
Destructors, Finalizers, and
Synchronization

Destructors, Finalizers, and
Synchronization

Hans-J. Boehm
HP Laboratories

Hans.Boehm@hp.com

Object cleanup

C++ destructors
Executed synchronously at specific program point.
Convenient notation.
Used to manage cleanup after exceptions.
Often used pervasively in C++.
Canonical example:

{
scoped_lock sl(L);
do_something();

}

Object Cleanup (2)

Java Finalization (a.k.a. C# destructors)
Leverages garbage collector for non-memory
resources.
Cleanup code is executed for otherwise unreachable
objects.
Rarely used, but very hard to avoid.
Canonical use:

Collectable
Heap

Uncollectable
Heap

Finalization-
enabled

Explicitly
deallocated

Implementing finalization

(Small) subset of objects F is
finalization-enabled.
Runtime keeps a data structure representing F.
After GC, untraced objects in F are finalizable.

These objects are enqueued for finalization.
Details depend on finalizer ordering:

May not want to finalize objects reachable from
finalization-enabled objects (Modula-3).
May need to prevent collection of objects
accessed during finalization (Java, C#).
No significant impact on performance.

Overview (rest of talk):

Paper discusses
Example uses of finalization.
Observations about programming with finalizers.

Concurrency issues.
Language design issues.
Why finalizer ordering does and doesn't matter.

Talk instead looks at specific "myths".
Many misunderstandings.
Complexity is largely self-inflicted, not inherent.

Assume Java unless otherwise stated.

Myth #1:

Java 2 Black Book (introductory Java book):

[Dubious discussion of circular references.]
When an object is being "garbage collected" ... , the
garbage collector will call a method named finalize in the
object, if it exists. In this method, you can execute cleanup
code, [good so far]

and it's often a good idea to get rid of any references to
other objects that the current object has in order to
eliminate the possibility of circular references ...

Really 3 myths?

Cyclic garbage is hard to collect.
Applies at most to reference counting.
Almost all JVMs use tracing GC.

Finalizers can help the collector.
The collector needs to determine that the object is
unreachable to run the finalizers.
Cycles may affect finalizability, but not in Java.

Finalization is cheap
Finalization-enabling an object usually increases
allocation and collection cost, perhaps by 3x.

Myth #2: (usually implicit)

Finalizers run only after all other method calls
on the object have completed.

Java finalizers may run run when the object can no
longer "be accessed in any potential continuing
computation ..." This may occur with a running method,
e.g.:

class X {
Y mine;

// mine is not shared.

public foo() {
...
mine.bar();

}};

mine

bar()

X:

foo()
finalize()

Y:

Myth #3:

Finalizers should avoid synchronization.

Useful finalizers update external state.
External state is typically shared.
Needs to synchronize (perhaps implicitly).
Finalizers introduce concurrency (stay tuned
...).
Finalizers in single-threaded Java/C# code
may need to lock

Myth #4:

Finalizers are crippled because they may be
run too late, instead of immediately when an
object becomes unreachable.

Running finalizers "immediately" is not meaningful unless
they are run from the thread overwriting the last pointer.
Unlike the destructor case, it is not practically predictable
when finalizers will be run. (If it were, we wouldn't need a
garbage collector.)
The thread overwriting the last pointer may already hold
lock needed by finalizer.

==> deadlock (or worse)

Garbage collectors should run finalizers from
a separate thread.

Tracing collectors should never run finalizers from
allocator.

Unfortunately version 1 usually does.
What about System.runFinalization()?

A reference count decrement should not
trigger finalization calls.

Unfortunately, standard reference count libraries
usually do.

Workarounds (explicit queueing) may be possible.

Late finalization is necessary, but
early finalization may be a problem:

Object is finalized when the collector discovers it to be
unreachable.
One of its fields may still be in a register.
If that field is a handle / file descriptor:

finalizer may close it while being accessed.
or not?

In my view:
Java / C# "reachability" are underspecified.

Not just in this respect (see also myth 8).
Java objects appear to be reachable while locked.

==> synchronize accesses to finalizable objects.

Myth #5

All finalizers should be run before process exit
to ensure proper cleanup.

Can't be done safely.
Must run finalizers on reachable objects.
Any finalizer may be the last one to be run.
All other objects in the system have been finalized at
that point.
Cannot safely stop all threads beforehand.
Will finalize objects being accessed by daemon threads.

Myth #6:

Finalizers cannot ensure reliable cleanup of
e.g. temporary files.

Keep state needing cleanup in a separate array S.
Run explicit cleanup routine over S at exit.

index

Finalizable object: S:

Myth #7:

Finalizers cannot manage scarce resources,
because the collector may run too infrequently.

Resource allocator can run GC and
finalization, but:
This requires careful attention to deadlocks.
Thread calling allocator may hold lock.
Remember finalizer dependencies!

Other finalizers need to run, too.

Allocators of scarce resources should not
be called with locks held?

Myth #8:

If A is reachable and points to B, then B is
reachable.
Usually true for standard implementations.
Not guaranteed by Java spec.

Conclusions

Finalizers:
are rarely needed.
may need thousands of lines of code to avoid.
are inherently asynchronous.
clean up objects of unpredictable lifetime.
are usually misunderstood.

Destructors:
are used pervasively.
can be easily (but inconveniently) avoided.
are synchronous.
clean up objects of predictable lifetime.
are reasonably well understood.

