
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice 

Finalizers, Threads, 
and the Java Memory 
Model

Hans-J. Boehm
HP Labs



Finalization, Threads, and the JMM 2

Agenda
Review of finalizers & java.lang.ref
Naïve Example
Finalizers introduce concurrency

Synchronize!

Finalizers can run earlier than you think!
Synchronize!

Java finalization is unordered
Summary



Finalization, Threads, and the JMM 3

Basics (finalize)
� Object.finalize()

� �called � when there are no more references to the 
object.�

� Intended for object clean-up.
� No promptness guarantee.

� May never be called.
� Used to reclaim resources (other than heap memory).



Finalization, Threads, and the JMM 4

Basics (java.lang.ref)
� java.lang.ref.{Phantom,Soft,Weak} 
Reference
� Enqueues �unreachable� objects.
� Can be used for cleanup.

� Or to introduce reference that doesn�t prevent GC.
� May provide better performance.
� Interface more flexible in some ways.
� Requires explicit queue, possibly separate thread.
� Threading more explicit.
� Issues similar to Object.finalize().

� At least for our purposes.
� We concentrate on finalize().



Finalization, Threads, and the JMM 5

Bad finalization advice 1
� Don�t try this at home:
� Add finalizers to help the garbage collector.

� The facts:
� If the finalizer is run, the GC already knows it�s 

unreachable.  It�s done the work.
� JVMs treat objects with default finalize() specially.
� Non-default finalize methods:

� add GC time and space overhead.
� may interact badly with generational GC.



Finalization, Threads, and the JMM 6

Finalization performance impact
� A quick experiment:

� GCBench: Large binary trees, small nodes:
� Add finalize() to all tree objects (clears fields).

� This is a ridiculous stress test.  Don�t do this.
� gcj compiled (non-generational GC), old X86 machine:

� Factor of about 7.3 slowdown.
� BEA JRockit1.5, Itanium 2 machine:

� Factor of about 11 slowdown.
� Sun J2SE 1.4.2 client/server, old X86, with increased memory:

� Operator error: insufficient patience.
� (Fast without finalization.)

� Pervasive finalization è substantial slowdown



Finalization, Threads, and the JMM 7

� It�s a replacement for C++ destructors.
� It�s completely useless.
� Avoid locking in finalizers.

� Let�s start with a clean slate.

Bad finalization advice 2



Finalization, Threads, and the JMM 8

What finalization is good for:
� Cleanup of non-memory resources for objects

� With hard to predict lifetimes.
� For which cleanup is not time-critical.

� If lifetimes are hard to predict:
� Cleanup usually isn�t time-critical.

� If clean-up is time critical:
� Use explicit dispose/close calls.



Finalization, Threads, and the JMM 9

Finalization guidelines
� If you can easily avoid finalization, do so.
� One finalize() method per 10K to 100K lines of 

code seems common in well-written code.
� Finalization is the only way you can use the 

collector�s knowledge about lifetime.
� If you need that, use finalization.
� If you don�t, don�t.

� Don�t rewrite the garbage collector to avoid 
finalization.

� If you do need it, avoid the pitfalls � 



Finalization, Threads, and the JMM 10

Review of finalizers & java.lang.ref
Naïve Example
Finalizers introduce concurrency

Synchronize!

Finalizers can run earlier than you think!
Synchronize!

Java finalization is unordered
Summary

Agenda



Finalization, Threads, and the JMM 11

Possible uses of finalizers
� Explicit deallocation of native objects.
� Deallocation of non-memory resources embedded deeply 

inside linked structures (e.g. file references.)
� Last ditch reclamation of dropped resources.

� Bug reporting.
� Esoteric error recovery?

� Removing external data associated with an object (e.g. in 
separate table).

� Guaranteed resource cleanup.
� At process termination, opportunistically earlier.
� E.g. temporary files.



Finalization, Threads, and the JMM 12

Problem with finalizer examples
� Small programs don�t need finalizers.

� For the same reason they don�t need garbage collectors.

� � and we�re only entitled to one after 10K lines of 
code J

� Thus this will have to be somewhat abstract.



Finalization, Threads, and the JMM 13

Example problem
� We have Resources:
class Resource
{

public Resource( � ) { � }
public void recycle () { � }
public � doSomething() { � }

}
� We want CleanResources that

� Recycle themselves when no longer used (become 
unreachable).

� At process exit if all else fails.



Finalization, Threads, and the JMM 14

False Start 1
� Derive CleanResource from Resource.
� Add

protected void finalize() { recycle(); }

� Call
System.runFinalizersonExit();



Finalization, Threads, and the JMM 15

False Start 1: Problem
� runFinalizersOnExit() is deprecated.
� � for good reasons.

� Resource.recycle() may refer to �permanent� data, 
directly or indirectly, e.g. to print to log file.

� It probably does, since it�s useless to update itself.
� It�s about to be garbage collected.

� Those static class members may have been finalized 
first. The log file may already be history.

� And daemon threads etc. may still be accessing objects 
that we just asked to be finalized.

� Finalizing reachable objects is bad.



Finalization, Threads, and the JMM 16

(Somewhat) False Start 2
� Observation: We need to explicitly control 

recycling at process termination.
� The only chance to get the ordering right.

� Add finalize() method as before.
� Add all live Resources to a static container all.
� Add recycleAll() method.

� Called explicitly during shutdown.
� Before cleanup of other resources needed by recycle.

� Recycles objects in all.



Finalization, Threads, and the JMM 17

A New Problem
� Better approach, but �

� Container all refers to all Resources.
� No Resource ever becomes unreachable.
� Nothing is ever finalized.

� We could attack this with WeakReference, but
� Not completely trivial.  (Referenced object unavailable.)
� Instructive to handle purely with finalize().



Finalization, Threads, and the JMM 18

A better approach
� Keep actual Resources in container all.
� A CleanResource is just an index into all.

public class CleanResource {
static ArrayList<Resource> all =

new ArrayList<Resource>();
static BitSet taken = new BitSet();
final int myIndex;
�

}



Finalization, Threads, and the JMM 19

The Constructor: (incorrect, closer)
public CleanResource( � x) {

Resource myResource = new Resource(x);
myIndex = taken.nextClearBit(0);

if (all.size() == myIndex)
all.add(myResource);

else {
assert all.get(myIndex) == null;
all.set(myIndex, myResource);

}
taken.set(myIndex);

}



Finalization, Threads, and the JMM 20

doSomething():  (incorrect, closer)

public long doSomething() {
Resource myImpl;
assert taken.get(myIndex);
myImpl = all.get(myIndex);
return myImpl.doSomething();

}



Finalization, Threads, and the JMM 21

Finalizer: (incorrect, closer)
protected void finalize() {
if (taken.get(myIndex)) {
all.get(myIndex).recycle();
all.set(myIndex, null);
taken.clear(myIndex);

}
}



Finalization, Threads, and the JMM 22

recycleAll(): (incorrect, closer)

public static void recycleAll() {
for (int i = 0; i < taken.length(); ++i)
if (taken.get(i)) {
all.get(i).recycle();
taken.clear(i);

}
}



Finalization, Threads, and the JMM 23

Agenda
Review of finalizers & java.lang.ref
Naïve Example
Finalizers introduce concurrency

Synchronize!

Finalizers can run earlier than you think!
Synchronize!

Java finalization is unordered
Summary



Finalization, Threads, and the JMM 24

Problem: Concurrency
� If the client of CleanResource is multithreaded, we may 

get concurrent access to all data structure.
� This is currently unsafe.

� ArrayLists, Bitsets are not synchronized.
� It wouldn�t help if they were.

� Even if the client is single-threaded, finalizers run in their 
own thread.

� finalize() call may introduce concurrent access to all
data structure.

� Finalizers introduce concurrency.
� Synchronization required for �single-threaded� client!



Finalization, Threads, and the JMM 25

Solution: Synchronize access to all
� Use lock associated with all ArrayList to protect 

both all and taken vector.

� Wrap all accesses to combined data structure in

synchronized(all) { � }



Finalization, Threads, and the JMM 26

The Constructor: (final version)
public CleanResource( � x) {

Resource myResource = new Resource(x);
synchronized(all) {

myIndex = taken.nextClearBit(0);
if (all.size() == myIndex)

all.add(myResource);
else {

assert all.get(myIndex) == null;
all.set(myIndex, myResource);

}
taken.set(myIndex);

}
}



Finalization, Threads, and the JMM 27

doSomething():  (near final 
version)

public long doSomething() {
Resource myImpl;
synchronized(all) {
assert taken.get(myIndex);
myImpl = all.get(myIndex);

}
return myImpl.doSomething();

}



Finalization, Threads, and the JMM 28

Finalizer: (near final version)
protected void finalize() {

Resource myResource;
synchronized(all) {

if (!taken.get(myIndex)) return;
myResource = all.get(myIndex);
all.set(myIndex, null);
taken.clear(myIndex);

}
myResource.recycle();

}



Finalization, Threads, and the JMM 29

recycleAll():  (final version)
public static void recycleAll() {

for (int i = 0; i < taken.length(); ++i) 
{
Resource myResource;
synchronized(all) {

if (!taken.get(i)) continue;
myResource = all.get(i);
taken.clear(i);

}
myResource.recycle();

}
}



Finalization, Threads, and the JMM 30

Agenda
Review of finalizers & java.lang.ref
Naïve Example
Finalizers introduce concurrency

Synchronize!

Finalizers can run earlier than you think!
Synchronize!

Java finalization is unordered
Summary



Finalization, Threads, and the JMM 31

Subtle Problem: Reachable?
� Finalizer may begin executing as soon as object is 

no longer reachable, i.e. GC could otherwise 
collect it.

� This may happen earlier than you think.
� In last call to CleanResource.doSomething(), 
this pointer is last accessed to retrieve myIndex.

�myIndex is final, can be read early.
� Register containing this may be reused at that point, 

making CleanResource instance no longer reachable.
�Resource.recycle() may run while 
Resource.doSomething() is still running.  Oops.



Finalization, Threads, and the JMM 32

Related Issue: Memory visibility
� Finalize() runs in different thread.
� Any updates to Resource being recycled should 

be visible to finalizer.
� Finalizer rules ensure only visibility of writes

� That happen-before the constructor finishes, or
� To the CleanResource itself.

� Need synchronization
� At end of ordinary methods.
� At beginning of finalizer.

� Synchronizing on all is insufficient, as it stands.



Finalization, Threads, and the JMM 33

Consequences of reachability & 
visibility issues
� Probably most existing code has problems in this 

area.
� Failure is unlikely.  Requires:

� Compiler elimination of dead variable.
� Register-based calling convention, no spills.
� GC at just the wrong point.

� But
� Really hard to debug.
� More likely on some platforms, e.g. X86-64 vs. X86.

� JSR133 provides mechanisms to avoid it.
� Not yet clear whether it went far enough.



Finalization, Threads, and the JMM 34

Reachability, visibility solutions
� We want something that

� Ensures reachability
� Synchronizes to create a happens-before relationship 

between ordinary methods and finalizer.
� Options provided by JSR133:

� Store into volatile field in ordinary method.
� Read field in finalizer.

� Store reference to object into volatile static, then 
immediately clear it.
� Read volatile static in finalizer.

� Release lock on object at end of ordinary method.
� Acquire lock at beginning of finalizer.



Finalization, Threads, and the JMM 35

Our reachability solution
� Define additional method:

synchronized void keepAlive() {}

� Call it at the end of any regular function that might 
be the last call on the object.

� Add to beginning of finalizer:

synchronized(this){}



Finalization, Threads, and the JMM 36

doSomething():  (final version)
public long doSomething() {
Resource myImpl;
long result;
synchronized(all) {
assert taken.get(myIndex);
myImpl = all.get(myIndex);

}
result = myImpl.doSomething();
keepAlive();
return result;

}



Finalization, Threads, and the JMM 37

Finalizer: (final version)
protected void finalize() {

synchronized(this){}
Resource myResource;
synchronized(all) {

if (!taken.get(myIndex)) return;
myResource = all.get(myIndex);
all.set(myIndex, null);
taken.clear(myIndex);

}
myResource.recycle();

}



Finalization, Threads, and the JMM 38

Finalization is Unordered
� Another potential finalization pitfall:
� If A refers to B, and both have finalizers:

� B may be finalized first.
� A�s finalizer should not use B without precautions.

� Otherwise it may see a finalized object.
� If B�s finalizer cleaned up native objects, A�s may dereference 

dangling native pointers.

� This applies if A�s finalizer needs C,
� Which needs D

� Which needs E
� Which needs B, which is finalizable



Finalization, Threads, and the JMM 39

Agenda
Review of finalizers & java.lang.ref
Naïve Example
Finalizers introduce concurrency

Synchronize!

Finalizers can run earlier than you think!
Synchronize!

Java finalization is unordered
Summary



Finalization, Threads, and the JMM 40

� If A�s finalizer needs B:
� A�s constructor should ensure that B is added to static 

data structure S and hence not finalizable.
� A�s finalizer should remove B.

Enforcing ordering among finalizers

A: B:A:

S:



Finalization, Threads, and the JMM 41

Ordering alternative
� Use java.lang.ref.
� Put information needed for cleanup in reference, 

not in the object.
� Probably an easier discipline to follow.

� Fundamentally, it has the same effect.



Finalization, Threads, and the JMM 42

Agenda
Review of finalizers & java.lang.ref
Naïve Example
Finalizers introduce concurrency

Synchronize!

Finalizers can run earlier than you think!
Synchronize!

Java finalization is unordered
Summary



Finalization, Threads, and the JMM 43

Summary
� Finalizers are:

� Often misunderstood, misused.
� Rarely needed.
� Occasionally extremely useful.

� Finalizers introduce concurrency.
� Synchronization is normally required.

� Finalizers risk deallocating resources still in use by 
executing methods of unreachable object.
� Can be addressed with synchronization.

� Finalize() methods that access other objects 
need to ensure finalization ordering.



Finalization, Threads, and the JMM 44

Acknowledgements, further info
� This is based on long discussions during the development 

of the JSR 133 spec.  Active participants in relevant 
discussions included Jeremy Manson and Bill Pugh, and 
many others.

� Some of the general observations about finalizers were 
made by Barry Hayes, more than 10 years ago.

� More details on finalization issues can be found in Boehm, 
�Destructors, Finalizers, and Synchronization�, POPL 
2003.

� For some mostly orthogonal advice about finalizers and 
inheritance (correct since JSR 133), see Joshua Bloch, 
�Effective Java�, chapter 2.


