Memory Model for
Multithreaded C++

Hans-J. Boehm
HP Labs

Other participants:
Andrei Alexandrescu, Peter Buhr, Kevlin Henney, Ben
Hutchings, Doug Lea, Maged Michael, Bill Pugh



Motivation

*Multithreaded programming is critically
important:
‘For dealing with multiple event streams.
-The old reason.
-Because everything will be a multiprocessotr,
-and there is often no other way to utilize it.



Background

-The status quo:
-C++ standard doesn't mention threads.
-Threads added via libraries (e.g. pthreads).
-Compiler mostly unaware of threads.
-Synchronization calls treated as opaque.
-Almost works if there are no unprotected
concurrent accesses (data races).
-Compiler transformations safe for single
thread.
-Safe in locked regions.
-Safe without shared variables.



Kinds of failures

-Compiler introduces data races, i.e.
concurrent writes.
-Overwriting of adjacent fields, array
elements or variables.
-Speculative memory references.
-Speculative register promotion in loops.
-Common optimization.
-Completely unsafe with threads.
-Rare, but unpredictable failures.
-Optimizations that assume termination.



Example 1

struct {char a; char b; char c; char d;} x;
-- Initialized to zeroes

Thread 1 Thread 2
++X.a; ++x.d;
++X.b;

++X.C:

/[l x = x + 0x10101;

x.d can still be zero!



Example 1, contd.

* Language standards allow this implementation.
° Deal only with single-threaded semantics.
*In the case of bit-fields, it's unavoidable.
* Pthreads allows it even for independent global variables.
* Thread (pthread) standard intentionally doesn't address issue.
* Leave transformations between locking primitives up to sequential
compiler.
* Result: Unexpected concurrent writes (races).
°*No way to protect against them.
* Adjacent memory overwrites are not the only problem.



Example 2

-Before:

for (...)

if (mt) lock();

use Xx;

if (mt) unlock();

}

{

- After:

r = X;
for (...) {
if (mt) {



Example 3

-Before:
for (x = y;
x 1= 0;
X = x->next)
c++;
z = 1;

- After:
z = 1;
for (x = y;
x != 0,
X = xX->next)
c++;

Uncommon on this form. But common compiler analyses

assume this is legal.



The solution

‘Language standard has to either
*Define precisely what language constructs mean in
the presence of threads, or
*Define precisely when races may occur, and
disallow them.
*Question: Which one?



The Java solution

-Java supports "sandboxed" execution of
untrusted code.
-Cannot leave semantics of data races
undefined.
-Cannot prevent data races in malicious
code.
-Secure code must guard against them.
-Even type-safety requires a lot of this.
‘Not currently an issue for C++ (?)



Currently preferred solution

-Define precisely when data races occur.

A C++ program contains a data race if a
naive sequentially consistent execution
contains a data race.

- A store to a bit field is treated as a store to
all adjacent bit fields.

*No other implicit stores are allowed.

-Concurrent modifications using "special”
atomic primitives are not a race.

-Race-free programs have sequentially
consistent semantics; o.w. undefined.



Some consequences

-Multiprocessor architectures not supporting
efficient atomic byte stores will perform
badly. (There aren’'t any?)

-Uniprocessors may nheed to use restartable
atomic sequences.

-Speculative register promotion across
function calls is disallowed.

-Combination of field writes is largely
disallowed.

‘Movement across potentially nonterminating
loops is mostly disallowed.



Example 4: Wrong, but common

Double-checked locking:

bool is initialized;
if ('is_initialized) {
lock () ;
if ('is_initialized) {
<initialize x>;
i1s initialized = true;
}
unlock (); }
<use x>;



Secondary issue: volatile

-Should volatile references qualify as
"special atomic” primitives?
‘l.e. should we allow races involving only
volatile accesses?
Pro:
-Makes volatile useful for threads.
-Makes it easier to fix existing code
-"double checked locking" pattern.
-Gives real meaning to volatile.
-Currently many variations, even on |A64.
-Consistency with Java.



Volatile, contd.

-Cons:
-Assighments to a volatile often more
expensive than strictly needed.
-DCL initialization path.
-Too strong for some existing applications.
- At least those with explicit memory
barriers.



Secondary issue: Function scope statics

-Current problem:
‘int £() { static foo x(17); ... }
‘Introduces hidden "is initialized" flag.
-Implicit potential race on flag.
-Options:
-Compiler adds synchronization.
-Unexpected overhead.
-Usually useless? Details messy.
-Leave synchronization to programmer.
-Subtle correctness problems.
-Deprecate? Alternatives?



Other issues

-We need an atomic operations library.
-Not all architectures support e.g. CAS.
-Emulation or feature tests? Both?
-Asynchronous signhal support?
-Can/should we standardize thread library
itself.
-Compromise:
-Standardize only a high level facility.
-e.g. futures.



