-inalization should noft
e based on

-eachability

Hans-J. Boehm
HP Labs

(This benefited from discussions with Mike Spertus and others.)

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice




The real problem with finalization

- “Live” objects may be unreachable and hence
finalized.

Last call on object, tinalizer cleans up
external_state:

foo ()

{

int 1 = this.my_index;

manipulate external_state[1];

nnnnnn




I No painless solutions o

Applies also to “weak references”, it those can be
used to detect reachability.

Has nothing to do with object resurrection, etc.

Eliminating tinalization means that user may have
to duplicate GC work, e.g. for

distributed GC

“native” object management

“WeakHashMap”-like field addition



Three “conventional” solutions

The “C++ destructor” solution
Outlaw “dead” variable elimination.

Expensive (?), since (unlike C++ destructors) it seems to affect all
pointer variables.

Finalize only at “safe” points.
Used by some Scheme Guardian implementations?

Multithreaded version seems ugly, inconvenient.
We don’t know how to fix it.

Programmer inserts explicit “keepAlive()” calls after
external state reference.

Java 6 solution. Ugly, but workable.

nnnnnn



nnnnnn

A ditterent (?) approach

Look at the last alternative differently.
And tweak it a bit.

An object A may be finalized anytime atter the last call to
its keepAlive() method.

.. not counting calls enabled by the call of As finalize method.

The implementation continues to be based on GC-
determined reachability,
It it's unreachable | can’t call keepAlive() on it.

In fact, keepAlive() only needs to extend live range.
No instructions generated (except possibly register spills).
But the programmer should not think in those terms.



Revised (roughly like Java 6)

- Last call on object, tinalizer cleans up
external_state:

foo()
{

int 1 = this.my_index;

manipulate external_state[i];
keepAlive();

nnnnnn




nnnnnn

Advantages
Straighttorward description.
No implementation cost unless finalizers are used.

No need to define “reachability” for a language like Java.

Finalizer ordering is handled implicitly.

If A references B and needs it for finalization, A’s finalizer will call
B’s method, which calls B.keepAlive().

Can test by running finalizers asap?
Checkpoint at keepAlive calls.



Known issues:

Existing code breaks.
But most of it was wrong anyway.
KeepAlive calls are hard to avoid.

Unordered finalization breaks(?)
Good riddance.

Doesn’t handle common WeakHashMap uses.

WeakHashMap without removal detection(?)
“Applying” the map is the only interesting allowed operation.
If key is reclaimed, entry can be transparently removed.

nnnnnn



