
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Finalization should not
be based on
reachability

Hans-J. Boehm
HP Labs
(This benefited from discussions with Mike Spertus and others.)

The real problem with finalization

� �Live� objects may be unreachable and hence
finalized.
Last call on object, finalizer cleans up
external_state:
foo()

{

int i = this.my_index;

�

manipulate external_state[i];

}

GC occurs here.

�this� is dead.

External_state
finalized early.

No painless solutions
� Applies also to �weak references�, if those can be

used to detect reachability.
� Has nothing to do with object resurrection, etc.
� Eliminating finalization means that user may have

to duplicate GC work, e.g. for
� distributed GC
� �native� object management
� �WeakHashMap�-like field addition

Three �conventional� solutions
� The �C++ destructor� solution

� Outlaw �dead� variable elimination.
� Expensive (?), since (unlike C++ destructors) it seems to affect all

pointer variables.

� Finalize only at �safe� points.
� Used by some Scheme Guardian implementations?
� Multithreaded version seems ugly, inconvenient.
� We don�t know how to fix it.

� Programmer inserts explicit �keepAlive()� calls after
external state reference.
� Java 6 solution. Ugly, but workable.

A different (?) approach
� Look at the last alternative differently.

� And tweak it a bit.

� An object A may be finalized anytime after the last call to
its keepAlive() method.
� � not counting calls enabled by the call of As finalize method.

� The implementation continues to be based on GC-
determined reachability,
� If it�s unreachable I can�t call keepAlive() on it.
� In fact, keepAlive() only needs to extend live range.

� No instructions generated (except possibly register spills).
� But the programmer should not think in those terms.

Revised (roughly like Java 6)

� Last call on object, finalizer cleans up
external_state:

foo()

{

int i = this.my_index;

�

manipulate external_state[i];

keepAlive();

}

GC occurs here.

Programmer:
keepAlive() call
possible.

GC: �this� is
live.

No premature
finalization.

Advantages
� Straightforward description.
� No implementation cost unless finalizers are used.
� No need to define �reachability� for a language like Java.
� Finalizer ordering is handled implicitly.

� If A references B and needs it for finalization, A�s finalizer will call
B�s method, which calls B.keepAlive().

� Can test by running finalizers asap?
� Checkpoint at keepAlive calls.

Known issues:
� Existing code breaks.

� But most of it was wrong anyway.
� KeepAlive calls are hard to avoid.

� Unordered finalization breaks(?)
� Good riddance.

� Doesn�t handle common WeakHashMap uses.
� WeakHashMap without removal detection(?)

� �Applying� the map is the only interesting allowed operation.
� If key is reclaimed, entry can be transparently removed.

