An Almost Non-

Blocking Stack

Hans-J. Boehm
HP Labs

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

I Motivation ptey

Update data structures in signal/interrupt handlers.
Sampling code profilers.
Perhaps just log the signal.

Underlying application may be multithreaded.

Need to guard against concurrent accesses by

Mu
Mu

Thread

fip

fip

e threads.
e signal handlers.

code and signal handler.

But locking in signal handlers is unsate.
In Pthreads, pthread_mutex_lock is not “async-signal-safe”.

Interrupted thread may already hold lock = signal
handler can’t safely reacquire it.

nnnnnn

The “obvious” solution

Use lock-free data structures!
Blocked processes (e.g. interrupted by signal) are no problem.

Many known algorithms
Linked stack solution dates back to Treiber, 1986.

But for pointer-based operations these algorithms either:

Require CAS instruction wide enough for a (pointer, version) pair,
with “wrap-proot” version number, or

Constrain the underlying storage manager to prevent reuse, or
Are reasonably complex, and usually use perthread memory.

They are also completely lock-free, more than we require.

nnnnnn

I The real requirements:

At most n threads; main program and single
handler share data structure; handler can’t be
reentered:

Requirement: With at most n inactive threads, a data
structure access by an active thread will progress.

Threaded main pro(?rom and n handlers share
data structure; handler can’t be reentered; main
program locks data structure accesses:

Requirement: With at most n inactive threads, a data
structure access by an active thread will progress.

We can bound the number of blocked threads
(often by one).

nnnnnn

A definition:
A data structure is N-non-blocking (N-lock-free) it

It supports concurrent access by any number of
concurrent threads.

If at least one active process is trying to access the data
structure, then one such thread will make progress,

provided

At most N inactive processes are concurrently trying to access
the data structure.

It is almost non-blocking (almost-lock-free) it it is N-
non-blocking for some N.

This is good enough for the signal-handler case.

It helps for page fault or preemption tolerance.

I Our specitic algorithm o

We give a simple, performance competitive,
almost non-blocking, linked stack implementation.

Linked stack is illustrative, and often sufficient.

E.g. simple memory allocation.
But see also Michael, PLDIO4

Can be interface compatible with non-blocking
implementation based in wide CAS.
Client assumes almost non-blocking.

Use wide CAS where available
E.g. X86-32, Intel X86-64, future ltanium, ...

Use almost non-blocking algorithm where unavailable
E.g. AMD X86-64, current ltanium, ...

nnnnnn

Problem details

Naive pop operation fails:
/* WRONG !! */
node *pop(node **list)

{
node *result, *second;
do {
result = *list;
node *second = result -> next;
} while (!'CAS(list, result, second));
return result;

}

CAS may succeed it *list reverts to original value.
Known as “ABA problem”.

nnnnnn

Our approach

Combine two techniques and a hack:
Don’t reinsert list element that another thread is trying to
remove.
Keep track of such elements in a black-list.
Similar to Michael’s “hazard pointers”.

Use very short version numbers.
Use nonzero version number only to make a newly inserted item
different from a black-listed one.

Steal version number space from pointers:
Pointers, and list nodes normally have to be at least 4 byte
aligned.
At least low order two bits of list pointers are zero.
Use low order two bits for version number.

I List header layout

‘ Pointer

ver

Black-listed Pointer O incl. version

Black-listed Pointer 1 incl. version

nnnnnn

I Our approach (contd.)

Pop operation:

Insert head of list into black-list before attempting
removal (requires CAS to find empty slot).

Remove black-list element when done.

Push operation:
Check that inserted element is not in black-list.
If it is, increment version (perturb pointer), try again.
Requires read of black-list (typically 2 words).

nnnnnn

The code

void push(node *perturbed * list,
node * element,

{ node *perturbed bl[])
node *perturbed my_element =
element;

retry:
for (inti=0;i<=N; ++i) {
if (bl[i] == my_element) {
my_element =
perturb(my_element);
goto reftry;

}

}

do {
node *perturbed first = *list;
element -> next = first;

} while (ICAS(list, first,

my_element));

nnnnnn

node * pop(node *perturbed * list,
rl?odpé *per’ruFr)géclJlerle[]) ®

{ unsigned bl_index;
retry:
node *perturbed result = *list;
for (bl_index = 0; ;J {
if (CAS(&(bl[bl_index]), O, result))
break;

if (++bl_index > N) bl_index = 0;

if (result I= *list) {
bl[bl_index] = 0;

goto retry,

node *perturbed second =
strip(result) -> next;
if (ICAS(list, result, second)) {
bl[bl_index] = 0;

goto retry,

Ll[bl_index] =0;

return strip(result);

The real code

void

HSD_list_insert(volatile HSD_list_ptr *list, HSD_list_element *x,
HSD_list_aux *a)

{

inti;
AO_t x_bits = (AO_t)x;
HSD_list_ptr next;

/* No deletions of x can start here, since x is not currently in the */
/* list.

*/
retry:

for (i=0; i <HSD_BL_SIZE; ++i)
{
if (AO_load(a -> __list_bl + i) == x_bits)

/* Entry is currently being removed. Change it a little. ¥/
++x_bits;
if ((x_bits & _HSD_BIT_MASK) ==
/* Version count overflowed; EXTREMELY unlikely, but possible. */
x_bits = (AO_t)x;
goto retry;

/* x_bits is not currently being deleted */
do

{
next = (HSD_list_ptr)AO_load((volatile AO_T *)list);
X -> next = next;

while(lAO_compare_and_swap_release((volatile AO_T *)list; (AO_T)next,

_T)x_bits));

Exponential back-off

#ifdef _ i386_

define PRECHECK(a) (a) == 0 &&
#else

define PRECHECK(a)

#endif

HSD_list_element *
HSD_list_remove(volatile HSD_list_ptr *list, HSD_list_aux * a)

unsigned i;

intj=0;

HSD_list_ptr first;
HSD_list_element * first_ptr;
HSD_list_ptr next;

retry:
first = (HSD_list_ptr)AO_load((volatile AO_T *)list);
if (0 == first) return O;
/* Insert first into aux black list.
/* This may spin if more than HSD_BL_SIZE removals using auxiliary
/* structure a are currently in progress.
*/

for(i=0;;)

if (PRECHECK(a -> __list_bl[i])
AO_compare_and_swap_acquire((volatile AO_T *)(a->__list_bl+i), O,
(AO_T)first))
break;
++i;
if({i >=HSD_BL_SIZE)

i=0;
AO_pause(++j);
}

}
assert(i >= 0 && i < HSD_BL_SIZE);
assert(a -> __list_bl[i] == first);

/* First is on the auxiliary black list. It may be removed by */
/* another thread before we get to it, but a new insertion of x */
/* cannot be started here.

*
/* Only we can remove it from the black list.

*

/* We need to make sure that first is still the first entry on the */
/* list. Otherwise it's possible that a reinsertion of it was */

/* already started before we added the black list entry.
if (first 1= (HSD_list_ptr)AO_load((volatile AO_T *)list)) {
AO_store_release((AO_T *)(a->__list_bl+i), 0);
goto retry;

first_ptr = HSD_REAL_PTR(first);
next = (HSD_list_ptr)AO_load((volatile AO_T *)&(first_ptr -> next));
if ({AO_compare_and_swap_release((volatile AO_T *)list, (AO_T)first,
(AO_T)next)) {
AO_store_release((AO_T *)(a->__list_bl+i), 0);
goto retry;

assert(*list != first);

/* Since we never insert an entry on the black list, this cannot have */
/* succeeded unless first remained on the list while we were running.
/* Thus its next link cannot have changed out from under us, and we */
/* removed exactly one entry and preserved the rest of the list. */
/* Note that it is quite possible that an additional entry was */
/* inserted and removed while we were running; this is OK since the */
/* part of the list following first must have remained unchanged, and */
/* first must again have been at the head of the list when the */
/* compare_and_swap succeeded. y
AO_store_release((AO_T *)(a->__list_bl+i), 0);

return first_ptr;

[

invent

*/

*/

*/

I The benchmark o

The i of n threads alternately:
Pops i elements of the stack.
Pushes the i elements back onto the stack.

All threads terminate at the end of their cycle when
a qlobal counter indicates a total of more than a
million completed push and pop operations.

Check that stack is permutation of original.

Intentionally somewhat irregular.

We report times in milliseconds (lower is better).

Log scale to accommodate older
pthread_mutex_Tock implementations.

Benchmark execution time

(2xPll/266, RedHat8)

[

invent

| | | | | | | | | | | | | | | | | | | |
i Mutex —— 1

Spin-backoff — —« —
100000 [MostlyNB ---%--- _
- CASW ----o---- 1
msecs 10000 E_ _5
C XS :
L /x’a\)<\\>(x -
[e TN :
I *--*--*--*-;t;_yg»(ﬂ"z-—i/-*—--*--*--*--*--*--*--*--*._*-* |

S —re = T

/ g---9---g---g---g---0---g---0---0---0---0---0Q---0---0---0---0---0 00
1000 | ,'/‘ -
C X .
|]]
i |]

1 2 3 4 5 6 7 8 910111213 14151617 18 19 20

of threads

I Benchmark execution time 13
(4xPPro/200, RedHat 9, NPTL)

| | | | |
Mutex —— 1
Spin-backoff ——«— 1
MostlyNB ---%k---
CASW ----a----

10000 |- B
msecs -
SRS RN R e ke e RS b e R et e TRt _ht ek . Ak
*.---EI‘“ |
a
,’t': KT Ay H T H =9 — 3 — 2 — e X M X e e X —— =X
1000 | >v€.;'/ B
- Q’]

(Y AN TR N NN NN N
1 2 3 45 6 7 8 91011121314 1516 17 18 19 20

of threads

Benchmark execution time D]

(2xP4 Xeon 2GHz, RedHat 7.2)

| | | | |
Mutex ——
Spin-backoff — —« —

MostlyNB ---%---
CASW ----o----

[)
I

10000 | -
msecCs - .
Sle = =j¢ - =3 = =2k= = = = e = e - je - =dc = = K= - pk= - e -~ Be - e — —sj¢ - =K== K- -k
1000 o---g¢---g---0---0---0---Q---9---9---9---0---0---0---0---0---0

T T T TTT]
X
|
X
| .
X
|
X
|
X
\
1 a1l

of threads

Benchmark execution time

(4x Itanium 2, Debian Linux, NPTL)

10000

1000
msecs

100

[

invent

- Mutex ——
[Spin-backoff ——«—
- MostlyNB - - -*---

[IR T NN N
34 5 6 7 8 910111213 14151617 18 19 20

-
N_

of threads

nnnnnn

I Conclusions

Performance is competitive with other good
synchronization techniques

And far better than some.
Wide CAS is better, but sometimes unavailable.

Performance of almost non-blocking algorithm is
close.

Many applications can be written for almost non-
blocking algorithm, and can thus use either.

I Open issues o

Are almost non-blocking algorithms usetul for fault-
tolerance?

Good enough for recoverable faults ...

Other data structures?
This is really an ABA solution.

Construct general LL/SC variables analogously to
Jayanti and Petrovic (PODC 2003) or previous talk?

