
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

An Almost Non-
Blocking Stack

Hans-J. Boehm
HP Labs

Motivation
� Update data structures in signal/interrupt handlers.

� Sampling code profilers.
� Perhaps just log the signal.

� Underlying application may be multithreaded.
� Need to guard against concurrent accesses by

� Multiple threads.
� Multiple signal handlers.
� Thread code and signal handler.

� But locking in signal handlers is unsafe.
� In Pthreads, pthread_mutex_lock is not �async-signal-safe�.
� Interrupted thread may already hold lock è signal

handler can�t safely reacquire it.

The �obvious� solution
� Use lock-free data structures!

� Blocked processes (e.g. interrupted by signal) are no problem.

� Many known algorithms
� Linked stack solution dates back to Treiber, 1986.

� But for pointer-based operations these algorithms either:
� Require CAS instruction wide enough for a (pointer, version) pair,

with �wrap-proof� version number, or
� Constrain the underlying storage manager to prevent reuse, or
� Are reasonably complex, and usually use per-thread memory.

� They are also completely lock-free, more than we require.

The real requirements:
� At most n threads; main program and single

handler share data structure; handler can�t be
reentered:
� Requirement: With at most n inactive threads, a data

structure access by an active thread will progress.

� Threaded main program and n handlers share
data structure; handler can�t be reentered; main
program locks data structure accesses:
� Requirement: With at most n inactive threads, a data

structure access by an active thread will progress.

� We can bound the number of blocked threads
(often by one).

A definition:
� A data structure is N-non-blocking (N-lock-free) if

� It supports concurrent access by any number of
concurrent threads.

� If at least one active process is trying to access the data
structure, then one such thread will make progress,
provided
� At most N inactive processes are concurrently trying to access

the data structure.

� It is almost non-blocking (almost-lock-free) if it is N-
non-blocking for some N.

� This is good enough for the signal-handler case.
� It helps for page fault or preemption tolerance.

Our specific algorithm
� We give a simple, performance competitive,

almost non-blocking, linked stack implementation.
� Linked stack is illustrative, and often sufficient.

� E.g. simple memory allocation.
� But see also Michael, PLDI04

� Can be interface compatible with non-blocking
implementation based in wide CAS.
� Client assumes almost non-blocking.
� Use wide CAS where available

� E.g. X86-32, Intel X86-64, future Itanium, �
� Use almost non-blocking algorithm where unavailable

� E.g. AMD X86-64, current Itanium, �

Problem details
� Naïve pop operation fails:

/* WRONG !! */
node *pop(node **list)
{

node *result, *second;
do {
result = *list;
node *second = result -> next;

} while (!CAS(list, result, second));
return result;

}

� CAS may succeed if *list reverts to original value.
� Known as �ABA problem�.

Our approach
� Combine two techniques and a hack:

� Don�t reinsert list element that another thread is trying to
remove.
� Keep track of such elements in a black-list.
� Similar to Michael�s �hazard pointers�.

� Use very short version numbers.
� Use nonzero version number only to make a newly inserted item

different from a black-listed one.
� Steal version number space from pointers:

� Pointers, and list nodes normally have to be at least 4 byte
aligned.

� At least low order two bits of list pointers are zero.
� Use low order two bits for version number.

List header layout

Black-listed Pointer 1 incl. version

Black-listed Pointer 0 incl. version

Pointer ver

Our approach (contd.)
� Pop operation:

� Insert head of list into black-list before attempting
removal (requires CAS to find empty slot).

� Remove black-list element when done.

� Push operation:
� Check that inserted element is not in black-list.
� If it is, increment version (perturb pointer), try again.
� Requires read of black-list (typically 2 words).

The code
void push(node *perturbed * list,

node * element,
node *perturbed bl[])

{
node *perturbed my_element =

element;

retry:
for (int i = 0; i <= N; ++i) {
if (bl[i] == my_element) {
my_element =

perturb(my_element);
goto retry;

}
}
do {
node *perturbed first = *list;
element -> next = first;

} while (!CAS(list, first,
my_element));

}

node * pop(node *perturbed * list,
node *perturbed bl[])

{
unsigned bl_index;

retry:
node *perturbed result = *list;
for (bl_index = 0; ;) {
if (CAS(&(bl[bl_index]), 0, result))
break;

if (++bl_index > N) bl_index = 0;
}
if (result != *list) {
bl[bl_index] = 0;
goto retry;

}
node *perturbed second =

strip(result) -> next;
if (!CAS(list, result, second)) {
bl[bl_index] = 0;
goto retry;

}
bl[bl_index] = 0;
return strip(result);

}

The real code
void
HSD_list_insert(volatile HSD_list_ptr *list, HSD_list_element *x,

HSD_list_aux *a)
{
int i;
AO_t x_bits = (AO_t)x;
HSD_list_ptr next;

/* No deletions of x can start here, since x is not currently in the */
/* list.

*/
retry:
for (i = 0; i < HSD_BL_SIZE; ++i)
{
if (AO_load(a -> __list_bl + i) == x_bits)
{
/* Entry is currently being removed. Change it a little. */

++x_bits;
if ((x_bits & _HSD_BIT_MASK) == 0)
/* Version count overflowed; EXTREMELY unlikely, but possible. */
x_bits = (AO_t)x;

goto retry;
}

}
/* x_bits is not currently being deleted */
do
{
next = (HSD_list_ptr)AO_load((volatile AO_T *)list);
x -> next = next;

}
while(!AO_compare_and_swap_release((volatile AO_T *)list, (AO_T)next,

(AO_T)x_bits));
}

#ifdef __i386__
define PRECHECK(a) (a) == 0 &&
#else
define PRECHECK(a)
#endif

HSD_list_element *
HSD_list_remove(volatile HSD_list_ptr *list, HSD_list_aux * a)
{
unsigned i;
int j = 0;
HSD_list_ptr first;
HSD_list_element * first_ptr;
HSD_list_ptr next;

retry:
first = (HSD_list_ptr)AO_load((volatile AO_T *)list);
if (0 == first) return 0;
/* Insert first into aux black list.

*/
/* This may spin if more than HSD_BL_SIZE removals using auxiliary */
/* structure a are currently in progress.

*/
for (i = 0; ;)
{

if (PRECHECK(a -> __list_bl[i])
AO_compare_and_swap_acquire((volatile AO_T *)(a->__list_bl+i), 0,

(AO_T)first))
break;

++i;
if (i >= HSD_BL_SIZE)

{
i = 0;
AO_pause(++j);

}
}

assert(i >= 0 && i < HSD_BL_SIZE);
assert(a -> __list_bl[i] == first);
/* First is on the auxiliary black list. It may be removed by */
/* another thread before we get to it, but a new insertion of x */
/* cannot be started here.

*/
/* Only we can remove it from the black list.

*/
/* We need to make sure that first is still the first entry on the */
/* list. Otherwise it's possible that a reinsertion of it was */
/* already started before we added the black list entry. */
if (first != (HSD_list_ptr)AO_load((volatile AO_T *)list)) {

AO_store_release((AO_T *)(a->__list_bl+i), 0);
goto retry;

}
first_ptr = HSD_REAL_PTR(first);
next = (HSD_list_ptr)AO_load((volatile AO_T *)&(first_ptr -> next));
if (!AO_compare_and_swap_release((volatile AO_T *)list, (AO_T)first,

(AO_T)next)) {
AO_store_release((AO_T *)(a->__list_bl+i), 0);
goto retry;

}
assert(*list != first);
/* Since we never insert an entry on the black list, this cannot have */
/* succeeded unless first remained on the list while we were running. */
/* Thus its next link cannot have changed out from under us, and we*/
/* removed exactly one entry and preserved the rest of the list. */
/* Note that it is quite possible that an additional entry was */
/* inserted and removed while we were running; this is OK since the */
/* part of the list following first must have remained unchanged, and */
/* first must again have been at the head of the list when the */
/* compare_and_swap succeeded.

*/
AO_store_release((AO_T *)(a->__list_bl+i), 0);
return first_ptr;

}

Exponential back-off

The benchmark
� The ith of n threads alternately:

� Pops i elements of the stack.
� Pushes the i elements back onto the stack.

� All threads terminate at the end of their cycle when
a global counter indicates a total of more than a
million completed push and pop operations.

� Check that stack is permutation of original.
� Intentionally somewhat irregular.
� We report times in milliseconds (lower is better).
� Log scale to accommodate older
pthread_mutex_lock implementations.

Benchmark execution time
(2xPII/266, RedHat8)

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mutex
Spin-backoff

MostlyNB
CASW

of threads

msecs

Benchmark execution time
(4xPPro/200, RedHat 9, NPTL)

of threads

msecs

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mutex
Spin-backoff

MostlyNB
CASW

Benchmark execution time
(2xP4 Xeon 2GHz, RedHat 7.2)

of threads

msecs

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mutex
Spin-backoff

MostlyNB
CASW

Benchmark execution time
(4x Itanium 2, Debian Linux, NPTL)

of threads

msecs

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mutex
Spin-backoff

MostlyNB

Conclusions
� Performance is competitive with other good

synchronization techniques
� And far better than some.

� Wide CAS is better, but sometimes unavailable.
� Performance of almost non-blocking algorithm is

close.
� Many applications can be written for almost non-

blocking algorithm, and can thus use either.

Open issues
� Are almost non-blocking algorithms useful for fault-

tolerance?
� Good enough for recoverable faults �

� Other data structures?
� This is really an ABA solution.
� Construct general LL/SC variables analogously to

Jayanti and Petrovic (PODC 2003) or previous talk?

