
Mismatch Patterns and Adaptation Aspects:
A Foundation for Rapid Development

of Web Service Adapters
Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Member, IEEE,

Boualem Benatallah, Fabio Casati, and Régis Saint-Paul, Member, IEEE

Abstract—Standardization in Web services simplifies integration. However, it does not remove the need for adapters due to possible

heterogeneity among service interfaces and protocols. In this paper, we characterize the problem of Web services adaptation focusing

on business interfaces and protocols adapters. Our study shows that many of the differences between business interfaces and

protocols are recurring. We introduce mismatch patterns to capture these recurring differences and to provide solutions to resolve

them. We leverage mismatch patterns for service adaptation with two approaches: by developing stand-alone adapters and via service

modification. We then dig into the notion of adaptation aspects that, following aspect-oriented programming paradigm and service

modification approach, allow for rapid development of adapters. We present a study showing that it is a preferable approach in many

cases. The proposed approach is implemented in a proof-of-concept prototype tool, and evaluated using both qualitative and

quantitative methods.

Index Terms—Web services adaptation, mismatch patterns, business protocols, aspect-oriented programming.

Ç

1 INTRODUCTION

APPLICATION integration has been one of the main drivers

in the software market during the late 1990s and into

the new millennium. The typical approach to integration

and to process automation is based on the use of adapters

[39]. Adapters wrap the various applications (which are, in

general, heterogeneous, e.g., have different interfaces, speak

different protocols, and support different data formats) so
that they can appear as homogeneous and, therefore, easier

to be integrated.
Web services were born as a solution to (or at least as a

simplification of) the integration problem [2]. The main

benefit they bring is that of standardization. Standardiza-

tion reduces heterogeneity and makes it easier to develop

business logic that integrates different (Web service-based)

applications. The possible interactions that a Web service

can support are specified at design time, using what is

called a business protocol [6]. A business protocol specifies

message exchange sequences that are supported by the
service, for example, expressed in terms of constraints in the
order in which service operations should be invoked.

While standardization simplifies interoperability, it does
not remove the need for adapters [31]. In fact, although the
lower levels of the interaction stacks (e.g., messaging) are
standardized, at the higher levels (e.g., business-level
interfaces and protocols) what have been standardized are
languages (e.g., WSDL and BPEL) for their definition, not the
specific interfaces or protocols [2], [31]. The result is that
services that are functionally similar may have heteroge-
neous interface and protocol specifications. For example,
although different map or driving direction services
support XML and use SOAP over HTTP as transport
mechanism, they may provide operations that have
different names, different parameters, and different busi-
ness protocols.

In general, there are two ways to approach the
adaptation problem: either we develop a third service that
mediates the interactions between the two incompatible
services (we call it a stand-alone adapter), or we modify one
of the services to make it compatible with the other. This
paper presents a method and a platform for Web services
adaptation. In particular, we make the following novel
contributions, some of which extend our previous work [5],
[29] in this area:

. We study and characterize the problem of adapta-
tion by identifying and classifying different kinds
of adaptation scenarios in Web services, focusing
on the interface and business protocol levels. Our
study shows that many of the differences between
interface and protocol specifications are in fact
recurring. Therefore, we propose an adaptation
methodology by introducing mismatch patterns to

94 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

. W. Kongdenfha is with the School of Computer Science and Engineering,
University of New South Wales Campus, Room 427, K17, Sydney,
NSW 2052, Australia. E-mail: woralakk@cse.unsw.edu.au.

. H.R. Motahari-Nezhad is with HP Labs, 1501 Page Mill Rd., MS 1182,
Palo Alto, CA 94304. E-mail: hamid.motahari@hp.com.

. B. Benatallah is with the School of Computer Science and Engineering,
University of New South Wales (UNSW) Campus, Room 407, L17,
Sydney, NSW 2052, Australia. E-mail: boualem@cse.unsw.edu.au.

. F. Casati is with the Department of Information and Communication
Technologies, University of Trento, Sommarive st. 14, Povo, 38100 Trento,
Italy. E-mail: fabio.casati@dit.unitn.it.

. R. Saint-Paul is with CREATE-NET, Via alla Cascata 56/D, Povo, 38100
Trento, Italy. E-mail: regis.saint-paul@create-net.org.

Manuscript received 11 Mar. 2008; revised 4 Dec. 2008; accepted 2 May 2009;
published online 14 May 2009.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-03-0035.
Digital Object Identifier no. 10.1109/TSC.2009.12.

1939-1374/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

capture and formalize these recurring differences.
Patterns help adapter developers in identifying the
actual differences between interface and protocol
specifications and in resolving them. Among other
information, patterns include a template of adapta-
tion logic that resolves the captured mismatch.
Developers can instantiate the proposed templates
to develop adapters.

. We discuss situations in which modification of the
service is preferable to the development of stand-
alone adapters. We motivate why in particular an
aspect-oriented approach can be leveraged, by
generating adaptation logic in the form of adaptation
aspects woven into the runtime instances of the
adapted service. We present an aspect-oriented
language for the formulation of mismatch patterns
and in particular for specifying the adaptation
template of each pattern.

. We present the implementation of our approach in a
tool that helps adapter developers in the semiauto-
matic generation and deployment of adaptation
logic. Our implementation supports the browsing
and updating of an extensible library of built-in
mismatch patterns that assist users in the generation
of adaptation logic. The tool allows to develop both
aspect-oriented and stand-alone adapters.

With respect to our previous work [5], [29], this paper
makes the following extensions and contributions:

1. we discuss stand-alone versus aspect-oriented ap-
proach for adaptation and provide guidelines to
help developers to decide on situations in which
each of the approaches is preferable,

2. we provide a more comprehensive description of
aspect-oriented service adaptation,

3. we characterize mismatch patterns and adaptation
templates using aspect-oriented approach for
adaptation,

4. we present the usage, the implementation, which is
only sketched in previous work with an earlier version
of the tool [29], and the evaluation of this approach.

The paper is organized as follows: In Section 2, we
identify common mismatches between service interfaces
and protocols, and propose mismatch patterns for char-
acterizing these mismatches and for adapter development.
In Section 3, we propose an aspect-oriented language for
adapter specification through service modification. In
Section 4, we use the proposed framework to represent
the identified mismatches as built-in patterns. Section 5
presents the implementation and the evaluation of the
prototype tool, describes how adapter developers can use it
through a case study, and presents a comparative study
between main approaches for developing adaptation logic.
Finally, we discuss related work in Section 6, and conclude
and present future work in Section 7.

2 MISMATCH PATTERNS FOR WEB SERVICES

ADAPTER DEVELOPMENT

In this section, we propose a methodology for adapter
development by providing a classification of common

mismatches between service interfaces and business proto-
cols, and introducing mismatch patterns. The intended
benefit of this work is to identify possible mismatches
between Web services interface and protocol specifications,
and to help programmers develop adapters by assisting
them through a methodology and semiautomated code
development, starting from the interface and protocol
definitions. The adapters have the goal of making a service
Sr, characterized by interface Ir and protocol Pr, “look like”
(interact as) another service S that has interface I and
protocol P , so that Sr can then interact with any client that S
can interact with.

2.1 Common Mismatches Between Web Service
Specifications

Our analysis of the real-world Web services interfaces and
protocols shows that many differences between them are
recurring. Examples of services in our study include
Mappoint,1 Arcweb,2 Google Checkout,3 XWebCheckout,4 Ama-
zon Web Service,5 Amazon Ecommerce Service,6 PayPal Web
Service,7 and PaymentExpress Web Service.8 In the following,
we characterize these common mismatches (see [5] for
details).

2.1.1 Interface-Level Mismatches

To characterize mismatches at this level, we use, as a
concrete example, Mappoint and Arcweb route Web services.
Both offer similar functionalities for finding driving routes
between two locations but through different WSDL inter-
faces (operations CalculateRoute and findRoute, respec-
tively). We identify two types of mismatches that are
recurring at the level of service interfaces:

Signature mismatch. This type of mismatch concerns the
differences that occur when two services with interfaces I
and Ir have operations that have the same functionality but
differ in operation names, number, order, or type of input/
output parameters. In the route web services example, the
operation CalculateRoute of Mappoint requires one input
parameter called Specification whose type is SegmentSpe-
cification. The operation findRoute of ArcWeb requires two
parameters: routeStops and routeFinderOptions whose
types are RouteStops and RouteFinderOptions, respec-
tively. Hence, there is a signature mismatch between the
two services.

Parameter constraint mismatch. This mismatch occurs
when the operation O of interface I imposes constraints on
input parameters, which are less restrictive than those of Or

input parameter in Ir (e.g., differences in value ranges).

2.1.2 Protocol-Level Mismatches

We use the following example from supply chain domain to
illustrate mismatches at this level. Assume that protocol Pr
of service Sr expects to exchange messages in the following
order: clients can invoke login, then getCatalogue to receive

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 95

1. www.microsoft.com/mappoint/.
2. www.esri.com/software/arcwebservices.
3. code.google.com/apis/checkout.
4. www.xwebservices.com/Web_Services/XWeb-CheckOut.
5. soap.amazon.com/schemas2/Amazon-WebServices.wsdl.
6. webservices.amazon.com/AWSE-CommerceService.
7. www.paypal.com/wsdl/PayPalSvc.wsdl.
8. www.paymentexpress.com/WS/-PXWS.asmx?WSDL.

the catalogue of products including shipping options and
preferences (e.g., delivery dates), followed by submitOrder,
sendShippingPreferences, issueInvoice, and makePayment

operations. In contrast, protocol P of the client allows the
following sequence of operations: login, getCatalogue,
submitOrder, issueInvoice, makePayment, and sendShip-
pingPreferences. This is because service Sr does not charge
differently according to the shipping preferences. There-
fore, clients are allowed to specify their shipping prefer-
ences at a final step. We characterize the following
mismatches at the service protocol level:

Ordering mismatch. This type of mismatch occurs when
protocols P and Pr support the same messages but in
different orders.

Extra message mismatch. This mismatch occurs when
protocol Pr sends a message that protocol P does not send.
In the example above, assume that protocol Pr sends an
acknowledgment after receiving message issueInvoiceIn,
but protocol P does not produce it.

Missing message mismatch. This mismatch occurs when
protocol Pr does not issue a message specified in the protocol
P . Consider the opposite case of the previous example.

One-to-many message mismatch. This mismatch occurs
when protocol P specifies a single message to achieve a
functionality, while protocol Pr requires several messages
for the same functionality. Suppose that protocol P requires
to receive the purchase order as well as shipping prefer-
ences in one message called submitOrderIn, while protocol
Pr needs two separate messages for this purpose, namely,
sendShippingPreferencesIn and submitOrderIn.

Many-to-one message mismatch. This mismatch occurs
when protocol P specifies several messages to achieve a
functionality, while protocol Pr requires only one message
for the same functionality. It is the opposite case of the
previous example.

In the following, we propose the concept of mismatch
patterns to formalize these differences and also to provide
solutions to resolve such recurring problems.

2.2 Mismatch Patterns

Mismatch pattern is a similar notion to that of design pattern
in software engineering [23]. Mismatch patterns provide a
simple and effective abstraction for capturing and resolving
differences: besides capturing differences, a mismatch
pattern contains the description of an adapter (called
adapter template) used to resolve that type of captured
mismatch. Adapter templates should be instantiated to
resolve mismatches for a given pair of services. Indeed,
patterns can be used both as guidelines for developers in
developing adapters and as input to a tool that generates
the adapter code. Table 1 summarizes the structure of a
mismatch pattern.

A mismatch pattern has a name, a mismatch type part that
provides a description of the mismatch that is captured,
adapter template, template parameters, and a sample usage. The
adapter template is parametric (parameters are part of
template parameters field): to instantiate it for a given pair of
interfaces or protocols, the developer needs to provide the
template parameters. These are used to generate the
adaptation logic from the template. The developer may

then use directly the generated adaptation or further
customize it with additional business logic.

The exact specification of adaptation aspect depends on
the adapter development approach. In the next section, we
present formalisms for the specification of adapter templates.
By providing adapter templates for each pattern accompa-
nied with their sample usage and the support for adapter
template instantiation in a prototype tool, our approach
offers a platform for rapid development of adapters.

3 ASPECT-ORIENTED SERVICE ADAPTATION

To enable interaction of a service with its partner, one may
modify the business logic of the service (e.g., to rewrite the
BPEL code). In this case, the adaptation logic is tangled with
the business logic. This code tangling makes it difficult to
maintain and modify the business logic. When the business
logic further evolves, e.g., for business reason or to interact
with yet another partner, the developer needs to clean the
adaptation logic previously added before modifying the
business logic itself. This solution may be acceptable when
the service needs to interact with only one partner.
However, if we have to enable interactions with many
incompatible partners, it would mean creating many
versions of the service implementation. In this case, when
a change at the business logic level is required, it has to be
replicated in all the versions. This makes evolution
expensive and error-prone.

From our perspective, it is important to separate the
adaptation logic from the business logic. We also argue that
adaptation can be seen as a cross-cutting concern, i.e., it is
from the developer and project architecture point of view
transversal to the other functional concerns of the service.
Hence, adaptation logic should be captured in a separate
module, called adapter, from the business logic. In a
nutshell, two approaches can be adopted for adapter
development: stand-alone and aspect-oriented adapters.
Our framework enables both stand-alone and aspect-
oriented approaches for adapter code generation based on
adapter templates. However, in this paper, we focus on the
use of the aspect-oriented approach for adapter develop-
ment. The details of developing stand-alone adapters can be
found in [5]. We compare these two approaches for adapter
development in Section 5.2.2.

Aspect-Oriented Programming (AOP) is a technique that
allows the separation of concerns in software development,

96 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

TABLE 1
The Structure of a Mismatch Pattern

making it possible to modularize cross-cutting concerns of a
system [27], [22]. As we consider the adaptation logic as a
cross-cutting concern, we propose an aspect-oriented
approach for Web service adaptation. In this case, each
mismatch pattern consists of a template, called aspect
template, which is specified by a collection of hquery,
advicei pairs, discussed in the following. When instan-
tiated, the aspect template generates a collection of
adaptation aspects that will be woven into the service at
runtime. This approach is illustrated in Fig. 1, in which
adaptation aspects AS1; AS2, and AS3 are integrated as
extensions to a running instance of service Sr to enable its
interaction with service S.

Adapters perform activities such as receiving messages,
storing messages, transforming message data, and invoking
service operations. These tasks can be very well modeled by
process-centric service composition languages such as
BPEL. We choose BPEL for defining the adapter template.
Hereafter, we detail the structure of aspect templates, a
collection of hquery, advicei pairs.

Advice. An advice defines the adaptation logic for
resolving the difference captured by a mismatch pattern.
It requires parameters (e.g., a transformation function to
mediate the difference between operation signatures) that
are used to generate an adaptation code skeleton from the
template. As mentioned before, BPEL provides notations
and concepts that are appropriate for the adaptation
specification and implementation. We chose it as the
language to express adaptation advices.

To describe how adaptation logic can be modeled and
implemented using aspect-oriented approach, we present
the Ordering Constraint Pattern (OCP) in Table 2. This
pattern is accompanied with an aspect template consisting
of two hquery, advicei pairs. The first advice, namely
OCPStore, comprises of two actions that are used to resolve
a mismatch occurs when a message msgOp is sent from
service S, but service Sr does not expect it at this state.
OCPStore, therefore, receives and stores message msgOp for
later use. When the process execution reaches operation Osr

j ,
OCPForward assigns the value of message msgOp to
message msgOsr

j to enable the execution of the operation
Osr
j . The exact locations, where these adaptation advices

need to be executed, are defined in the query section of the
template, and is discussed in the following.

Query. A query expresses a process execution point, also
known as joinpoint in the context of AOP [27], [22], where a
set of actions defined in the advice section of the template
will be executed to mediate the differences between services
(e.g., when such a message is received, or when a message
comes from a business partner, etc.) In general, there are
two main approaches for joinpoint expression in the context

of AOP [22]. The first approach consists in the expression of
joinpoints only on the service code constructs. The second
approach consists in directly expressing joinpoints on not
only service code but also runtime execution context.

In the context of service adaptation, we have observed
that the requirement of the query language for expressing
joinpoints is not only limited to the identification of service
code, but also on the actual messages exchanged with the
client, and, in general, by the runtime execution context. To
illustrate this requirement, consider the example of the
supply chain scenario introduced in Section 2. Assume that
the service Sr allows two different interaction paths with
either unregistered (as described in Section 2) or registered
clients. The interaction path for registered clients is as
follows: after submitting an order, process Sr allows
registered clients to send messages issueInvoice and
makePayment, respectively. A client does not need to
resend message sendShippingPreferences as it has already
been provided and stored in the system when the client
made the registration the first time. In this example, an
ordering mismatch between service Sr and its client only
happens when the client takes the unregistered interaction
path, otherwise the two services are compatible. Thus, it is
the choice of interaction path that triggers the adaptation
need. This example shows that in the service adaptation
context, the query language needs to be able to express
conditions on the runtime context, i.e., by how the service is
actually used by a client or how it is executed.

Intuitively, for the purpose of service adaptation, we
expect the query language to be able to identify 1) opera-
tions (with or without a certain signature) to enable the
resolution of interface-level mismatches, and 2) interaction
paths (that are or are not presented in a protocol) to enable
the handling of protocol-level mismatches. The latter means
that the query language must be able to discriminate
between the various execution paths that lead to or follow
an activity of the service. In both cases, what is done is the
identification of a BPEL activity where adaptation is
needed, e.g., the activity where a signature mismatch
occurs, or the first activity of a sequence that does not have
any correspondence at the protocol level in the client.

Since we assume that services are implemented in BPEL,
a query language that operates on BPEL code such as
BPQL [4] could be a choice. However, using a query
language that focuses on the identification of code
constructs would force us to include, as part of the advice,
some code to evaluate those runtime conditions. Hence, the
approach that expresses runtime conditions directly in the

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 97

Fig. 1. Adaptation aspects AS1; AS2, and AS3 for enabling service

interoperability.

TABLE 2
Ordering Constraint Mismatch Pattern (OCP)

query language has been preferred. This is because it
groups together all advice execution conditions in the
query and frees the advice code from any runtime
conditions, and thus results in a more readable code and
advices that are more generic.

We, therefore, propose a joinpoint query language that
can express the need of adaptation advices on the service
code, as well as runtime execution context. We assume that
services are implemented in BPEL, though the concepts and
requirements are independent of the specific process
language adopted. The query language is, therefore,
designed specifically to BPEL constructs. Fig. 2 presents
the syntax of our proposed query language that satisfies the
above requirements. This query language allows the
definition of joinpoints on the BPEL code constructs, such
as operation, portType, etc.

While it shares some common characteristics with query
languages that operate at the code level such as BPQL, the
main differences are as follows: 1) It can express conditions
on service interaction paths and 2) it includes keywords for
specifying the relative location of the joinpoint to the BPEL
activity that matches the specified conditions (i.e., the before,
after, or around keywords). These concepts are needed to
achieve a self-contained query language able to express all
the conditions necessary for identifying joinpoints in the
adaptation context.

As shown in Fig. 2, the query takes parameters (param)
that correspond to BPEL constructs (i.e., operation, input
variable, output variable, partnerLink, and portType), or an
execution path (i.e., a sequence of previously exchanged
messages). These parameters are matched against some
conditions (context object) at runtime to identify joinpoints
where adaptation advices should be executed. The exe-

cutes statement specifies whether the execution of
adaptation advice should be performed before, after, or
around (i.e., in place of) a BPEL activity that matches the
joinpoint query.

Consider again the supply chain example, in which the
OCP shown in Table 2 is used to solve its ordering
mismatch. In this case, the OCPStore needs to be executed
before the receive activity of operation sendShippingPrefer-
ence to receive and store the message issueInvoiceIn, which
is not expected at this state. As mentioned before that the
ordering mismatch only occurs when a specific interaction
path (unregistered) is taken; hence, the query parameters of
the OCPStore in this example are <operation>=sendShip-
pingPreferences and <executionPath>=unregistered. These

parameters will be evaluated, at runtime, against the
currently executing operation (Osr

i) and the execution path
(Si) of the adapting service.

Fig. 3 shows a sample usage of OCP at runtime. Before
the process executes the receive activity of operation
sendShippingPreferences, OCPStore receives message is-
sueInvoice and stores it in a temporary variable Invoice.
After the completion of OCPStore, the process continues to
execute the receive activity of operation sendShippingPre-
ferences. When the message issueInvoice is required by the
Sr, the OCPForward takes its value from variable Invoice.
OCPForward is executed around (instead of) the receive
activity of operation issueInvoice. Hence, after the comple-
tion of OCPForward, the process continues other activities
without performing the receive activity of operation issueIn-

voice. This is because the message issueInvoiceIn has
already been received earlier.

Deployment of adaptation aspects. The above discussion
considers only the query language syntax, not the actual
deployment of the solution. Choosing a query language that
incorporates runtime conditions also allows for aspect
weaving done either at compile time or at runtime. In the
compile-time deployment model, a new BPEL code would be
generated with advices preceded by runtime conditions. In a
runtime deployment model, a specially modified query
engine is required to evaluate runtime conditions based on
the execution context it maintains, leaving the original code
unmodified. While both models are viable, the first one
(compile time) imposes to incorporate some additional logic
in the advices. This logic is not the part of adaptation logic,
but it is required to maintain information regarding the
service’s execution context (e.g., the interaction pattern taken
by the client). We, therefore, chose the second (runtime)
deployment model which, in addition to its greater simpli-
city, also allows dynamically plugging and unplugging
adaptation aspects. The query engine for this deployment
model is presented in Section 5.

4 CHARACTERIZATION AND RESOLUTION

OF COMMON INTERFACE AND

PROTOCOL-LEVEL MISMATCHES

In this section, we use the proposed framework for
mismatch pattern representation to capture solutions for
the common mismatches between Web service specifica-
tions, identified in Section 2.1. We particularly focus on the

98 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

Fig. 2. Semiformal syntax for query language.
Fig. 3. Sample usage of the aspect template specified in the OCP.

aspect-oriented approach for adapter development and use
the language proposed in Section 3. However, due to space
limitation, in this section, we only discuss three mismatch
patterns in detail: Signature Mismatch Pattern (SMP),
Missing Message Pattern (MMP), and One-to-Many Pat-
tern (OMP). Readers can refer to [28] for the discussion on
other patterns.

4.1 Signature Mismatch Pattern

This pattern is used to handle a signature mismatch. It
consists of two parts, i.e., SMPInput and SMPOutput, as
shown in Table 3. SMPInput intercepts an incoming
message msgOp from a client with protocol P , then uses a
transformation function hT i to transform the data type of
message msgOp into a data type required by message
msgOsr of protocol Pr. Similar actions are specified in
SMPOutput to resolve mismatches on the outgoing mes-
sages of the service.

To instantiate the aspect template of SMP, the developer
provides inputType (respectively, outputType) as query
parameter and XQuery/XSLT transformation functions as
advice parameters to SMPInput (respectively, SMPOutput).
In the route Web services example described in Section 2,
SMPInput takes CalculateRouteType as its query input and
two transformation functions TransformStops and Trans-
formOptions as advice inputs. These functions are respon-
sible for actually transforming the data types of the
message parameters.

Fig. 4 presents a sample usage of SMP at runtime.
SMPInput first intercepts an incoming message CalculateR-
outeIn of operation CalculateRoute specified by protocol P ,
then computes the values of routeStops and routeFinderOp-
tions (i.e., input parameters of the operation findRoute) from
the value of the parameter Specification, via XQuery
transformation functions. After the message findRouteIn
has been created, the SMPInput replies it to our system. It
should be emphasized that, in general, our system passes
data being sent or received by the current joinpoint activity
(i.e., a messaging activity such as receive, reply, invoke) to
the corresponding advices and vice versa (as explained in
Section 5.1). In this case, our system passes the findRouteIn
message of the SMPInput advice to the input variable of the
receive activity as specified by protocol Pr such that service
Sr can continue. Similar actions are specified in the
SMPOutput to resolve mismatches on the outgoing mes-
sages of service Sr.

4.2 Missing Message Pattern

This pattern is used to solve the missing message mismatch.
As shown in Table 4, MMP generates a messagemsgOp, after
the receive activity of operation Osr of service Sr. This
message is then sent to service S according to protocol P . The
message generation is expressed by an XQuery function.

Fig. 5 shows a sample usage of MMP. After the receive
activity of operation issueInvoice, MMP generates message
InvoiceAcknowledgement and sends it to the client. This
InvoiceAcknowledgement message requires the variable
purchase order POVar of service Sr in its generation. The
user needs to provide an XQuery function GenerateInvoice-
Ack to be used to generate the message InvoiceAcknowl-

edgement from the variable POVar.
As we have described in Section 4.1 that, in general, our

system passes the data being sent or received by the current
joinpoint activity (i.e., a messaging activity) to the corre-
sponding advices. However, it is also possible to pass to
advices some additional contextual information, such as the
internal execution data of service Sr, and a list of messages
being sent or received by service Sr, which is maintained by

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 99

TABLE 3
Signature Mismatch Pattern (SMP)

Fig. 4. Sample usage of SMP.

TABLE 4
Missing Message Pattern (MMP)

Fig. 5. Sample usage of MMP.

our system. For example, the variable POVar may not be
part of message currently exchanged. Rather it is either an
internal variable of the service Sr, or a part of a message
previously sent or received by service Sr. In the latter case,
both stand-alone adapter and aspect-oriented approaches
are possible to generate the message InvoiceAcknowledge-
ment since the stand-alone adapters can keep track of
messages exchanged between two processes, and the
adaptation advices can access the list of exchanged
messages maintained by our system. However, if this
purchase order number is an internal information of service
Sr, the message InvoiceAcknowledgement can only be
generated when the pattern is implemented using the
aspect-oriented approach.

4.3 One-to-Many Pattern

This pattern is used to resolve the one-to-many mismatch.
As shown in Table 5, OMP receives a single message and
splits it into a set of messages.

OMP consists of a OMPSplit and a set of OMPForward.
OMPSplit intercepts an incoming message msgOp from a
client with protocol P , then uses it to generate message
msgOsr

i required by service Sr. OMPSplit also splits
message msgOp into a set of messages MSGOsr and stores
them. The generation of message msgOsr

i and MSGOsr are
expressed by XQuery functions. Afterwards, the generated
message msgOsr

i is sent back to process Sr, while messages
MSGOsr will be individually used, when needed, by
OMPForward to create messages required by a set of
operations Osr

j . The number of OMPForward, to be
instantiated, depends on the number of operations that
require information from msgOp.

Fig. 6 shows a sample usage of OMP at runtime.
OMPSplit first intercepts message submitOrderIn, then
generates input messages of the operations submitOrder
and sendShippingPreferences of service Sr from the
submitOrderIn message, using XQuery transformation func-
tions provided by the user, namely SplitShipping and
SplitOrder. The message submitOrderIn is sent back to the
service Sr, while the message sendShippingPreferencesIn is
stored in the advice. When the message sendShippingPre-
ferences is required by the service Sr, i.e., during the receive
activity of the operation sendShippingPreferences, OMP-
Forward sends the message sendShippingPreferencesIn to
service Sr.

In this section, we have presented a repository of

mismatch patterns and described how they can be

instantiated to handle the differences that each of them

capture. We also provide a prototype tool to support the

developer during the development and deployment of the

adaptation logic. The prototype is discussed in more details

in the next section.

5 IMPLEMENTATION AND EVALUATION

In this section, we discuss the prototype implementation

and the evaluation results.

5.1 Implementation

The approach for adapter development proposed in this

paper has been implemented in a prototype tool that consists

of two components depicted in Fig. 7: 1) pattern-based

mismatch identification, and 2) adaptation code generation.

The pattern-based mismatch identification component in-

corporates a tool for managing a collection of mismatch

patterns (i.e., taxonomy of mismatches and their adaptation).

Users can add, modify, or remove mismatch patterns to

evolve the library. Web service protocols are handled by a

100 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

TABLE 5
One-to-Many Mismatch Pattern (OMP)

Fig. 6. Sample usage of OMP.

Fig. 7. The architecture of mismatch patterns-based adapter

development.

protocol editor which has been implemented as part of the
prototype. The adaptation code generation component
allows managing mismatch patterns and generating both
stand-alone and aspect-oriented adaptation logic. The stand-
alone adapter approach has been presented in our previous
work [5], [32]. In this paper, we focus on the implementation
of the aspect-oriented approach.

The aspect-oriented adapter code generation component
relies on a set of advice templates which are implemented
using XQuery templates. To instantiate adaptation advices,
users need to provide parameters to the advice templates,
i.e., XQuery functions. Once instantiated, advice templates
are used to generate the adaptation advices in terms of
BPEL files which are deployed as Web services. While
instantiating each adaptation advice, users also specify the
process execution point (joinpoints) where the advice needs
to be executed. Joinpoints are specified in terms of queries
on the process code. Both the joinpoint queries and their
corresponding advice for each of the mismatch are
described in a single file called the Aspect Definition
Document (ADD). An example of ADD document for the
route web service example is shown in Fig. 8. It consists of a
set of mismatch elements, SMPInput and SMPOutput. The
mismatch element SMPInput specifies that a joinpoint is
matched before a receive activity if the incoming message has
input type CalculateRouteType. At this joinpoint, an advice
named RouteReqSMPInput is executed. Note that in this
example, it is possible that different operations in the
process receive messages of the same type. For example,
operations findRoute and Distance, which expect message
of type findRouteType, receive messages CalculateRoute-
Type. In this case, receive activity of both the operations are
matched by our query. The advice RouteReqSMPInput can
be reused to solve mismatches at both joinpoints.

When several mismatches need to be addressed at the
same joinpoint, the order by which the advices are executed
corresponds to the order specified by the user. For example,
suppose that two distinct adaptation advices from SMPIn-
put template, namely SMPStop and SMPFinder, are used to
transform the parameter Specification of message Calcula-
teRouteIn into the parameters routeStop and routeFinder-
Option of message findRouteIn. These two advices need to
be executed at the same joinpoint, i.e., when a message of
type CalculateRouteType arrives. The order in which these
two advices are executed is important since if the advice
SMPFinder is applied before advice SMPStop, the inter-
mediate message resulted from applying a transformation
specified in SMPFinder on the Specification may not have
the right structure to be transformed by SMPStop. In fact,
the ordering of advices yields naturally from the way

mismatch patterns are used at design time: In this example,
the user would first apply the SMPStop transformation and
then, on the basis of the transformed message, apply the
second transformation SMPFinder. The ADD document
preserves this ordering by the order in which advices are
specified in the document. At runtime, our aspect-enabled
BPEL engine interprets the ADD document to decide if
advices need to be executed at a given joinpoint and, if so,
in which order.

In our prototype, the aspect-enabled BPEL engine has
been developed by extending the ActiveBPEL9 engine with
an aspect manager. The aspect manager is responsible to
check before and after the execution of each activity of a
business process if an adaptation advice needs to be
executed. The aspect manager is implemented using
AspectJ10 and itself woven with the ActiveBPEL code. This
enables the aspect manager to access execution data of the
business processes (step (i) in Fig. 9). We collect contextual
information of each activity executed by the engine such as
activity name, activity type, partner links, port types, operation
names, and variable names. For messaging activities, i.e.,
receive, reply, and invoke, the aspect manager also collects the
context of messages sent and received by the activities.
Specifically, the aspect manager collects the type of
messages, which corresponds to their qualified names as
specified in WSDL file, as well as the name and value of
parameters within the messages.

The aspect manager stores the execution information in an
internal data structure and uses this information to check if
there is a joinpoint defined on the activity currently being
executed by the engine. To this end, the aspect manager
matches the execution information against the query defini-
tions presented in the ADD document (step (ii) in Fig. 9).
When a match is found, the aspect manager loads the
corresponding advice as specified in the ADD document
(step (iii) in Fig. 9). Finally, after the completion of the
adaptation advice, the BPEL engine resumes the normal
process execution (step (iv) in Fig. 9). Consider the ADD
document in Fig. 8. When an activity is executed, the aspect
manager looks at the collected contextual information and

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 101

9. www.activebpel.org.
10. www.eclipse.org/aspectj.

Fig. 8. An Aspect Definition Document (ADD).

Fig. 9. The deployment of adaptation aspects at runtime.

checks against the specified queries to identify if the activity
type is receive, and the incoming message has type Calcula-
teRouteType. If it is the case, this activity is matched and thus
a corresponding advice is executed. The execution of advices
is performed by the BPEL engine. To do so, the aspect
manager adds advice activities to the process execution
queue, thus they will be executed as if they were regular
activities of the process itself.

5.2 Evaluation

To illustrate the usage of the proposed approach, we
explain a case study in which we have used our prototyped
implementation to develop adapters in a real-world inter-
action scenario. We then provide both qualitative and
quantitative evaluations of our approach. The qualitative
evaluation is based on a comparative study between stand-
alone and aspect-oriented adapter development ap-
proaches, while the quantitative evaluation is based on
the adoption of the CK metrics [14] to compare the aspect-
oriented and code-modification approaches.

5.2.1 Use Case

We evaluated the proposed approach using a real-world
scenario. Consider a service Sr implemented following
RosettaNet PIP 3A4 specification and another service S that
has been implemented following SAP R/3 specification
(scenario taken from [1]). These two services provide
similar APIs for purchase order management. However,
there are differences in the interface definition (message
names, parameter numbers, and types) and in how they
exchange messages to fulfill a functionality. For example,
Fig. 10a shows the protocols of the two services for placing
an order. RosettaNet protocol specifies that: the service
expects to receive a message PurchaseOrderRequest (as
shown by a -PurchaseOrderRequest), then sends a message
PurchaseOrderAck (as shown by +PurchaseOrderAck) as
an acknowledgement to its client. Upon completion of the
purchase order operation, the customer receives a message
PurchaseOrderResponse and then sends a message Re-
sponseAck as its acknowledgement to the supplier. On the
other hand, the SAP protocol specifies that the service
expects to receive a message ORDERS05, and then sends a
message ORDRSP as its response.

The following details how a developer can use our tool to
develop an adapter for the aforementioned two services:

Step 1: Mismatches identification. The mismatch
pattern taxonomy acts as a knowledge base, suggesting
possible mismatches between the interfaces and protocols

of the two services to adapt and helping the developer in
identifying actual mismatches. In the case study, the
developer consults our pattern taxonomy and finds that
there are two signature mismatches between messages
PurchaseOrderRequest and ORDERS05 (Fig. 10b) as well
as messages PurchaseOrderResponse and ORDRSP. The
developer also finds that there is an extra message
(PurchaseOrderAck) and a missing message mismatches
(ResponseAck) between the two services.

Step 2: Instantiation of Adaptation Templates. In the
case study, the developer adopts the aspect-oriented adapta-
tion approach and instantiates four templates (i.e., SMPIn-
put, SMPOutput, EMP, and MMP) to resolve the mismatches
mentioned above. Due to space limitation, we cannot discuss
all instantiation scenarios. Instead, we discuss in detail the
instantiation of POReqSMPInput. The reader can refer to [28]
for further information. For now, let us consider the XQuery
template for SMPInput as shown in Fig. 11. To instantiate
this template, the developer needs to provide a transforma-
tion function TransformPO to the variable transform of the
SMPInput template. Transformation functions can be
authored using third party software (e.g., Microsoft Biztalk,
IBM Websphere Integration Developer). These tools provide
effective schema mapping functionalities that can be used for
this purpose. In our case study, we use the IBM Websphere
Integration Developer. The result of an instantiation is a
BPEL process POReqSMPInput that can be deployed to solve
the mismatch.

After instantiation of the adaptation advices, the devel-
oper needs to create a deployment logic (i.e., ADD
document specifying how the advices are integrated with
the existing service). The ADD document for this case study
can be specified similarly to that shown in Fig. 8.

When all the necessary documents have been created, the
developer can deploy them to solve mismatches. By the
notion of adaptation template, the developers’ task is reduced
from the creation of adaptation logic from scratch to that of
instantiating predefined patterns. In conclusion, our proto-
type tool supports the adapter developer to rapidly develop
Web service adapters. The main task of the developer is to
identify the mismatches and instantiate their corresponding
templates. The tool then automatically generates the adapta-
tion logic and deploy it to mediate the differences.

5.2.2 Qualitative Evaluation

Fig. 12 presents a schematic comparison of the stand-alone
and aspect-oriented approaches for adapter development, in
cases where a service Sr with protocol Pr has to be adapted

102 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

Fig. 10. Service descriptions of SAP R/3 and RosettaNet PIP 34A:

(a) business protocols and (b) message details. Fig. 11. Aspect template for SMPInput.

to n client services, with heterogeneous protocols P1; . . . ; Pn.
In the stand-alone adapter approach, n adapters, one per
each client, have to be developed to make the interactions
possible according to protocol Pr. On the other hand, in
aspect-oriented approach, the runtime instance that is
formed for interacting with each client has to be modified
with respective adaptation aspects. Each of these two
approaches has characteristics that make them suitable for
certain situations. In the following, we review each of them.

Aspect-oriented service adaptation. An aspect-oriented
approach to adaptation presents several characteristics that
make it preferable for the development of adaptation code
compared to stand-alone adapters. In particular, using
aspect-oriented approach to realize adapter templates for
mismatch patterns further expedites rapid adapter devel-
opment in our approach. This is because there is no need for
a new service (as is the case in separate process and stand-
alone adapter) to be developed, rather instances of the
existing service are updated at runtime. Other character-
istics are discussed as follows:

Context-aware service adaptation: The intertwining of
adaptation aspects inside a service allows the aspects to
access internal state and variables of the service. This
increases the possibility of service adaptations that require
contextual information of the service, e.g., a message
generation that requires internal variables of the service as
discussed in Section 4.2. Note that the patterns are generic
and reusable, while the instantiation of patterns is specific
and allows to incorporate contextual information as the
input parameters of the pattern.

Recovery: The adaptation aspects share execution context
of the adapting service. When an error occurs, the recovery
can be performed by analyzing the internal state of the
service. This is easier than handling exceptions of two
separate processes (i.e., adapter and service), which would
require correlation of log entries.

Reusability: The aspect-oriented approach promotes reu-
sability of adaptation code when many execution points
require the same adaptation logic, e.g., any operation that
receives messages of a specific type can reuse the same
aspect for message transformations. There is no need to
generate individual adaptation logic for each single
message as is the case of the stand-alone adapter. Conse-
quently, the number of adaptation logic needed to be
generated is reduced.

Separation of concerns: The aspect-oriented approach
cleanly separates the adaptation concern from the service
functionality. The service developers are oblivious to the

adaptation concern since they do not need to write gluecode
between adaptation logic and service implementation (as is
the case in the stand-alone adapter in which gluecode
appear in several places in the service code). The study in
[24], [25] also shows that implementing adapters using AOP
can better separate the adaptation concern from the
functionality of the base programs.

Stand-alone service adaptation. A stand-alone adapter
is implemented as a complete single business process
comprising a set of adaptation activities. The interdepen-
dencies between these activities are well-defined (compar-
ing to aspect-oriented approach), and thus simplify the
understandability.

Trade-offs. In some cases, the intended adaptation
scenarios need to be taken into account when selecting the
adapter development approaches. These characteristics and
situations are discussed as follows:

Overhead: We consider overhead as the time spent by the
adapters in performing activities that are not part of the
adaptation logic. This characteristic depends on the
intended adaptation scenarios, specifically the number of
messages that requires adaptation. When such a number is
small, the aspect-oriented approach is preferable. This is
because the adaptation aspects will be invoked only for
those messages that require adaptation, while all messages
need to pass through the stand-alone adapter even if no
adaptation is needed. However, aspect-oriented approach
introduces overhead for every single message to check if an
adaptation is required. Hence, when the number of
mismatches is large relative to the total number of
messages, the stand-alone adapter approach might be
reasonable.

Maintainability: In the context of service adaptation, we
consider maintainability as the impact of changes in the
service implementation on the adaptation logic. The impact
of changes is spread over multiple aspects comprising the
adaptation logic, while it is in one place in the case of stand-
alone adapters. However, in the aspect-oriented approach,
the developer can update the adaptation logic by dynami-
cally plug/unplug the aspects, without interrupting the
service interactions (as is the case of stand-alone adapters
that need to be suspended and updated).

To conclude, the aspect-oriented adaptation is preferable
when developers consider the importance of reusability,
relative possible number of mismatches to be resolved,
recovery, and separation of concerns. On the other hand,
when considering the understandability of adaptation logic,
the developers may consider the use of stand-alone adapters.
In the other case, the intended adaptation scenarios need to
be taken into consideration. In cases, when the relative
number of mismatches is large, the stand-alone adapter
approach is reasonable. However, when we require access to
service implementation and runtime environment, and the
relative number of mismatches is small, the aspect-oriented
approach is preferable for service adaptation development.

5.2.3 Quantitative Evaluation

To provide a quantitative evaluation of our approach, we
have created a BPEL process for a supply chain service with
60 activities. We considered four different interaction
scenarios between this process and its partners:

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 103

Fig. 12. Schematic comparison of adaptation in stand-alone and aspect-

oriented approaches: (a) service instances 1; . . . ; n are the same;

(b) service instances 1; . . . ;n are modified with respective adaptation

aspects.

1. scenario 1: there is only one mismatch, i.e., signature
mismatch, in the interaction,

2. scenario 2: this interaction consists of seven mis-
matches, i.e., signature, parameter constraint, order-
ing, extra message, missing message, split, and
merge mismatches,

3. scenario 3: there are 30 mismatches in this scenario,
and finally

4. scenario 4: this interaction consists of 60 mismatches.

We then created adaptation logic to resolve mismatches in
these scenarios using two different approaches, i.e., code
modification and aspect oriented. To evaluate the impact of
these two adaptation development approaches, we made
two assumptions in our evaluation. First, the same adapta-
tion logic is written when developing using either the
aspect-oriented or the code-modification approach. Second,
in code modification, the business logic is directly modified
to accommodate the adaptation logic. We have adapted the
CK metrics [14] in our evaluation as follows:

The size of the development is measured by the Line Of
Code (LOC) and Number Of Classes (NOC). LOC is the
number of lines of code in the BPEL process and aspects. NOC
refers to the number of classes in the system, which are the
number of process and aspects in our context. The Cyclomatic
Complexity (CC) and the Weighted Method per Class are
metrics that have been used to measure the complexity. CC
represents the number of conditional and loop statements in
the BPEL process and adaptation advices. The WMC is a
metric that measures complexity by the number of activities
in the BPEL process and the number of advices associated to
the process. In the latter case, we weighted advices based on
an assumption that an advice with more activities than
another is likely to be more complex. Finally, the Coupling
Between Objects (CBO) metric measures the coupling
between business and adaptation logic.

Fig. 13 summarizes the results of our evaluation. The
Y-axis in the graph illustrates the percentage values that
represent the differences between the aspect oriented and
code modification. A positive percentage means that the
aspect-oriented approach was superior, while a negative
percentage means that it was inferior. The results show
that the aspect-oriented approach is favorable with respect
to the complexity as described by the CC and WMC
metrics. The most significant value proving this fact is the
CC metric, which is decreasing by 48.27 percent in
scenario 2. This is because, in the code-modification
approach, some additional logic needs to be included to
select behavior based on runtime context. In terms of the

size, the use of aspects has increased the NOC by
87.5 percent according to the number of aspects introduced
by our approach. Although this increment cannot be
neglected, the use of aspects contributes to the decrease
of the LOC in which developers need to write. This is
because in our approach, adaptation logics are partially
generated from patterns; hence, the actual LOC that
developers need to develop is less than what is shown in
the result. The aspect-oriented approach also reduces the
coupling between adaptation and business logic as shown
by the increasing of the CBO metric by 100 percent. This is
because, in the aspect-oriented approach, adaptation logics
are captured in separate modules. In summary, the results
show that the proposed patterns and aspect-oriented
framework for adapter development has reduced complex-
ity and coupling, and in that sense is easier to understand
and maintain. Reader can also find detailed discussion of
metrics, evaluation methodology, and results in [28].

6 RELATED WORK

The problem of adapting interaction models in software has
been extensively studied in different contexts, more notably
in the area of software components (e.g., [39], [7]), and Web
services (e.g., [5], [34], [8], [20], [29]). In addition, AOP has
received a significant attention in software components
[15], [18], [36], [10] and in Web services for the implementa-
tion of cross-cutting concerns [22], [33], [17], [11], [38]. In
the following, we position our work with respect to the
above-mentioned efforts.

Software components adaptation. Several approaches
have been proposed for automatic generation of protocol-
level component adapters [39], [7], [26]. These approaches
focus on stand-alone adapter development and assume that
there are no mismatches at the interface-level or that the
mapping between component interfaces is provided. Becker
et al. [3] identify the most common mismatches between
software components at the interface, protocol, and quality
of service levels. They also explore the application of
software patterns such as adapters, decorators, etc., to adapt
functional and nonfunctional differences of software com-
ponents. However, the component mismatches and patterns
are presented at an abstract level. We focus on Web service
interfaces and protocols, present concrete specification of
mismatch patterns, and present a semiautomated approach
for adapter code generation including an aspect-oriented
approach for service adaptation.

In the area of software engineering, there are approaches
for automatic identification of mismatches between soft-
ware components based on their interface and protocol
specifications [40], [41], [21], [13]. These approaches provide
a measure of similarity or differences of software compo-
nents, but do not aim at their adaptation. Nevertheless,
automated approaches for identification of mismatches are
limited, and the approach proposed in this paper based on
the characterization of mismatch patterns complements
them and helps the adapter developer to identify and
capture most of the possible differences that are not
detected by automated approaches.

Web services adaptation. The problem of Web services
adaptation has received a significant attention [5], [20], [8],
[29], [32]. To the best of our knowledge, our work [5] was

104 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

Fig. 13. Comparison of CK metrics in different scenarios.

the first to characterize the problem of Web services
adaptation and to propose the concept of mismatch patterns
for adapter development. This is a pioneer work that has
built the foundation for other recent work in this area. In
particular, in addition to the proposed patterns presented in
[5], Dumas et al. [20] have identified two other mismatch
patterns and proposed operators to handle mismatches.
These operators can be composed when developing stand-
alone adapters. Li et al. [30] adopt the mismatch patterns
framework to identify five extra mismatch patterns at the
interface level and the protocol level.

In our work [32], we have proposed a semiautomated
approach for identifying service mismatches at the interface
level (by building on top of approaches in XML schema
matching [35]) and the protocol level. The proposed
approach allows to identify mismatches between service
interfaces and protocols, and provides suggestions on how
to resolve them whenever possible. As mentioned before,
automated approaches are limited in the type of mis-
matches that they can detect. The focus of the work in this
paper is to complement automated approaches (e.g., [32])
by: 1) providing a framework to maintain a taxonomy of
mismatch patterns that not all of them can be detected by
automated approaches and 2) extending the adapter code
development from the stand-alone approach to aspect-
oriented approach.

In this paper, we have extended the framework of
mismatch patterns [5] by proposing an aspect-oriented
adapter development approach. This approach comple-
ments stand-alone adaptation by offering a greater flex-
ibility for managing the life cycle of business processes. The
idea of aspect-oriented approach for adaptation was first
introduced in our earlier work [29]. Here, we have extended
the aspect-oriented language to represent all common
mismatch patterns and have performed a comparative
study to identify situations in which each adapter devel-
opment approach is preferable.

Another recent work [8] proposes an automated
approach for protocol-level (i.e., assuming compatible
interfaces) stand-alone adapter development. We comple-
ment their work in that the adapter developers can use our
approach to identify possible mismatches between service
interfaces and protocols, and then use the automated
approaches such as those in [8], [32] for automatically
generating the code for stand-alone adapters. It should be
noted that adopting semantic Web services approaches
also does not remove the need for adaptation [9]. The
mismatch pattern framework presented in this paper can
be extended to capture possible differences between
semantic-enabled services, as well.

Other related work in this area have also investigated
matching of Web service interfaces, e.g., [19], [37]. However,
they aim at computing a measure of similarity between
service interfaces. In addition, service protocols are not
considered in those work and they do not investigate
service adaptation. Ponnekanti and Fox [34] present a
framework for handling differences among service inter-
faces. In their approach, it is assumed that distinct service
interfaces are derived from a common base using a limited
number of modification operations. Their approach is,
therefore, limited to handling mismatches at the interface
level and in the context of service evolution.

AOP in software components and Web services. Many
work (e.g., [15], [18], [36]) have adopted aspects to adapt the
component to a changing environment at the configuration
level and in the case of component evolution. Cámara et al.
[10], a later work compared to our initial work on aspect-
based adaptation [29], presents early results on using aspect-
oriented programming to design software component
adapters. In our work, in addition to presenting a systematic
approach to capture service differences in terms of mismatch
patterns, we provide advice templates for adaptation logic
resolving each mismatch pattern and also an implementation
framework for the aspect-oriented adaptation.

The use of AOP in Web services has also been
extensively explored. In particular, nonfunctional proper-
ties of services find a natural appeal in AOP programming
[22]. In [33], Nicoara and Alonso present an aspect-oriented
(Java-based) platform that aims to keep services aligned
with changes in the environment. AOP has also been used
at the process definition level, e.g., in [17], [11]. In [17],
aspects are used to adapt services to changing environ-
ments. In that approach, aspect weaving is done at compile
time by modifying the process tree. The advantage of such
an approach is that no specific extensions are needed on the
execution engine to handle the aspects since these are
embedded in a usual BPEL source. However, that approach
requires the engine (or running process instances) to be
restarted for reflecting changes. By contrast, our extension
to aspect-enable ActiveBPEL engine allows dynamic weav-
ing of aspects at runtime.

In [11], Charfi and Mezini propose to use AOP to
modularize nonfunctional concerns, e.g., logging and
security of BPEL processes. This work has been extended
to address dynamic changes in service composition in [12].
Unlike their work, we focus on the identification of
common mismatches between services and enabling resolu-
tions in either stand-alone or aspect-oriented adapters.
Cottenier and Elrad [16] extend Axis engine to intercept
message and apply AOP to resolve mismatches between
messages exchanged between services. Similarly, Wohl-
stadter and Volder [38] intercept and parse the content of
SOAP messages to identify pointcuts in order to apply
advices that handle document-oriented concerns, e.g.,
encryption or schema transformation. Both of these work
focus on message-level processing. We present a holistic
approach for adaptation to address both the interface- and
protocol-level mismatches.

7 CONCLUSION AND FUTURE WORK

This paper has tackled a key problem in middleware and
specifically in service-oriented architectures, i.e., adapting
loosely coupled services so that they can interact. The main
contributions of this work consist in 1) proposing a taxonomy
of common mismatches at the service interfaces and business
protocols, 2) a structured approach to the identification of
mismatches between services and their resolutions, by
introducing mismatch patterns, and 3) proposing methods
and tools for instantiating patterns with two different
architectural approaches, stand-alone adapters, and aspect-
oriented adaptation.

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 105

The combination of mismatch patterns and aspect-

oriented adaptation presents the foundation for rapid

adaptation of Web services. Future work in this area consists

in using the proposed framework to identify possible

mismatches at other high-level specifications of services,

e.g., service policies, along with the development of tools to

support detection of all common mismatches between

services, which would provide the remaining missing piece

to the support for the adapter development life cycle.

ACKNOWLEDGMENTS

The work has been done while Hamid Reza Motahari-

Nezhad was a research fellow at UNSW, Australia.

REFERENCES

[1] P. Ajalin et al., “SAP R/3 Integration to RosettaNet Processes
Using Web Service interfaces,” Technical Report, SoberIT,
T-86.301, 2004.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services—
Concepts, Architectures and Application. Springer-Verlag, 2004.

[3] S. Becker et al., “Towards an Engineering Approach to Compo-
nent Adaptation,” Proc. Architecting Systems with Trustworthy
Components 2004, pp. 193-215, 2006.

[4] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo, “Querying
Business Processes with BP-QL,” Proc. Very Large Data Bases
(VLDB ’05), 2005.

[5] B. Benatallah, F. Casati, D. Grigori, H. Nezhad, and F. Toumani,
“Developing Adapters for Web Services Integration,” Proc. Center
for Advancement of Informal Science Education (CAiSE ’05), 2005.

[6] B. Benatallah, F. Casati, and F. Toumani, “Representing, Analys-
ing and Managing Web Service Protocols,” Data and Knowledge
Eng. J., vol. 58, no. 3, pp. 327-357, 2006.

[7] A. Bracciali, A. Brogi, and C. Canal, “A Formal Approach to
Component Adaptation,” J. System and Software, vol. 74, no. 1,
pp. 45-54, 2005.

[8] A. Brogi and R. Popescu, “Automated Generation of BPEL
Adapters,” Proc. Int’l Conf. Service-Oriented Computing (ICSOC ’06),
pp. 27-39, 2006.

[9] C. Bussler, D. Fensel, and A. Maedche, “A Conceptual Architec-
ture for Semantic Web Enabled Web Services,” SIGMOD Record,
vol. 31, no. 4, pp. 24-29, 2002.

[10] J. Cámara, C. Canal, J. Cubo, and J.M. Murillo, “An Aspect-
Oriented Adaptation Framework for Dynamic Component Evolu-
tion,” Electronic Notes in Theoretical Computer Science, vol. 189,
pp. 21-34, 2007.

[11] A. Charfi and M. Mezini, “Aspect-Oriented Web Service Compo-
sition with AO4BPEL,” Proc. European Conf. Web Services
(ECOWS ’04), pp. 168-182, 2004.

[12] A. Charfi and M. Mezini, “AO4BPEL: An Aspect-Oriented
Extension to BPEL,” World Wide Web J., vol. 10, no. 3, pp. 309-
344, 2007.

[13] P. Chen, M. Critchlow, A. Garg, C. van der Westhuizen, and A.
van der Hoek, “Differencing and Merging within an Evolving
Product Line Architecture,” Proc. Product Families Eng. (PFE ’03),
pp. 269-281, 2003.

[14] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[15] A. Colyer, A. Clement, R. Bodkin, and J. Hugunin, “Using AspectJ
for Component Integration in Middleware,” Proc. Object-Oriented
Programming, Systems, Language, and Applications (OOPSLA ’03),
2003.

[16] F. Akkawi, D.P. Fletcher, T. Cottenier, D.P. Duncavage, R.L.
Alena, and T. Elrad, “An Executable Choreography Framework
for Dynamic Service-Oriented Architectures,” Proc. IEEE Aerospace
Conf. (AERO ’06), pp. 13-30, 2006.

[17] C. Courbis and A. Finkelstein, “Towards Aspect Weaving
Applications,” Proc. Int’l Conf. Software Eng. (ICSE ’05), pp. 69-
77, 2005.

[18] A. Dantas, J.W. Yoder, P. Borba, and R. Johnson, “Using Aspects
to Make Adaptive Object-Models Adaptable,” Proc. Reflection,
AOP and Meta-Data for Software Evolution (RAM-SE ’04), pp. 9-19,
2004.

[19] X. Dong, A.Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity Search for Web Services,” Proc. Very Large Data Bases
(VLDB ’04), pp. 372-383, 2004.

[20] M. Dumas, M. Spork, and K. Wang, “Adapt or Perish: Algebra
and Visual Notation for Service Interface Adaptation,” Proc.
Business Process Management (BPM ’06), pp. 65-80, 2006.

[21] M. Abi-Antoun et al., “Differencing and Merging of Architectural
Views,” Technical Report, ISRI-05-128R, Carnegie Mellon Univ.,
2005.

[22] N. Loughran et al., “Survey of Aspect-Oriented Middleware
Research,” Technical Report, AOSD-Europe-ULANC-10, Lancaster
Univ., June 2005.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison-Wesley, 1995.

[24] A. Garcia et al., “Modularizing Design Patterns with Aspects: A
Quantitative Study,” Proc. Aspect-Oriented Software Development
(AOSD ’05), pp. 3-14, 2005.

[25] J. Hannemann and G. Kiczales, “Design Pattern Implementation
in Java and AspectJ,” SIGPLAN Notices, vol. 37, no. 11, pp. 161-173,
2002.

[26] P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili, “Synthesis of
Correct and Distributed Adaptors for Component-Based Systems:
An Automatic Approach,” Proc. Conf. Automated Software Eng.
(ASE ’05), 2005.

[27] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.
Griswold, “An Overview of AspectJ,” Proc. European Conf. Object-
Oriented Programming (ECOOP ’01), pp. 327-353, 2001.

[28] W. Kongdenfha, H. Motahari, R. Saint-Paul, B. Benatallah, and F.
Casati, “An Aspect-Oriented Approach for Service Adaptation,”
Technical Report, UNSW-CSE-TR-0920, Univ. of New South
Wales, 2009.

[29] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati, “An
Aspect-Oriented Framework for Service Adaptation,” Proc. Int’l
Conf. Service-Oriented Computing (ICSOC ’06), 2006.

[30] X. Li, Y. Fan, and F. Jiang, “A Classification of Service
Composition Mismatches to Support Service Mediation,” Proc.
Grid and Cooperative Computing (GCC ’07), pp. 315-321, 2007.

[31] H.R.M. Nezhad, B. Benatallah, F. Casati, and F. Toumani, “Web
Services Interoperability Specifications,” Computer, vol. 39, no. 5,
pp. 24-32, May 2006.

[32] H.R.M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F.
Casati, “Semi-Automated Adaptation of Service Interactions,”
Proc. World Wide Web Conf. (WWW ’07), pp. 993-1002, 2007.

[33] A. Nicoara and G. Alonso, “Dynamic AOP with PROSE,” Proc.
Center for Advancement of Informal Science Education (CAiSE ’05),
pp. 125-138, 2005.

[34] S. Ponnekanti and A. Fox, “Interoperability among Independently
Evolving Web Services,” Proc. Conf. Middleware, pp. 331-351, 2004.

[35] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” Int’l J. Very Large Data Bases,
vol. 10, no. 4, pp. 334-350, 2001.

[36] C.C. Soria, J. Pérez, and J.A. Carsı́, “Dynamic Adaptation of
Aspect-Oriented Components,” Proc. Component-Based Software
Eng. (CBSE ’07), pp. 49-65, 2007.

[37] Y. Wang and E. Stroulia, “Flexible Interface Matching for Web-
Service Discovery,” Proc. Web Information Systems Eng. (WISE ’03),
2003.

[38] E. Wohlstadter and K. Volder, “Doxpects: Aspects Supporting
XML Transformation Interfaces,” Proc. Aspect-Oriented Software
Development (AOSD ’06), pp. 99-108, 2006.

[39] D.M. Yellin and R.E. Strom, “Protocol Specifications and
Component Adaptors,” ACM Trans. Programming Languages and
Systems, vol. 19, no. 2, pp. 292-333, 1997.

[40] A.M. Zaremski and J.M. Wing, “Signature Matching: A Tool for
Using Software Libraries,” ACM Trans. Software Eng. and
Methodology, vol. 4, no. 2, pp. 146-170, 1995.

[41] A.M. Zaremski and J.M. Wing, “Specification Matching of Soft-
ware Components,” ACM Trans. Software Eng. and Methodology,
vol. 6, no. 4, pp. 333-369, 1997.

106 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009

Woralak Kongdenfha received the master’s
degree in computer science from the Asian
Institute of Technology, Bangkok, Thailand. She
is a PhD student in computer science at the
University of New South Wales, Sydney, Aus-
tralia. Her research interests include service-
oriented computing, Web mashups, and data
integration.

Hamid Reza Motahari-Nezhad received the
PhD degree in computer science and engineer-
ing from the University of New South Wales
(UNSW), Sydney, Australia. He is a researcher at
Hewlett-Packard Labs, Palo Alto, California.
Previously, he was a research fellow at UNSW.
His research interests include service-oriented
computing, cloud computing, and business pro-
cess management. He is a member of the IEEE.

Boualem Benatallah is a professor at the
University of New South Wales, Sydney, Aus-
tralia. His research interests include Web service
protocols analysis and management, enterprise
services integration, process modeling, and
service-oriented architectures for pervasive com-
puting. He has published widely in international
journals and conferences including IEEE TKDE,
IEEE TSE, IEEE IC, IEEE IS, VLDB Journal and
ICDE, ICDS, WWW, and ER conferences.

Fabio Casati is a professor at the University of
Trento, Italy. Previously, he was a senior re-
searcher at Hewlett-Packard Labs, Palo Alto,
California. His research interests have three main
directions: The first is on middleware for integra-
tion, the second is about bringing and extending
traditional integration technologies to all enter-
prise data and to the Web, and the third is related
to improvinghowscientistsproduce,disseminate,
evaluate, and consume scientific knowledge.

Régis Saint-Paul received the MSc and PhD
degrees in computer science from the Univer-
sity of Nantes, France. He is a researcher at
CREATE-NET, Trento, Italy. He spent two years
as a research associate at the University of New
South Wales, Sydney, Australia. His research
interests include service-oriented architectures,
database systems, data mining, data summar-
ization, and end-user programming. He is a
member of IEEE Computer Society and the ACM.

KONGDENFHA ET AL.: MISMATCH PATTERNS AND ADAPTATION ASPECTS: A FOUNDATION FOR RAPID DEVELOPMENT OF WEB SERVICE... 107

