F̃ =

 0 0 0
0 0 1
0 −1 0


Therefore, we have:

ĤT
0 F̃ Ĥi ∼ Fi (12)

There are infinitely many solutions to this [11, 12]. Mal-
lon [12] estimates {Hi} by projecting the epipole to infin-
ity. However this only works in the two-camera situation (is
questionable there) and is inadequate for our case. Here, we
use the following strategy:

(1) We assume Ĥ0 to be an identity matrix, i.e., we leave
the image of the reference camera unchanged. This
minimizes image distortion due to the mappings and
is a reasonable initial estimate in this linear-camera
generally-orthogonally-viewing work (redressing this
assumption can be accommodated later)

(2) For each camera Ci, we solve for its corresponding Ĥi

using Eqn.(12):

Ĥi =

 1 0 0

F
(3,1)
i F

(3,2)
i F

(3,3)
i

−F
(2,1)
i −F

(2,2)
i −F

(2,3)
i


The first row is set to be (1, 0, 0) [12] because there are
no constraints on these components. We will further
optimize over them in our next refinement stage. This
formulation ensures y-direction error is small.

(3) The above solution ignores the horizontal shift along
x. Because we are dealing with multiple cameras, we

have to consider x explicitly, which leads to the final
initial estimate of the homography:

Ĥi =

 1 0 di

F
(3,1)
i F

(3,2)
i F

(3,3)
i

−F
(2,1)
i −F

(2,2)
i −F

(2,3)
i


Intuitively speaking, di controls the horizontal shift of
each image, which actually depends on both the focal
length of the camera and the scene depth. Additionally,
di is not unique: If di is a solution, then 2× di is also
a solution. To better accommodate our scene depth,
di is initialized to the average distance along the x di-
rection, given multiple corresponding points. Again,
these parameters are refined during the optimization.

Having established initial estimates for our homogra-
phies, we further parameterize them as follows:

Ĥi =

 1 h
(1)
i h

(2)
i

h
(3)
i h

(4)
i h

(5)
i

h
(6)
i h

(7)
i h

(8)
i


where the (1,1)-component has been fixed to 1 to correct the
homography’s scale ambiguity. Next, we optimize this set
of parameters through a non-linear refinement.

4.2. Nonlinear refinement process

Epipolar rectification of a multi-camera array brings two
objectives to mind: 1) vertical disparity should be zero (im-
age displacement being strictly horizontal); 2) the EPI lin-
earity property means points corresponding across cameras
will be linear in rectified EPI-volume space.

Our objective function is based on these two errors:

J(θ) = Jvert + λJlinear (13)

where λ is a pre-defined trade-off parameter. First, we de-
fine the vertical error, then the linear.

With N corresponding points across all C cameras,
{xc,i, yc,i}, where c = 1, . . . , C and i = 1, . . . , N , ap-
plying Ĥc to cameras Cc gives transformed image points
i:  x′

c,i

y′c,i
1

 =
Ĥc × [xc,i, yc,i, 1]

T

[0, 0, 1]× Ĥc × [xc,i, yc,i, 1]T

where the RHS denominator arises from use of homoge-
neous coordinates. Therefore, to horizontally align the cor-
responding transformed image points we minimize:

Jvert =
N∑
i=1

C∑
c=1

(
y′c,i − ȳ′i

)2
, where ȳ′i =

1

C

C∑
c=1

yc,i (14)

Corresponding points incur minimal vertical disparity.
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For the linearity error, we consider that EPI-slice corre-
sponding points [7] should form a line whose slope is deter-
mined by the baseline and depth. We denote the baseline of
camera Cc with respect to reference camera C0 as bc, then
given a set of corresponding points, the following points in
x-z space should be a line:

{pc,i ≡ {x′
c,i, bc}}, c = 1, . . . , C, ∀i

Fitting line li to these points:

Jlinear =

N∑
i=1

C∑
c=1

[dist(pc,i, li)]
2 (15)

with dist(p, l) the orthogonal distance between p and l.
For the calibrated situation, we can explicitly include es-

timated baseline values. However, in the uncalibrated sce-
nario here, without pose information we invoke an equi-
distant baseline assumption which, given our means of con-
struction, is sufficiently accurate (to fractions of a millime-
ter). As usual, with point sets x, normalization drives their
mean to zero and average distance to

√
2. This prevents the

larger baseline-displacement component from dominating
the optimization.

4.3. Baseline algorithm

Our baseline algorithm starts with full geometric
checkerboard calibration [5]. It differs from the standard
method in how it initializes the camera homographies.

(1) Fit a line l to the camera centers minimizing the or-
thogonal distance to all camera centers. l, represented
by a 3-D point A and direction a, is chosen as the base-
line (Figure 3a).

(2) Rotate C0 so that its x-axis is aligned with a. Min-
imizing the distortion due to rotating images, we or-
thogonally project the z-axis of the reference camera
C0 onto plane P , and treat this as our new z′ axis.
The y′ axis is the cross-product of x′ and z′. Denot-
ing Rw = [x′; y′; z′], we move our world coordinate
frame to W (Figure 3b).

(3) Calculate the pose of each camera with respect to W ,
rotating each camera so its optical axis is perpendicu-
lar to x′ and parallel to z′ (Figure 3c). This rotation
process can be implemented as an homography.

Essentially, we approximate an ideal multi-baseline system
by the cameras in Figure 3c without moving their centers
of projection. How well this works depends on the distance
each camera moves in z′. Since l is the direction minimizing
this distance for all camera centers, the effect of moving
camera centers has been minimized.

The initial estimate of {Ĥi} is refined by solving
Eqn.(13) in section 4.2.

Figure 3. Multi-camera rectification for general scene: a) initial
estimates of {Hi}, b) orientations and c) alignments.

5. Evaluation
Section 4.2 produced a set of transforms derived from

homographies and adjusted by a non-linear refinement ex-
ploiting our known configuration constraints. Section 4.3
produced a set of transforms derived from metric calibra-
tion and then refined through a construction argument for
epipolar rectification. We have conducted two sets of exper-
iments in evaluating the quality of these alignment-based
rectifications. We assess – for a 10-imager multi-camera
system – the accuracy of estimating fundamental matrices
in the projective case (4.2), the reprojection error for the
metric case (4.3 initialization), and the overall rectification
errors for both cases. The latter includes applying a post-
adjustment non-linear refinement to the metric case, seeing
how the vertical disparity and epipolar linearity constraints
of 4.2 might help enhance the metric results of 4.3.

Rectification error measurement employs the corner
points of imaged checkerboards. We selected the corner
method since it provides for metric comparison; doing a sin-
gle projective calibration where there may be no point cor-
respondences and seeing how it might be upgraded through
other constraints has been the motivation for this study.

5.1. Accuracy of fundamental matrices

The fundamental matrix maps points between images.
The metric we are using to evaluate error is the following:
given known corresponding points in the two images, x and
x′, we calculate the orthogonal distance of x′ deviating from
the appropriate F -estimated epipolar line, Fx. This gives
us an average RMS for all cameras of 0.1874 pixel. Figure
4a shows the F-error for each individual camera. In addi-
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tion to showing how effective the non-linear optimization
is, these plots indicate that the non-metric method gives us
very good fundamental matrix estimations, though we do
not explicitly minimize this error. This is accounted for by
the strong global constraints among all cameras, where our
robust e’s deliver F ’s whose accuracy-maximizing norm we
can select.

To test the stability of our algorithm, we ran the follow-
ing experiments: for each feature point we add Gaussian
noise: n ∼ N(0, σ), selecting σ in {0.05 : 0.05 : 0.7}, and
perform 30 randomized runs. Figure 4b reports the average
error and its standard deviation. That the estimation error
is linear with respect to input error shows the F-estimation
algorithm to be robust to noise.

5.2. Geometric calibration

We use a variation of the standard checkerboard method
to calibrate our multi-camera array, and examine reprojec-
tion error to assess its apparent quality. The mean error
for the ten-camera system employed is 0.2685 pixel, with
standard deviation 0.198 pixel and a max error of 1.6576
pixels (Figure 4c). Recovered camera layout is shown in
Figure 4d. This shows graphically that the quality of geo-
metric calibration need not be what the numbers indicate:
for a system that we know to be aligned within millime-
ters, camera centers are estimated to have about a half inch
of vertical deviation. Part of the reason for this variance is
that geometric calibration involves a non-linear optimiza-
tion where pose and intrinsics are intertwined. One goal of
our developments here has been to show that, solving more
simply for epipoles, we are able to do better on our major
error concern – rectification alignment.

5.3. Accuracy of rectification

Using a metric similar to that of section 6.2, we also
compare the final error, in pixels, along the y direction
(see Table 1). It can be seen that our projective method
gives better both initial and final rectification results. Using
the same non-linear optimization, our considerably simpler
homography-based solution shows the value of exploiting
this ROPI-driven least-squares epipole-estimation solution.

Figure 5 shows a set of selected epipolar lines across
a band in 10 rectified images. Good results are observed
where there is no noticeable vertical deviation in the se-
lected features – scan this figure to verify the alignment
quality. Figure 6a shows a single image from this set, in-
dicating the features selected to demonstrate alignment.

To check the linearity EPI property, we plot one EPI-
slice (Figure 7). Clearly, we see lines, with slope deter-
mined by the depth of the corresponding points.

In addition to these metric evaluations, every use of the
system described in section 6 presents an opportunity for
users to assess the full pipeline quality; and it works.

Table 1. Rectification (y-direction) reprojection error
algorithm initial error final error
baseline metric method 0.778259 0.120604
new projective method 0.396695 0.118561

6. Autostereoscopic Display
We leave use of this method in stereo reconstruction for

another time, and here briefly discuss the more experiential
use of the system in autostereo display, sketching the video
pipeline and the display implementation.

6.1. Rectification in 3D capture and display

Image rectification – reorienting and resampling so that
epipolar lines become corresponding scan lines – is an es-
sential step in structuring imagery for autostereo viewing.
This mapping must correct for imprecision in component
mechanical assembly, correct lens distortions, accommo-
date to the perspective keystoning that comes from having
the capture cameras converge on the desired content, and
minimize corresponding point vertical disparity (epipolar
alignment). Calibrating the display side is easier, it just has
to maintain the alignment delivered by the camera system.
In our work, display calibration simply involves determin-
ing homographies.

6.2. Display Methods

Numerous approaches to autostereo display are chroni-
cled in several conference series [13, 14]. Our approach [8]
is a projection method based on a retroreflective material
bonded to a diffusing layer that permits a viewer’s eye lo-
cated within a reflected diffusion zone before the screen to
see the output of a single overhead-mounted projector (Fig-
ure 6b). Multiple projectors provide multiple adjacent view
zones. This real-time autostereo facility is in operation with
18 cameras and 18 projectors delivering 16 discrete binoc-
ular view zones. It acts in communication with a 9-camera
site [8], and as a mirror. Video bandwidth here approaches
2.5 gigabits per second. Our solution provides a unified
single-PC approach, where cameras, displays and computa-
tion could be delivered for a bill-of-materials cost of under
ten thousand dollars. The projective epipolar rectification
we describe here is key to its quality and its simplicity.

7. Conclusions and Future Work
We have presented a novel algorithm to recover epipolar

geometry for a multi-camera array free of metric require-
ments, and highlighted its use in autostereoscopic display.
We are now expanding this capability to autostereo display
of panoramic imagery, focussing on issues of perceptual
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Figure 4. a) Fundamental matrix error in pixels along y-direction; b) Stability of estimation of F’s; c) Reprojection error for each camera;
d) Camera layout recovered from the geometric calibration (arrows represent optical axes).

Figure 5. Rectification Result – epipolar lines across 10 imagers through the three selected features

Figure 6. a) Reference image for rectification results: three se-
lected features; b) Autostereo display: overhead projectors and
diffusing retroreflection screen (notice cameras above screen)

Figure 7. Rectification verification: EPI-slice near middle line of
Figure 5 (boundaries indicate original horizontal alignment)

quality in an immersive experience. Our calibration stud-
ies will continue, as we work to develop hybrid analyses
that couple 3D display with metric use in range recovery to
support advanced user interaction activities.
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