

© 2006 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Reordering
Constraints for
Pthread-Style Locks

Hans-J. Boehm
HP Labs

3 14 March 2007

The Problem

• Pthreads has been around for well over a decade, with
many implementations. (And win32 threads are similar.)

• Most performance critical functions in pthreads are
typically lock acquisition/release, e.g.
pthread_mutex_lock().

• Lock performance is highly dependent on what type of
memory fences are included in these functions.

• It would be good to understand what fences are required
by which calls.

• To get there, start with a review of pthreads rules …

4 14 March 2007

Pthreads rules
No concurrent modification to shared variables (no races):
“Applications shall ensure that access to any memory

location by more than one thread of control (threads or
processes) is restricted such that no thread of control can
read or modify a memory location while another thread of
control may be modifying it. [i.e. no data races.] Such
access is restricted using functions that synchronize thread
execution and also synchronize memory with respect to
other threads…”

- Single Unix SPEC V3 & others
These functions include pthread_mutex_lock() …

• Seemingly independent of language specification.
• Problematic (see PLDI 05 paper), but …

5 14 March 2007

Our (optimistic?) interpretation for this
talk:

• Define two memory accesses to conflict if
−They access the same location (i.e. variable for this talk).
−At least one of them is a write.
−They are executed by different threads.

• There is a data race if two conflicting actions can
occur simultaneously in a sequentially consistent
execution.

• Programs without data races have their
sequentially consistent meaning.

• Programs with data races have undefined
semantics.

6 14 March 2007

Why no data races?

• Almost dodges memory model issues:

(Initially x = y = 0)

Thread 1 Thread 2

x = 1; y = 1;

r1 = y; r2 = x;

Can r1 = r2 = 0?

• Intuitively (or under sequential consistency) no; some
thread executes first.

• In practice, yes; compilers and hardware can reorder.

• Under pthreads rules this is simply illegal.
−We don’t really get to ask the question.

7 14 March 2007

Sequential consistency for race-free
programs

• Similar to Ada model.

• Explored by Adve and Hill (ISCA 90).

• Essentially the basis for pthreads.

• Basis for current Java memory model.

• Likely to be the basis for C++0x memory model?

8 14 March 2007

How Pthreads Implementations work
(or should work)
• Synchronization-free code is treated roughly as though it

were single-threaded.
− Some optimization restrictions (see PLDI 05 paper).

• Synchronization functions contain any needed hardware
memory fences.

• Synchronization functions limit reordering with other
memory operation.
− Traditionally by viewing them as opaque

• can potentially read or write any potentially shared variable.

− Limits all movement.
− But is really too strong.

9 14 March 2007

Our goal

• Understand the allowable reordering of memory
accesses and lock operations.

• We do this by looking at program transformations.

• But we are really interested in both hardware and
software reordering.

• And most of the practical impact is on fences in
lock operations.

10 14 March 2007

Cost of fences in lock() and/or unlock()

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Unsafe Default None Lock Unlock Both

2 GHz Pentium 4 Xeon

Msecs to copy 10MB with putc()/getc() (1 thread)

Custom spin lock with full fence in _

11 14 March 2007

And on Itanium

Msecs to copy 10MB with putc()/getc() (1 thread)

Custom spin lock with full fence in _

 0

 500

 1000

 1500

 2000

Unsafe Default None Lock Unlock Both

1GHz Itanium 2 (gcc)

38%

12 14 March 2007

Basic reordering rules as generally
believed:

• Compiler/hardware can reorder non-locking
instructions, so long as this is correct for 1 thread:

x = 1; r1 = y;

r1 = y; x = 1;

• Moving code out of critical sections is bad:

pthread_mutex_lock(…); pthread_mutex_lock(…);

x++; pthread_mutex_unlock(…);

pthread_mutex_unlock(…); x++;

13 14 March 2007

Movement of memory operations into
critical sections is more interesting
• The obvious possibilities:

Java Naïve pthreads (“synchronize memory”)
Really required? Observable?

lock()

unlock()

lock()

unlock()

14 14 March 2007

Some open source pthread lock
implementations (2006):

unlock()

lock()

unlock()

lock()

unlock()

lock()

NPTL

{Alpha, PowerPC}

{mutex, spin}

NPTL

Itanium (&X86)

mutex

NPTL

{ Itanium, X86 }

spin

unlock()

[Incorrect]

FreeBSD

Itanium

spin

lock()

15 14 March 2007

And the right answer is:

unlock()

lock()

unlock()

lock()

unlock()

lock()

[Technically incorrect]

NPTL

{Alpha, PowerPC}

{mutex, spin}

NPTL

Itanium (&X86)

mutex

NPTL

{ Itanium, X86 }

spin

unlock()

[Incorrect]

FreeBSD

Itanium

spin

lock()

16 14 March 2007

What this means:

• Moving memory operations into a critical section
past pthread_mutex_lock() is observable.

• Moving memory operations into a critical section
past pthread_mutex_unlock() is not
observable.

17 14 March 2007

Contributions of the paper:

• Set up a framework in which these questions can
be analyzed.

• Prove some of the boring theorems that we all
assume:
−Reordering of independent memory operations is safe.
−performing later memory operations before unlock is

safe.
−And hence unlock does not need a full fence.

• Show that performing earlier memory operations
after lock leads to non-sequentially-consistent
executions of race-free programs.

18 14 March 2007

Formal Setting

• We phrase everything in terms of source transformations.
− In a highly simplified source language.

• We reason in terms of sequentially consistent executions,
i.e. interleavings of individual thread executions.

• To prove the validity of a transformation T, we need to
show:
− T preserves data-race-freedom

• Doesn’t generate undefined behavior.

− For every sequentially consistent execution of the transformed
program, there is an equivalent execution of the original program.

• By reasoning about source reorderings, we dodge
architecture-dependent issues of fence semantics.

19 14 March 2007

Reordering past lock:
A counterexample

• Insight: In the presence of try_lock, e.g.
pthread_mutex_trylock(), it is possible to
invert the sense of a lock:
−We can wait for a lock to be acquired, not released.

Thread 1: v = 42;

lock(l);

Thread 2: while (try_lock(l))

lock(l);

r2 = v; // No race!

// Must be 42

Cannot be reordered!

20 14 March 2007

Why Java is different (kind of)

• Java
−Always allows movement into locked regions.

−Still claims sequential consistency for race-free
programs.

• The difference is in the definition of “data race”:
−Java requires conflicting operations to be “happens-

before” ordered to avoid race.

−We simply require no concurrent (or adjacent)
execution.

−Accesses to shared variable in last example are not
happens-before ordered!

21 14 March 2007

Practical implications

• We need agreement on fence implications of locks
for performance comparisons to be meaningful.

• The strict pthreads requirements
−Appear to have been accidental.

−Do lead to slightly simpler programming rules.
• But only when you use try_lock.

−Result in an otherwise needless performance penalty.

• Currently it looks like C++0x will follow the Java
model here.

