
Memory Model for
Multithreaded C++

Hans-J. Boehm
HP Labs

Other participants:
Andrei Alexandrescu, Peter Buhr, Kevlin Henney, Ben

Hutchings, Doug Lea, Maged Michael, Bill Pugh

Motivation
Multithreaded programming is critically
important:

For dealing with multiple event streams.
The old reason.

Because everything will be a multiprocessor,
and there is often no other way to utilize it.

Background

The status quo:
C++ standard doesn't mention threads.
Threads added via libraries (e.g. pthreads).
Compiler mostly unaware of threads.
Synchronization calls treated as opaque.
Almost works if there are no unprotected
concurrent accesses (data races).

Compiler transformations safe for single
thread.
Safe in locked regions.
Safe without shared variables.

Kinds of failures
Compiler introduces data races, i.e.
concurrent writes.

Overwriting of adjacent fields, array
elements or variables.
Speculative memory references.

Speculative register promotion in loops.
Common optimization.
Completely unsafe with threads.
Rare, but unpredictable failures.

Optimizations that assume termination.

Example 1
struct {char a; char b; char c; char d;} x;

-- initialized to zeroes

Thread 1

++x.a;
++x.b;
++x.c;
/ / x = x + 0x10101;

Thread 2

++x.d;

x.d can still be zero!

Example 1, contd.
Language standards allow this implementation.

Deal only with single-threaded semantics.
In the case of bit-fields, it's unavoidable.
Pthreads allows it even for independent global variables.

Thread (pthread) standard intentionally doesn't address issue.
Leave transformations between locking primitives up to sequential
compiler.

Result: Unexpected concurrent writes (races).
No way to protect against them.
Adjacent memory overwrites are not the only problem.

Example 2
Before:

for (...) {
if (mt) lock();
use x;
if (mt) unlock();

}

After:

r = x;
for (...) {
if (mt) {
x = r;
lock();
r = x;

}
use r;
if (mt) ...

}
x = r;

Example 3
Before:

for (x = y;
x != 0;
x = x->next)

c++;
z = 1;

After:

z = 1;
for (x = y;

x != 0;
x = x->next)

c++;

Uncommon on this form. But common compiler analyses
assume this is legal.

The solution
Language standard has to either

Define precisely what language constructs mean in
the presence of threads, or
Define precisely when races may occur, and
disallow them.
Question: Which one?

The Java solution
Java supports "sandboxed" execution of
untrusted code.
Cannot leave semantics of data races
undefined.

Cannot prevent data races in malicious
code.
Secure code must guard against them.

Even type-safety requires a lot of this.
Not currently an issue for C++ (?)

Currently preferred solution

Define precisely when data races occur.
A C++ program contains a data race if a
naive sequentially consistent execution
contains a data race.
A store to a bit field is treated as a store to
all adjacent bit fields.
No other implicit stores are allowed.
Concurrent modifications using "special"
atomic primitives are not a race.
Race-free programs have sequentially
consistent semantics; o.w. undefined.

Some consequences
Multiprocessor architectures not supporting
efficient atomic byte stores will perform
badly. (There aren't any?)
Uniprocessors may need to use restartable
atomic sequences.
Speculative register promotion across
function calls is disallowed.
Combination of field writes is largely
disallowed.
Movement across potentially nonterminating
loops is mostly disallowed.

Example 4: Wrong, but common

Double-checked locking:

bool is_initialized;
if (!is_initialized) {

lock();
if (!is_initialized) {

<initialize x>;
is_initialized = true;

}
unlock(); }

<use x>;

Secondary issue: volatile

Should volatile references qualify as
"special atomic" primitives?
I.e. should we allow races involving only
volatile accesses?
Pro:

Makes volatile useful for threads.
Makes it easier to fix existing code

"double checked locking" pattern.
Gives real meaning to volatile.

Currently many variations, even on IA64.
Consistency with Java.

Volatile, contd.
Cons:

Assignments to a volatile often more
expensive than strictly needed.

DCL initialization path.
Too strong for some existing applications.

At least those with explicit memory
barriers.

Secondary issue: Function scope statics

Current problem:
int f() { static foo x(17); ... }
Introduces hidden "is initialized" flag.
Implicit potential race on flag.

Options:
Compiler adds synchronization.

Unexpected overhead.
Usually useless? Details messy.

Leave synchronization to programmer.
Subtle correctness problems.

Deprecate? Alternatives?

Other issues
We need an atomic operations library.

Not all architectures support e.g. CAS.
Emulation or feature tests? Both?

Asynchronous signal support?
Can/should we standardize thread library
itself.

Compromise:
Standardize only a high level facility.

e.g. futures.

