
10/25/2010 1

Programming Language Memory

Models:

What do Shared Variables Mean?

Hans-J. Boehm

10/25/2010 2

Disclaimers:

• This is an overview talk.

• Much of this work was done by others or jointly. I’m
relying particularly on:
– Basic approach: Sarita Adve, Mark Hill, Ada 83 …

– JSR 133: Also Jeremy Manson, Bill Pugh, Doug Lea

– C++0x: Lawrence Crowl, Clark Nelson, Paul McKenney, Herb
Sutter, …

– Improved hardware models: Peter Sewell’s group, many Intel,
AMD, ARM, IBM participants …

– Conflict exception work: Ceze, Lucia, Qadeer, Strauss

– Recent Java Memory Model work: Sevcik, Aspinall, Cenciarelli

• But some of it is still controversial.
– This reflects my personal views.

10/25/2010 3

The problem

• Shared memory parallel programs are built on shared

variables visible to multiple threads of control.

• But there is a lot of confusion about what those variables

mean:

– Are concurrent accesses allowed?

– What is a concurrent access?

– When do updates become visible to other threads?

– Can an update be partially visible?

• Many recent efforts with serious technical issues:

– Java, OpenMP 3.0, UPC(?), Go happens-before consistency, …

10/25/2010 4

Outline

• Emerging consensus:
– Interleaving semantics (Sequential Consistency)

– But only for data-race-free programs

• Brief discussion of consequences
– Software requirements

– Hardware requirements

• Major remaining problem:
– Java can’t outlaw races.

– We don’t know how to give meaning to data races.

– Some speculative solutions.

10/25/2010 5

Naive threads programming model

(Sequential Consistency)

• Threads behave as though their memory

accesses were simply interleaved. (Sequential

consistency)

Thread 1 Thread 2

x = 1; y = 2;

z = 3;

– might be executed as

x = 1; y = 2; z = 3;

10/25/2010 6

Locks restrict interleavings

Thread 1 Thread 2

lock(l); lock(l);

r1 = x; r2 = x;
x = r1+1; x = r2+1;
unlock(l); unlock(l);

– can only be executed as

lock(l); r1 = x; x = r1+1; unlock(l); lock(l);
r2 = x; x = r2+1; unlock(l);

or

lock(l); r2 = x; x = r2+1; unlock(l); lock(l);
r1 = x; x = r1+1; unlock(l);

since second lock(l) must follow first unlock(l)

10/25/2010 7

Atomic sections / transactional memory are

just like a single global lock.

10/25/2010 8

But this doesn’t quite work …

• Limits reordering and other hardware/compiler

transformations

– “Dekker’s” example (everything initially zero) should

allow r1 = r2 = 0:

Thread 1 Thread 2

x = 1; y = 1;

r1 = y; r2 = x;

• Sensitive to memory access granularity:
Thread 1 Thread 2

x = 300; x = 100;

– may result in x = 356 with sequentially consistent byte accesses.

And we didn’t quite want that

anyway …
• Sensitive to memory access granularity:

Thread 1 Thread 2

x = 300; x = 100;

– may result in x = 356 with sequentially consistent byte accesses.

• And taking advantage of sequential consistency

involves reasoning about memory access

interleaving:

– Much too hard.

– Want to reason about larger “atomic” code regions

• which can’t be visibly interleaved.

09/08/2010 9

09/08/2010 10

Real threads programming model

(1)
• Two memory accesses conflict if they

– access the same scalar object*, e.g. variable.

– at least one access is a store.

– E.g. x = 1; and r2 = x; conflict

• Two ordinary memory accesses participate in a data
race if they
– conflict, and

– can occur simultaneously

• i.e. appear as adjacent operations in interleaving.

• A program is data-race-free (on a particular input) if no
sequentially consistent execution results in a data race.

* or contiguous sequence of bit-fields

09/08/2010 11

Real threads programming model

(2)

• Sequential consistency only for data-race-

free programs!

– Avoid anything else.

• Data races are prevented by

– locks (or atomic sections) to restrict

interleaving

– declaring synchronization variables

• (next slide …)

10/25/2010 12

Synchronization variables

• Java: volatile, java.util.concurrent.atomic.

• C++0x: atomic<int>

• C++0x, C1x: _Atomic(int), _Atomic int?
atomic_int?

• Guarantee indivisibility of operations.

• “Don’t count” in determining whether there is a data race:
– Programs with “races” on synchronization variables are still

sequentially consistent.

– Though there may be “escapes” (Java, C++0x, not discussed
here).

• Dekker’s algorithm “just works” with synchronization
variables.

10/25/2010 13

Data Races Revisited

• Are defined in terms of sequentially

consistent executions.

• If x and y are initially zero, this does not

have a data race:
Thread 1 Thread 2

if (x) if (y)

y = 1; x = 1;

SC for DRF programming model

advantages over SC

• Supports important hardware & compiler optimizations.

• DRF restriction  Synchronization-free code sections

appear to execute atomically, i.e. without visible

interleaving.

– If one didn’t:

a = 1;

b = 1;

if (a == 1 && b == 0) {

…
}

Thread 1 (not atomic): Thread 2(observer):

09/08/2010 14

10/25/2010 15

Basic Implementation model

• Very restricted reordering of memory operations

around synchronization operations:

– Compiler either understands these, or treats them as

opaque, potentially updating any location.

– Synchronization operations include instructions to

limit or prevent hardware reordering (“memory

fences”).

• Other reordering is invisible:

– Only racy programs can tell.

10/25/2010 16

Some variants

C++ draft (C++0x)

C draft (C1x)

SC for DRF*,

Data races are errors

Java SC for DRF**,

More details later.

Ada83+, Posix threads SC for drf (sort of)

OpenMP, Fortran 2008 SC for drf

(except atomics, sort of)

.Net Getting there, we hope 

* Except explicitly specified memory ordering. ** Except some j.u.c.atomic.

10/25/2010 17

Outline

• Emerging consensus:
– Interleaving semantics (Sequential Consistency)

– But only for data-race-free programs

• Brief discussion of consequences
– Software requirements

– Hardware requirements

• Major remaining problem:
– Java can’t outlaw races.

– We don’t know how to give meaning to data races.

– Some speculative solutions.

10/25/2010 1818

Compilers must not introduce data

races

• Single thread compilers currently may add
data races: (PLDI 05)

– x.a = 1 in parallel with x.b = 1 may fail to
update x.b.

• … and much more interesting examples.

• Still broken in gcc in subtle cases.

struct {char a; char b} x;
tmp = x;

tmp.a = „z‟;

x = tmp;
x.a = „z‟;

19

Language spec challenge:

• Some really awful code:

x = 42;

m.lock();

while (m.trylock()==SUCCESS)

m.unlock();

assert (x == 42);

Thread 1: Thread 2:

• Disclaimer: Example requires

tweaking to be pthreads-

compliant.

Don’t try this at home!!

• Can the assertion fail?

• Many implementations: Yes

• Traditional specs: No. C++0x: Yes

• Trylock() can effectively fail spuriously!

?

09/08/2010 19

10/25/2010 20

Outline

• Emerging consensus:
– Interleaving semantics (Sequential Consistency)

– But only for data-race-free programs

• Brief discussion of consequences
– Software requirements

– Hardware requirements

• Major remaining problem:
– Java can’t outlaw races.

– We don’t know how to give meaning to data races.

– Some speculative solutions.

10/25/2010 21

Byte store instructions

• x.c = „a‟; may not visibly read and

rewrite adjacent fields.

• Byte stores must be implemented with

– Byte store instruction, or

– Atomic read-modify-write.

• Typically expensive on multiprocessors.

• Often cheaply implementable on uniprocessors.

10/25/2010 22

Sequential consistency must be

enforceable

• Programs using only synchronization variables
must be sequentially consistent.

• Compiler literature contains many papers on
enforcing sequential consistency by adding
fences. But:
– Not really possible on Itanium.

– Wasn’t possible on X86 until the re-revision of the
spec last year.

– Took months of discussions with PowerPC architects
to conclude it’s (barely, sort of) possible there.

• The core issue is “write atomicity”:

10/25/2010 2323

Can fences enforce SC?

Thread 1:

x = 1;

Unclear that hardware fences can ensure sequential

consistency. “IRIW” example:

x, y initially zero. Fences between every instruction pair!

Thread 3:

y = 1;

Thread 2:

r1 = x; (1)

fence;

r2 = y; (0)

Thread 4:

r3 = y; (1)

fence;

r4 = x; (0)

x set first! y set first!

Fully fenced, not sequentially consistent. Does hardware allow it?

10/25/2010 24

Why does it matter?

• Nobody cares about IRIW!?

• It’s a pain to enforce on at least PowerPC.

• Many people (Sarita Adve, Doug Lea,
Vijay Saraswat) spent about a year trying
to relax SC requirement here.

• (Personal opinion) The results were
incomprehensible, and broke more
important code.

• No viable alternatives!

Acceptable hardware memory

models
• More challenging requirements:

1. Precise memory model specification

2. Byte stores

3. Cheap mechanism to enforce write atomicity

4. Dirt cheap mechanism to enforce data

dependency ordering(?) (Java final fields)

• Other than that, all standard approaches

appear workable, but …

10/25/2010 25

10/25/2010 26

Replace fences completely?

Synchronization variables on X86

• atomic store: ~1 cycle dozens of cycles

– store (mov); mfence;

• atomic load: ~1 cycle

– load (mov)

• Store implicitly ensures that prior memory

operations become visible before store.

• Load implicitly ensures that subsequent memory

operations become visible later.

• Sole reason for mfence: Order atomic store

followed by atomic load.

10/25/2010 27

Fence enforces all kinds of

additional, unobservable orderings

• s is a synchronization variable:

x = 1;

s = 2; // includes fence

r1 = y;

• Prevents reordering of x = 1 and r1 = y;

– final load delayed until assignment to a visible.

• But this ordering is invisible to non-racing threads

– …and expensive to enforce?

• We need a tiny fraction of mfence functionality.

10/25/2010 28

Outline

• Emerging consensus:
– Interleaving semantics (Sequential Consistency)

– But only for data-race-free programs

• Brief discussion of consequences
– Software requirements

– Hardware requirements

• Major remaining problem:
– Java can’t outlaw races.

– We don’t know how to give meaning to data races.

– Some speculative solutions.

10/25/2010 29

Data Races in Java

• C++0x leaves data race semantics

undefined.

– “catch fire” semantics

• Java supports sand-boxed code.

• Don’t know how to prevent data-races in

sand-boxed, malicious code.

• Java must provide some guarantees in the

presence of data races.

10/25/2010 30

Interesting data race outcome?

r1 = x;

y = r1;

Thread 1:

r2 = y;

x = r2;

x, y initially null,

Loads may or may not see racing stores?

Thread 2:

Outcome: x = y = r1 = r2 =
“<your bank password here>”

The Java Solution

…

Quotation from 17.4.8, Java Language Specification, 3rd

edition, omitted, to avoid possible copyright questions. The

important point is that this is a rather complex mathematical

specification.

Complicated, but nice properties?

• Manson, Pugh, Adve: The Java Memory

Model, POPL 05

Quotation from section 9.1.2 of above paper omitted, to avoid

possible copyright questions. This asserts (Theorem 1) that

non-conflicting operations may be reordered by a compiler.

Much nicer than prior attempts, but:

• Aspinall, Sevcik, “Java Memory Model Examples: Good,
Bad, and Ugly”, VAMP 2007 (also ECOOP 2008 paper)

Note 1: This does not necessarily mean implementations are broken, or that

we know how to do better. It does suggest this is too complicated.

Note 2: The underlying observation is due to Pietro Cenciarelli.

Quotation from above paper omitted, to avoid possible

copyright questions. This ends in the statement:

“This falsifies Theorem 1 of [paper from previous slide].”

10/25/2010 34

Why is this hard?

• Want

– Constrained race semantics for essential

security properties.

– Unconstrained race semantics to support

compiler and hardware optimizations.

– Simplicity.

• No known good resolution.

10/25/2010 35

Outline

• Emerging consensus:
– Interleaving semantics (Sequential Consistency)

– But only for data-race-free programs

• Brief discussion of consequences
– Software requirements

– Hardware requirements

• Major remaining problem:
– Java can’t outlaw races.

– We don’t know how to give meaning to data races.

– Some speculative solutions.

10/25/2010 36

A Different Approach

• Outlaw data races.

• Require violations to be detectable!

– Even in malicious sand-boxed code.

• Possible approaches:

– Statically prevent data races.

• Tried repeatedly, ongoing work …

– Dynamically detect the relevant data races.

10/25/2010 37

Dynamic Race Detection

• Need to guarantee one of:
– Program is data-race free and provides SC execution (done),

– Program contains a data race and raises an exception, or

– Program exhibits simple semantics anyway, e.g.

• Sequentially consistent

• Synchronization-free regions are atomic

• This is significantly cheaper than fully accurate data-race
detection.
– Track byte-level R/W information

– Mostly in cache

– As opposed to epoch number + thread id per byte

10/25/2010 38

For more information:

• Boehm, “Threads Basics”, HPL TR 2009-259.

• Boehm, Adve, “Foundations of the C++ Concurrency Memory
Model”, PLDI 08.

• Sevcık and Aspinall, “On Validity of Program Transformations in the
Java Memory Model”, ECOOP 08.

• Sewell et al, “x86-TSO: A Rigorous and Usable Programmer’s
Model for x86”, CACM, July 2010.

• S. V. Adve, Boehm, “Memory Models: A Case for Rethinking Parallel
Languages and Hardware”, CACM, August 2010.

• Lucia, Strauss, Ceze, Qadeer, Boehm, "Conflict Exceptions:
Providing Simple Parallel Language Semantics with Precise
Hardware Exceptions, ISCA 2010.

10/25/2010 39

Questions?

10/25/2010 40

Backup slides

10/25/2010 4141

Introducing Races (2)

int count; // global, possibly shared

…

for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++count;

int count; // global, possibly shared

…

reg = count;

for (p = q; p != 0; p = p -> next)

if (p -> data > 0) ++reg;

count = reg; // may spuriously assign to count

10/25/2010 4242

Trylock:

Critical section reordering?
• Reordering of memory operations with respect to critical

sections:

Expected (& Java): Naïve pthreads: Optimized pthreads

unlock()

lock()

unlock()

lock()

unlock()

lock()

10/25/2010 4343

Some open source pthread lock

implementations (2006):

unlock()

lock()

unlock()

lock()

unlock()

lock()

[technically incorrect]

NPTL

{Alpha, PowerPC}

{mutex, spin}

[Correct, slow]

NPTL

Itanium (&X86)

mutex

[Correct]

NPTL

{ Itanium, X86 }

spin

unlock()

[Incorrect]

FreeBSD

Itanium

spin

lock()lock() lock()

unlock() unlock()

lock() lock()

unlock() unlock() unlock() unlock()

lock() lock()

unlock() unlock()

lock() lock()

