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Basics (finalize)
� Object.finalize()

� �called � when there are no more references to the 
object.�

� Intended for object clean-up.
� No promptness guarantee.

� May never be called.
� Used to reclaim resources (other than heap memory).
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Basics (java.lang.ref)
� java.lang.ref.{Phantom,Soft,Weak} 
Reference
� Enqueues �unreachable� objects.
� Can be used for cleanup.

� Or to introduce reference that doesn�t prevent GC.
� May provide better performance.
� Interface more flexible in some ways.
� Requires explicit queue, possibly separate thread.
� Threading more explicit.
� Issues similar to Object.finalize().

� At least for our purposes.
� We concentrate on finalize().
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Bad finalization advice 1
� Don�t try this at home:
� Add finalizers to help the garbage collector.

� The facts:
� If the finalizer is run, the GC already knows it�s 

unreachable.  It�s done the work.
� JVMs treat objects with default finalize() specially.
� Non-default finalize methods:

� add GC time and space overhead.
� may interact badly with generational GC.
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Finalization performance impact
� A quick experiment:

� GCBench: Large binary trees, small nodes:
� Add finalize() to all tree objects (clears fields).

� This is a ridiculous stress test.  Don�t do this.
� gcj compiled (non-generational GC), old X86 machine:

� Factor of about 7.3 slowdown.
� BEA JRockit1.5, Itanium 2 machine:

� Factor of about 11 slowdown.
� Sun J2SE 1.4.2 client/server, old X86, with increased memory:

� Operator error: insufficient patience.
� (Fast without finalization.)

� Pervasive finalization è substantial slowdown
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� It�s a replacement for C++ destructors.
� It�s completely useless.
� Avoid locking in finalizers.

� Let�s start with a clean slate.

Bad finalization advice 2



Finalization, Threads, and the JMM 8

What finalization is good for:
� Cleanup of non-memory resources for objects

� With hard to predict lifetimes.
� For which cleanup is not time-critical.

� If lifetimes are hard to predict:
� Cleanup usually isn�t time-critical.

� If clean-up is time critical:
� Use explicit dispose/close calls.
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Finalization guidelines
� If you can easily avoid finalization, do so.
� One finalize() method per 10K to 100K lines of 

code seems common in well-written code.
� Finalization is the only way you can use the 

collector�s knowledge about lifetime.
� If you need that, use finalization.
� If you don�t, don�t.

� Don�t rewrite the garbage collector to avoid 
finalization.

� If you do need it, avoid the pitfalls � 
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Possible uses of finalizers
� Explicit deallocation of native objects.
� Deallocation of non-memory resources embedded deeply 

inside linked structures (e.g. file references.)
� Last ditch reclamation of dropped resources.

� Bug reporting.
� Esoteric error recovery?

� Removing external data associated with an object (e.g. in 
separate table).

� Guaranteed resource cleanup.
� At process termination, opportunistically earlier.
� E.g. temporary files.
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Problem with finalizer examples
� Small programs don�t need finalizers.

� For the same reason they don�t need garbage collectors.

� � and we�re only entitled to one after 10K lines of 
code J

� Thus this will have to be somewhat abstract.
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Example problem
� We have Resources:
class Resource
{

public Resource( � ) { � }
public void recycle () { � }
public � doSomething() { � }

}
� We want CleanResources that

� Recycle themselves when no longer used (become 
unreachable).

� At process exit if all else fails.
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False Start 1
� Derive CleanResource from Resource.
� Add

protected void finalize() { recycle(); }

� Call
System.runFinalizersonExit();
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False Start 1: Problem
� runFinalizersOnExit() is deprecated.
� � for good reasons.

� Resource.recycle() may refer to �permanent� data, 
directly or indirectly, e.g. to print to log file.

� It probably does, since it�s useless to update itself.
� It�s about to be garbage collected.

� Those static class members may have been finalized 
first. The log file may already be history.

� And daemon threads etc. may still be accessing objects 
that we just asked to be finalized.

� Finalizing reachable objects is bad.
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(Somewhat) False Start 2
� Observation: We need to explicitly control 

recycling at process termination.
� The only chance to get the ordering right.

� Add finalize() method as before.
� Add all live Resources to a static container all.
� Add recycleAll() method.

� Called explicitly during shutdown.
� Before cleanup of other resources needed by recycle.

� Recycles objects in all.
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A New Problem
� Better approach, but �

� Container all refers to all Resources.
� No Resource ever becomes unreachable.
� Nothing is ever finalized.

� We could attack this with WeakReference, but
� Not completely trivial.  (Referenced object unavailable.)
� Instructive to handle purely with finalize().
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A better approach
� Keep actual Resources in container all.
� A CleanResource is just an index into all.

public class CleanResource {
static ArrayList<Resource> all =

new ArrayList<Resource>();
static BitSet taken = new BitSet();
final int myIndex;
�

}
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The Constructor: (incorrect, closer)
public CleanResource( � x) {

Resource myResource = new Resource(x);
myIndex = taken.nextClearBit(0);

if (all.size() == myIndex)
all.add(myResource);

else {
assert all.get(myIndex) == null;
all.set(myIndex, myResource);

}
taken.set(myIndex);

}
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doSomething():  (incorrect, closer)

public long doSomething() {
Resource myImpl;
assert taken.get(myIndex);
myImpl = all.get(myIndex);
return myImpl.doSomething();

}
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Finalizer: (incorrect, closer)
protected void finalize() {
if (taken.get(myIndex)) {
all.get(myIndex).recycle();
all.set(myIndex, null);
taken.clear(myIndex);

}
}
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recycleAll(): (incorrect, closer)

public static void recycleAll() {
for (int i = 0; i < taken.length(); ++i)
if (taken.get(i)) {
all.get(i).recycle();
taken.clear(i);

}
}
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Problem: Concurrency
� If the client of CleanResource is multithreaded, we may 

get concurrent access to all data structure.
� This is currently unsafe.

� ArrayLists, Bitsets are not synchronized.
� It wouldn�t help if they were.

� Even if the client is single-threaded, finalizers run in their 
own thread.

� finalize() call may introduce concurrent access to all
data structure.

� Finalizers introduce concurrency.
� Synchronization required for �single-threaded� client!
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Solution: Synchronize access to all
� Use lock associated with all ArrayList to protect 

both all and taken vector.

� Wrap all accesses to combined data structure in

synchronized(all) { � }
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The Constructor: (final version)
public CleanResource( � x) {

Resource myResource = new Resource(x);
synchronized(all) {

myIndex = taken.nextClearBit(0);
if (all.size() == myIndex)

all.add(myResource);
else {

assert all.get(myIndex) == null;
all.set(myIndex, myResource);

}
taken.set(myIndex);

}
}
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doSomething():  (near final 
version)

public long doSomething() {
Resource myImpl;
synchronized(all) {
assert taken.get(myIndex);
myImpl = all.get(myIndex);

}
return myImpl.doSomething();

}
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Finalizer: (near final version)
protected void finalize() {

Resource myResource;
synchronized(all) {

if (!taken.get(myIndex)) return;
myResource = all.get(myIndex);
all.set(myIndex, null);
taken.clear(myIndex);

}
myResource.recycle();

}
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recycleAll():  (final version)
public static void recycleAll() {

for (int i = 0; i < taken.length(); ++i) 
{
Resource myResource;
synchronized(all) {

if (!taken.get(i)) continue;
myResource = all.get(i);
taken.clear(i);

}
myResource.recycle();

}
}
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Subtle Problem: Reachable?
� Finalizer may begin executing as soon as object is 

no longer reachable, i.e. GC could otherwise 
collect it.

� This may happen earlier than you think.
� In last call to CleanResource.doSomething(), 
this pointer is last accessed to retrieve myIndex.

�myIndex is final, can be read early.
� Register containing this may be reused at that point, 

making CleanResource instance no longer reachable.
�Resource.recycle() may run while 
Resource.doSomething() is still running.  Oops.
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Related Issue: Memory visibility
� Finalize() runs in different thread.
� Any updates to Resource being recycled should 

be visible to finalizer.
� Finalizer rules ensure only visibility of writes

� That happen-before the constructor finishes, or
� To the CleanResource itself.

� Need synchronization
� At end of ordinary methods.
� At beginning of finalizer.

� Synchronizing on all is insufficient, as it stands.
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Consequences of reachability & 
visibility issues
� Probably most existing code has problems in this 

area.
� Failure is unlikely.  Requires:

� Compiler elimination of dead variable.
� Register-based calling convention, no spills.
� GC at just the wrong point.

� But
� Really hard to debug.
� More likely on some platforms, e.g. X86-64 vs. X86.

� JSR133 provides mechanisms to avoid it.
� Not yet clear whether it went far enough.
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Reachability, visibility solutions
� We want something that

� Ensures reachability
� Synchronizes to create a happens-before relationship 

between ordinary methods and finalizer.
� Options provided by JSR133:

� Store into volatile field in ordinary method.
� Read field in finalizer.

� Store reference to object into volatile static, then 
immediately clear it.
� Read volatile static in finalizer.

� Release lock on object at end of ordinary method.
� Acquire lock at beginning of finalizer.
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Our reachability solution
� Define additional method:

synchronized void keepAlive() {}

� Call it at the end of any regular function that might 
be the last call on the object.

� Add to beginning of finalizer:

synchronized(this){}
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doSomething():  (final version)
public long doSomething() {
Resource myImpl;
long result;
synchronized(all) {
assert taken.get(myIndex);
myImpl = all.get(myIndex);

}
result = myImpl.doSomething();
keepAlive();
return result;

}
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Finalizer: (final version)
protected void finalize() {

synchronized(this){}
Resource myResource;
synchronized(all) {

if (!taken.get(myIndex)) return;
myResource = all.get(myIndex);
all.set(myIndex, null);
taken.clear(myIndex);

}
myResource.recycle();

}
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Finalization is Unordered
� Another potential finalization pitfall:
� If A refers to B, and both have finalizers:

� B may be finalized first.
� A�s finalizer should not use B without precautions.

� Otherwise it may see a finalized object.
� If B�s finalizer cleaned up native objects, A�s may dereference 

dangling native pointers.

� This applies if A�s finalizer needs C,
� Which needs D

� Which needs E
� Which needs B, which is finalizable
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� If A�s finalizer needs B:
� A�s constructor should ensure that B is added to static 

data structure S and hence not finalizable.
� A�s finalizer should remove B.

Enforcing ordering among finalizers

A: B:A:

S:
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Ordering alternative
� Use java.lang.ref.
� Put information needed for cleanup in reference, 

not in the object.
� Probably an easier discipline to follow.

� Fundamentally, it has the same effect.
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Summary
� Finalizers are:

� Often misunderstood, misused.
� Rarely needed.
� Occasionally extremely useful.

� Finalizers introduce concurrency.
� Synchronization is normally required.

� Finalizers risk deallocating resources still in use by 
executing methods of unreachable object.
� Can be addressed with synchronization.

� Finalize() methods that access other objects 
need to ensure finalization ordering.
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