
Seeing is retrieving:
Building information context from what the user sees

Karl Gyllstrom UNC-Chapel Hill /
HP Labs

karl@cs.unc.edu

Craig Soules HP Labs
craig.soules@hp.com

ABSTRACT
As the user’s document and application workspace grows
more diverse, supporting personal information management
becomes increasingly important. This trend toward diver-
sity renders it difficult to implement systems which are tai-
lored to specific applications, file types, or other information
sources.

We developed SeeTrieve, a personal document retrieval
and classification system which abstracts applications by con-
sidering only the text they present to the user through the
user interface. Associating the visible text which surrounds
a document in time, SeeTrieve is able to identify important
information about the task within which a document is used.
This context enables novel, useful ways for users to retrieve
their personal documents. When compared to content based
systems, this context based retrieval achieved substantial im-
provements in document recall.

ACM Classification Keywords
H.3.3 Information Search and Retrieval: Clustering

General Terms
Human Factors, Experimentation

Author Keywords
Contextual search, User modeling

INTRODUCTION
A document is much more than its contents. The activities,
or tasks, that surround a document provides much of the
user’s context for a document, often expanding well beyond
the document’s content. While the result of a task might be
a single artifact (e.g. a term paper document), the generation
of that artifact requires the processing of information from
many disparate sources (e.g. emails, web pages, images).
When recalling a previously used document, users often re-
call the surrounding task that occurred when that document
was used, in addition to — or in the stead of — the contents
of the document itself [4]. For example, a user may not re-
member the name of a file they received attached to an email,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of t! his work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
IUI ’08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001...$5.00.

but they may remember the contents of the email itself. This
indicates that the information presented to the user through-
out a task is valuable in classifying and retrieving files used
during that task.

Traditional content-based schemes for classification and
retrieval underperform on personal data sets because they
fail to map the user’s context to the file’s contents. On one
hand, they lose information presented to the user through
other sources. For example, a user may be referring to in-
formation on an email while editing a related document; in
this case, a content-based scheme has no way to include that
contextual information when indexing the document. On
the other hand, they integrate additional information that the
user may be unaware of. For example, a user may open
a PDF and look at only the first page; however, a content-
based scheme will index all of the pages, which may include
terms unknown to the user.

SeeTrieve addresses the disconnect between user-
perceived context and file contents. Instead of indexing file
contents, SeeTrieve captures and indexes text displayed at
the user-interface level by applications. Using temporal lo-
cality, it creates a mapping between text snippets and files
used while the snippets were displayed. This extends the tra-
ditional two-level mapping of terms to documents to a three-
level mapping of terms to snippets to documents. Just as in
a two-level index, SeeTrieve can use its three-level index to
both classify documents, finding relevant terms from related
text snippets, as well as retrieve documents, searching the
index of text snippets and then following them to relevant
documents.

Conceptually, the SeeTrieve’s three-level index performs
task-based classification and retrieval by matching the con-
tents of displayed text during a given task to the set of files
used for that task. For example, a user who forgets the name
of a file attached to a past email might remember the con-
tents of the email. Issuing a query to SeeTrieve that matches
the contents of the email would return the attached file.

To showcase the value of SeeTrieve’s three-level index for
retrieval and classification, we implement two applications:
document retrieval and context tagging respectively. Our
user study with document retrieval shows that SeeTrieve re-
calls 70% more data on task-based retrieval without a loss
of precision, and recalls 15% more data on known-item re-
trieval with only a slight drop in precision. Our user study
with context tagging shows that SeeTrieve’s classification is
considered accurate by users, even when documents contain
no indexable data (e.g., images).

189

MOTIVATION AND RELATED WORK
Despite the continued abstraction of the user’s document
space, users’ interactions with their documents have changed
comparatively little. Users populate a spreadsheet in the
same manner whether using Excel (local) or Google Spread-
sheets (remote). Writing an email does not functionally
change, regardless of whether the user does so with Outlook,
Pine, or Yahoo’s web mail. This signifies a trend of diver-
gence between the user’s activity in the user interface layer
and its complementary activity in the file system layer.

This divergence makes the user interface layer an attrac-
tive space to capture activity context because it (a) is very
tightly coupled with user interaction, (b) involves activity
which is less sensitive to change (e.g., reading, typing), and
(c) exposes the contents of the objects with which a user in-
teracts, even when those objects have no “indexable” form
(e.g., they are not local, they are application specific files,
etc).

We have identified five aspects of divergence between the
user interface layer and the file layer: location, composition,
presentation, interaction, and temporality. Each of these
aspects uniquely complicate personal information manage-
ment, and have been a source of difficulty or failure for many
existing systems.

Location
Location determines where file data is stored. In the past,
most computer work took place on local files. With the ad-
vent of the Internet, more and more computer-based work
has moved to remote files until, today, the functionality of
many traditionally local applications has been replicated on
web pages, such as Google mail [21] or Microsoft Office
Live [20]. This trend presents difficulty to systems that try
to support task management using strictly local data.

One common approach to this problem is to leverage web
caching to capture remote data locally. For example, most
desktop indexing tools [8, 9, 26] index the user’s web cache
and return these pages as results to searches. The failing
of this approach is its reliance on particular application be-
havior to perform correctly. Already the introduction of un-
cached AJAX applications render such schemes inadequate,
requiring further specificity (e.g., Google Desktop now in-
dexes Google Mail data directly rather than treat it as web
content). Furthermore, user activity is not limited to reading
items; they also create content. While this content may man-
ifest to a file (e.g., one saves their work), more and more this
content is posted to the web (e.g., tagging photos on a web
site) making it impossible to capture through the web cache.

Rather than entering into this data-capturing arms race,
SeeTrieve proposes to capture information at the user-
interface, rendering the location of the underlying data ir-
relevant.

Composition
In cases where file activity occurs on local files, systems still
face the problem of file composition, or the fact that file man-
agement is often application-specific and difficult to gener-
alize. While email clients vary little in terms of the mail
reading functionality exposed to users, they vary widely in
how an individual email manifests on the file system. Some

mail clients store each message as an independent file, while
others store emails to a single database. This convention
precludes approaches which require fine grained file access
information, like when a specific email was last opened [25,
23].

Similarly to location, most classification and retrieval sys-
tems address composition through application assistance.
These systems have plugins for common file formats (PDF,
PST, web pages, etc.) that given them some access to data
stored in proprietary formats. This requires a priori knowl-
edge of the types of applications and files that a user will
interact with. Furthermore, the proliferation of web-based
applications distributes a user’s files among different control
domains that make a unified search interface problematic.
For example, each new web application requires a new pub-
lic API through which retrieval tools can access their docu-
ments. Instead, SeeTrieve acquires text seen through the user
interface and ties to file system events, removing the need to
support each application separately in building context.

Presentation
Presentation refers to the divergence between file contents
and the application’s presentation of those contents. A PDF
document may contain a large number of pages, but PDF
readers typically do not reveal more than two pages to the
user at a time. Consider a case where a user is only interested
in a single page of the PDF: indexing the PDF’s contents
captures non-relevant information.

On the web, there is often a large difference between a
file’s contents (i.e., HTML code) and its appearance to the
user through the browser. Client side scripting allows HTML
page elements to change visibility: collapsing large drop-
down regions and opening others interactively. Due to the
stateful nature of modern, interactive web pages, it is often
difficult to infer the user’s interest from the contents of the
HTML page alone.

Presentation is a problem in virtually every existing clas-
sification and retrieval system. However, by limiting itself
to contents displayed by the application, SeeTrieve only cap-
tures text that the user actually views.

Interaction
Interaction refers to the disconnect between application ac-
tivity and user activity. A user may have numerous appli-
cation windows open while all but one are inactive or mini-
mized. Because the user is only interacting with the visible
window, it is likely that background activity performed by
other active applications are acting without direction from
the user. For example, a word processor may continue to
generate automated save events on all of its open files even
though the user has only recently interacted with one of the
files.

Some task-clustering systems, such as CAAD [23] and
SWISH [22], identify the active applications or tasks
through user interface tracing. CAAD (also a file classifi-
cation system) uses this information to identify which recent
file events are relevant to the user, however, without dealing
with the problems listed above, its utility is limited.

SeeTrieve captures focus information to identify active ap-
plications, but instead of trying to use this to filter content in-

190

formation, it captures the visible contents directly from the
user interface layer.

Temporality
Temporality refers to the problem of knowing when, and for
how long, a user interacted with data. Many recent systems,
Watson [5] and others [27, 3, 13, 6], collect information
about recently accessed files or web pages to recommend, or
personalize, data on the web. Unfortunately, capturing “re-
cently accessed” information can be complex. For example,
web browsers maintain caches of recently viewed sites, but
they provide no information about how long a user viewed
that site. Consequently, a link the user accidentally clicked
through and returned from would be considered equally im-
portant to a page the user spent an hour reading. Infer-
ring this information from the duration between their access
times is not trustworthy; consider the case where one page is
opened quickly after another, though in a different browser
window. Should the user switch back to the previous win-
dow and spend a long time viewing the page, analysis of the
browser history would indicate the wrong page was viewed
for longer.

Connections is a context-enhanced search tool that tries to
deal with this problem by capturing all file system activity,
allowing it to determine when and for how long a user ex-
amined a particular file [25]. It then uses this information to
identify web-like relationships among local files. While it is
susceptible to all of the previously described problems, its
information is complementary, and could potentially lever-
age SeeTrieve to improve the quality of its contextual rela-
tionships.

Solution
SeeTrieve’s combination of user interface and file layer in-
formation mitigates or minimizes each of the aforementioned
forms. Location and composition are dealt with by capturing
the contents of remote files or files with proprietary formats
at the user interface layer. Presentation issues are resolved
by the fact that the user-interface layer displays only what
the application intends the user to see (e.g., the currently
read page of a large document). Interaction issues are, by
definition, best handled at the user interface layer, where in-
formation about what is and is not visible is managed. Tem-
porality issues are resolved by SeeTrieve’s algorithms that
combine the timing of user interface events with the timing
of file events to create a mapping from text snippets to files
weighted by the level of user interaction.

SEETRIEVE
Figure 1 illustrates the design of SeeTrieve. As the user in-
teracts with applications and data, SeeTrieve collects data
about their context, capturing visible text into snippets and
tracing all file activity. Using these traces, SeeTrieve cre-
ates a bipartite context graph that maps between snippets
and files. Finally, as examples of the utility of the context
graph, SeeTrieve provides two applications: a document re-
trieval tool that combines a traditional search index on the
snippet contents with the context graph, and a context tag-
ging tool that identifies relevant terms for files based on their
snippets. This section discusses these two components (data

User FilesApplication
UI

Tracing
File

Tracing

Term
Index

Context Graph

Snippets Files

Figure 1. SeeTrieve architecture.

collection, context graph) and the example applications in
more detail.

Data collection
Context-aware systems must be able to understand the user’s
behavior, independent of which applications and file formats
they use. SeeTrieve solves this problem by tracing both user
interface and file system events at the operating system layer.

These traces capture four pieces of information that
SeeTrieve requires: text snippets of what the user sees, the
times at which these snippets become visible to the user, the
duration over which these snippets are visible, and the times
at which files are accessed.

SeeTrieve acquires text snippets through the accessibil-
ity functionality, which has been historically used to enable
third party applications that programmatically interact with
the user interface to support impaired users. Accessibility
data is exposed by most mainstream operating system graph-
ical interfaces, including Windows XP, Mac OS X’s Aqua,
and Gnome. Accessibility support enables custom programs
to query arbitrary applications for information about their UI
state, such as which tab or pane is currently focused, and the
contents of a text area. While accessibility information can
be designed by an application’s developers, the use of sys-
tem components in UI construction means that much of this
information is already provided.

SeeTrieve traces activation and minimization of applica-
tion windows, informing it when windows go in and out
of visibility and the duration over which they remain visi-
ble. Whenever a window changes visibility, SeeTrieve does
a full capture of all visible text on the currently active win-
dow into a snippet and inserts that snippet into the stream
of trace events. SeeTrieve also does periodic captures once
every 3 seconds to handle cases where focus doesn’t change,
but the visible text does.

SeeTrieve traces file READ and WRITE operations to iden-
tify which files are accessed when. This trace of file system
events is later merged with the trace of user interface events
when creating the context graph.

191

Context graph
The relationship between snippets and files is represented by
a bipartite context graph, with links between nodes indicat-
ing the strength of the contextual relationship between them.
Creating the context graph requires two steps. The first is to
merge similar snippets together, the second is to pair merged
snippets with their related files.

Merging snippets
User activity often involves switching among multiple ap-
plications or windows. Because SeeTrieve treats every fo-
cus event as a new source of text, such activity can generate
many snippets of identical text that originate from the same
conceptual document (e.g., the same web page). Most clas-
sification and retrieval techniques rely on a discriminating
value of terms in the corpus (often inverse document fre-
quency). If a term appears frequently within a snippet while
relatively infrequently in the rest of the corpus, it is con-
sidered informative. Consequently, populating the corpus
with many duplicate snippets reduces SeeTrieve’s effective-
ness at classifying and retrieving documents. Hence, we im-
plemented a document similarity technique to merge similar
and identical snippets to substantially reduce this effect.

By merging similar snippets, and not just identical snip-
pets, SeeTrieve can deal with slight changes in visible text
(e.g., status bar updates, open menus) while still identifying
completely separate snippets (e.g., the next page in a PDF,
a new web page). SeeTrieve identifies similar snippets us-
ing the Max Hash algorithm [12]. Max Hash uses landmark
chunking (implemented with Rabin fingerprinting) to break
snippets into variable sized chunks. Landmark chunking has
the advantage that, because the chunk boundaries are cho-
sen based on content rather than a fixed size window, small
changes to the file will only change a small number of the
chunks. Each chunk is then hashed using the MD5 function,
and the hashes are sorted numerically. If the top n hashes
of two snippets’ chunks match, then it is very likely that the
snippets are similar1. In practice, we treat any two snippets
that share more than half of their hashes as identical. Since
snippet size is governed by the amount of text which can ap-
pear on a screen, the number of hashes for a snippet is small
and sharing half of these hashes indicates with highly prob-
ability that the two snippets are very similar.

We chose Max Hash as our similarity metric because it is
(a) robust to small changes in content and (b) efficient in per-
formance and space. To find if a snippet has an existing sim-
ilar snippet, SeeTrieve maintains two hashtables. The first
contains Max Hash values as keys and snippets containing
that hash within their top n hashes as values. The second is
the reverse: snippets are keys and their top n hashes are val-
ues. When SeeTrieve witnesses a new snippet, it is chunked
and hashed. For each of the top n hashes, SeeTrieve queries
the hashtable for any snippets that contain the hash. It then
finds the top n hashes for each matching snippet. If at least
n
2 of the new snippet’s top n hash values match an existing
set of hash values, the two snippets are considered similar.
This process requires only n lookups to find a similar file
and the list of hashes for each file is n 32-bit values, thus
both the computational and storage requirements are small.
1The higher n, the more similar the snippets must be.

Pairing snippets to files
The link weight between a snippet and a file node is in-
creased when snippet S is seen in close temporal proxim-
ity to an event on file F . SeeTrieve captures this proximity
through a context interval, a time period during which wit-
nessed snippets are considered to be related to that file. A
context interval of n seconds means that any snippet S wit-
nessed less than n

2 seconds before or after an event for file
F is related to F . Thus, snippets and files that are more
frequently proximal will, generally, have higher relative link
weights between them.

SeeTrieve strengthens links using two factors: duration
and temporal proximity. Duration measures the length of
time over which a snippet was visible. Intuitively, this cap-
tures the relative importance of the data contained within it.
Let Sstart be the point at which snippet S is seen that is not
similar to the previous snippet in the trace, Send be the point
at which a new snippet that is not similar to S is seen2, tF
be the time at which file event F occurs, and ci be the du-
ration of the context interval. Then, Equation 1 defines the
duration value for a snippet S and file F .

dur(S, F) =
min(tF + ci

2 , Send)−max(tF − ci
2 , Sstart)

ci
(1)

Temporal proximity measures the temporal distance be-
tween the snippet and a file event. The closer in time a snip-
pet appears to a file event, the more likely it is to be related
to the file event. Weighting by temporal proximity relates
events over a longer period of time without introducing too
much noise (e.g., an infinite context interval equally relates
all snippets to all files). Then, Equation 2 defines the tempo-
ral proximity weight between snippet S and file F .

prox (S, F) ={
Sstart < tF < Send 1

o.w. 1− min(|tF−Sstart |,|tF−Send |, ci
2)

ci
2

(2)

When snippet S is visible at some point within the con-
text interval of file F , SeeTrieve increases the value of the
link between them by the product of duration and temporal
proximity.

Application 1: Document retrieval
SeeTrieve implements document retrieval by combining a
traditional content index3 built over the snippet contents
(shown as the term index in Figure 1) with the context graph.
It maintains the content index by adding new snippets (i.e.,
snippets with no similar existing snippets) as they are seen.

To retrieve a document given a user query, SeeTrieve first
passes the query to the content index to identify relevant
2The definitions of Sstart and Send merge sequences of similar
snippets into a single snippet for the purposes of measuring visi-
bility time. Due to polling, multiple snippets may correspond to a
single window that has maintained focus.
3SeeTrieve can use either Indri [16] or Google Desktop [8] for the
content index.

192

snippets and then uses the context graph to identify related
documents. Specifically, the content index returns a pool P
that contains a list of 〈Si, Vi〉 tuples where Si is a snippet
and Vi is its corresponding relevance score. SeeTrieve then
does a search on the context graph to identify R, the set of
files most related to P .
R starts as an empty result pool to be composed of 2-

tuples containing a file and its relevance score. For each
snippet 〈Si, Vi〉 ∈ P , SeeTrieve retrieves each link to a local
document 〈Fj , Lj〉 where Fj is the local file and Lj is the
value of the link. It inserts Fj into R (if it doesn’t already
exist) and increases its relevance score by (Lj×Vi). Thus, in
cases where a file contains incoming weight from numerous
snippets, its relevance score contains the sum of each indi-
vidually contributed relevance score. Finally, R is sorted by
relevance score and returned.

Application 2: Context tagging
In context tagging, SeeTrieve takes a given file, finds related
snippets, and uses their contents to create a textual summary
– or context zeitgeist – of that file. Unlike content classifi-
cation, which uses a file’s contents to identify relevant terms
for that file, context tagging uses the contents of the activ-
ity that surrounds a file while it is used to identify relevant
terms, offering terms that the file’s contents might not even
contain.

For example, an image file on a user’s computer might
have no useful information text content within it. Let us as-
sume that after downloading the image from their camera,
the user uploaded the image to Flickr and entered a title, de-
scription, and tags for that image through the website. Be-
cause these operations generated a set of content events sur-
rounding the file event for the image (e.g., the time it was
uploaded), they will share links with that image on the con-
text graph. The textual contents of these content events will
contain useful pieces of information about the image: its ti-
tle, tags, and description as entered by the user.

SeeTrieve’s context tagging operates much like an inverted
search. Given a file F , let P be the set of snippets related to
F in the context graph. Let T be the set of tuples 〈ti, fi, ci〉
where ti is a unique term from the contents of the snippets in
P , fi is the total number of occurrences of term ti, and ci the
count of snippets containing ti4. Let D be the set of all snip-
pets in the context graph. Let Dt be the set of all snippets
containing a term t, identified through the term index. For
each 〈ti, fi, ci〉 ∈ T , SeeTrieve computes a score for each ti
using a variant of tf-idf defined in Equation 3.

tf i =
fi∑

fk∈T fk
, idf i = log

|D| − |P |+ 1
|Dti
| − ci + 1

(3)

The effect of Equation 3 is to treat the set of snippets P as
a single logical snippet. Thus, it calculates term frequency
(tf i) across the contents of all snippets in P , and calculates
inverse document frequency (idfi) as if all of the snippets in
P were removed from the corpus and replaced with a single
snippet containing the term.

4Stop words, or words considered too common to be useful in re-
trieval, are omitted from T .

SeeTrieve calculates the final tf-idf score for each term as
the product of the term’s tf and idf values, sorts the terms by
their scores, and returns the list of terms as the file’s context
zeitgeist.

EVALUATION
The goal of our evaluation is to show the effectiveness of
SeeTrieve’s two applications: task-based document retrieval
and context tagging. Unfortunately, unlike traditional content-
based retrieval and classification, context-based tools require
that users interact with the data in realistic usage scenarios in
order to gather the necessary traces, ruling out the use of an
existing document corpus. Thus, our evaluation employs a
two-phase user study in which users first interact with a data
set while being traced by SeeTrieve and then later are asked
to evaluate SeeTrieve’s two applications with respect to that
data.

We chose to run all of the users in our study on a single
machine under a single account. Limiting the scope of the
content or context information to a single user would trivi-
alize the task of finding related data (since all available data
would be relevant). Merging the traces of several users sim-
ulates a single user performing a set of similar tasks over a
longer period of time, providing a more realistic usage sce-
nario for SeeTrieve.

User study design

Phase one
Phase one consisted of two user tasks. We chose the user
tasks to include a mix of local and remote data, as well as a
mix of content-rich (e.g., text) and content-free (e.g., image)
data. Including all kinds of data highlights how SeeTrieve
identifies useful context information regardless of the source,
and even applies it to data that cannot be indexed through
traditional means.

Task 1 was the creation of a conference trip report using
a wiki, a web-based collaboration tool interfaced through a
standard web browser, installed on a separate machine. The
user was asked to create a wiki page briefly describing three
papers from a fictitious conference. The user was instructed
to choose three papers at random from a pre-generated cor-
pus of conference paper files5, skim each paper, write a brief
(1-2 lines) summary of the paper on the wiki page, and up-
load the paper to the wiki. Once the user selected a PDF it
was removed from the corpus to prevent overlap with other
users.

Task 2 was the creation of an online photo album. The
user started by creating a photo album using a photo al-
bum website installed on a separate machine. The user was
given a topic (e.g., marine animals) and asked to identify
three items within that topic (e.g., dolphins, manatees, and
orcas). For each item, the user was asked to acquire an image
of that item online, download it to their machine, and then
upload it to the photo album. The user was then asked to
provide a brief description of that item as researched online
(e.g., through Wikipedia) and place that description within
the “description” category of the photo on the photo site.
5Papers were selected from the ACM Digital Library.

193

Phase one included 15 users, 12 of which completed Task 1,
13 of which completed Task 2, and 10 of which completed
both Task 1 and Task 2. Each task took users between 20
and 45 minutes to complete.

Phase two: Retrieval
We evaluate two aspects of SeeTrieve’s document retrieval:
task-based retrieval and known-item retrieval. Task-based
retrieval, specific to context systems, returns all of the items
related to the task described by the user’s query. Known-
item retrieval, the more common form of document retrieval,
returns a single item desired by the user.

Three to seven days after completing phase one, users
were asked to return for the retrieval task. Because most
users would be unfamiliar with task-based retrieval, we felt
that asking them to perform and evaluate such retrieval tasks
might introduce a bias toward SeeTrieve. Instead, we asked
users to locate each document used in a task by performing
known-item retrieval through Google Desktop, a traditional
content-only desktop search tool. For the trip report task,
this included the wiki page containing their report along with
each paper they summarized. For the photo album task, this
included each photo file, each Wikipedia page, and the page
depicting their album6. Users were allowed to issue three
queries for each document with the goal of generating a
query that would return it as the first result.

We then used the most effective queries users formulated
for each document, over 130, to evaluate SeeTrieve’s task-
based retrieval and known-item retrieval, comparing its re-
sults against those identified by Google Desktop. In our
evaluation, SeeTrieve began context building immediately
when a user started their first task, and ended when their last
task finished. Times were adjusted such that the end time
of a user’s task immediately preceded the start time of the
next user, allowing events from one user’s task to be present
within a context interval of the following user’s task (and
vice versa), more faithfully emulating a single user switch-
ing between tasks.

In these experiments, SeeTrieve was parameterized with a
30 minute context interval, allowing any text viewed within
15 minutes of a file to be related. For task-based retrieval
we report recall and precision values. For each document’s
query, we measure the task-based recall as the percentage
of local documents from that document’s task that were re-
turned. We do not consider results where neither method
was capable of producing one task item. We measure the
task-based precision as the ratio of correct documents re-
turned to total documents returned at the point where the
last correct document is returned. For known-item retrieval
we report recall and average position values. We measure
average known-item recall as the percentage of queries that
return the desired item. We measure average position based
on the document’s position within the result list, including
only those queries that return the document.

To even the comparison between SeeTrieve and Google
Desktop, we filtered the results of Google Desktop in two
6Note that although the web documents were not stored locally,
Google Desktop indexes the browser cache, allowing users to iden-
tify terms that would successfully retrieve the page as if it were
local.

SeeTrieve Google Desktop
Task Recall Precision Recall Precision
Task1 0.945 0.500 0.314 0.557
Task2 1.000 0.712 0.177 0.491
Taskall 0.964 0.561 0.267 0.538

Table 1. Task-based retrieval.

SeeTrieve Google Desktop
Task Recall Position Recall Position
Task1 0.701 3.535 0.657 1.465
Task2 0.963 2.000 0.519 1.214
Taskall 0.777 3.048 0.617 1.404

Table 2. Known-item retrieval.

ways. First, we remove results that were not accessed
at least once by a user (and hence, would not be within
SeeTrieve’s index). Second, when comparing Google Desk-
top and SeeTrieve, we remove any web-cache results. Be-
cause SeeTrieve only indexes local files that have been ac-
cessed and the retrieval task only considers local files as
correct results, to include other files (e.g., unaccessed files
or web-cache results) would unfairly penalize Google Desk-
top. We also exclude results from SeeTrieve for files within
known system directories (e.g., Local Settings), as Google
Desktop considers these files irrelevant, and to include them
in SeeTrieve would unfairly penalize it.

Table 1 lists the task-based recall and precision values for
both SeeTrieve and Google Desktop. For task-based retrieval
SeeTrieve achieves nearly 100% recall with the same pre-
cision as Google Desktop. This indicates that users could
retrieve any document used in a task by remembering just
one document from that task. Even in the case of remote
documents (e.g., the wiki page) this holds true, highlight-
ing SeeTrieve’s ability to utilize information from any source
when retrieving local data. Note that given the task sets were
small, 4-7 documents, a precision of 50% indicates that all
of the documents would be listed in the first 15 results.

We believe that the results of SeeTrieve’s task-based re-
trieval should be considered in isolation. Because Google
Desktop was not designed with task-based retrieval in mind,
a direct comparison against SeeTrieve is less meaningful.
Furthermore, in the retrieval task users issued queries in-
tended to recall individual items. Had they issued queries to
find as many familiar items as possible, their search strate-
gies might have been more general.

Table 2 lists the known-item recall and average position
for both SeeTrieve and Google Desktop. As compared to
Google Desktop, SeeTrieve recalled more items but, on av-
erage, positioned those items slightly further down the result
list. This illustrates two results. First, despite the increase
in average position, SeeTrieve placed results well within the
first page of results, indicating that its known-item retrieval
could replace traditional content-only retrieval with little ef-
fect on the user.

Second, SeeTrieve found documents when Google Desk-
top did not, especially in the image retrieval task, again
showing the relevance of user-interface text when applied to
content-free data. For example, a search for “James Gleick”

194

through Google Desktop was unable to retrieve the image
file “log1.jpg” because neither the contents nor the name of
the image were relevant, while the same search in SeeTrieve
was able to retrieve the image. In cases of PDF recall, the
slight improvement in recall was largely due to users un-
knowingly placing too much information in their query for
Google Desktop to work. For example, a search for “hierar-
chy projection paper” failed in Google Desktop because the
term “paper” was not present in the document itself, though
present in the context (e.g., the wiki summary was titled “pa-
per review”).

The success of SeeTrieve in task-based retrieval shows
that (a) as an element of task, a document contributes some
content to that context, (b) a query that identifies a document
can also identify the context of which it is a part, and (c) a
query that identifies a context should identify all files which
were used as part of that context.

While users worked with specific applications in this ex-
periment (e.g., a PDF reader, a browser), it is important to
note that the way in which context was collected and applied
was application independent. Had the users been instructed
to report their summaries in an email rather than a web page,
the text they generated would have still been available to
SeeTrieve and useful in retrieval. Given the contents of this
email would be acquired by its screen text rather than its file
contents, SeeTrieve’s access to the information would persist
regardless of whether users’ emails were through Outlook
or Google Mail. Hence, SeeTrieve enables context retrieval
without making any assumptions about applications beyond
the fact that they must eventually present text that is mean-
ingful to the user through the UI.

Phase two: Classification
To test SeeTrieve’s context tagging, we need to show that
the terms it identifies as relevant are familiar to the user of
that file. We chose one local file at random from each of
the two tasks (i.e., one PDF and one image) for each user
and generated a zeitgeist for each file using context tagging,
which we term the context zeitgeist. We also placed each
of the PDF’s into a single content index using Indri [16],
and asked it for the set of keywords it considered most rele-
vant for each PDF, creating a content zeitgeist for each PDF,
which we term the decoy zeitgeist. In these experiments, a
context interval of 10 minutes was used. We then presented
users with five zeitgeists for each of their two randomly cho-
sen files7. For the PDF we presented the context zeitgeist,
the decoy zeitgeist, and three other randomly chosen context
zeitgeists for other files not accessed by that user, which we
term incorrect. For the image, we presented the context zeit-
geist, and four incorrect zeitgeists. We asked the user to rate
each zeitgeist on a 3-point Likert scale, where 3 indicates
that the terms describe the file well, and 1 indicates that the
terms are irrelevant for the file.

Figure 2 illustrates an example zeitgeist produced for an
image chosen by a user during the photo album task on the
topic “philosophers.” We draw three points from this exam-
ple. First, 15 of the first 20 words are relevant to the file,
7To avoid triggering memories with users for the retrieval evalua-
tion, this phase always followed the retrieval evaluation, typically
by 1-2 days.

plato, philosopher, socrates, album, thumbnail,
item, subalbum, upload, file, hegel, bc, philosophy,
athens, photo, platon, kant, use, time, caption,
wikipedia, size, add, sort, ancient, default, greece,
edit, apply, description, oracle, summary,
administrate, megabyte, set, philosophic, argue,
date, option, create, western, charge, gallery

Figure 2. The zeitgeist produced for an image from a user’s photo al-
bum task for the topic “philosophers”. Bold italicized words describe
the topic, bold words describe the task, and the underlined word was
contained within one of the images’ file name.

Task Target χ̄ σ t-test u-test
1 Correct 2.50 0.80 — —
1 Decoy 2.08 0.79 0.213 0.092
1 Best Incorrect 1.58 0.79 0.010 0.008
2 Correct 2.91 0.30 — —
2 Best Incorrect 1.27 0.47 <0.001 <0.001

1 + 2 Correct 2.70 0.63 — —
1 + 2 Best Incorrect 1.43 0.66 <0.001 <0.001

Table 3. Classification results. The mean scores of decoy and best incor-
rect are compared to the mean score of correct using the t-test and u-
test. The P-values from these tests are depicted in the final two columns.

either describing the topic, task, or filename. Second, both
the topic of choice, philosophers, and the source of infor-
mation, Wikipedia, are represented in the zeitgeist, either of
which the user may recall when trying to retrieve an item.
Third, many of the irrelevant words are included because
there is not enough overall system data to exclude them. For
example, words such as thumbnail, item, add, sort, adminis-
trate, etc. would reduce in significance as a user interacted
with the photo album software during other tasks, as their
discriminating value would weaken.

Table 3 lists the results of our classification experiment.
When considering the incorrect zeitgeists, we took the high-
est scored incorrect zeitgeist for each user’s task and aver-
aged that score across users. For example, if a user for task
1 scored the incorrect zeitgeists 1, 1 and 2 respectively, we
considered 2 as the best incorrect score and averaged those
scores across users for task 1. For each zeitgeist, we present
the average score, standard deviation, and P-value as calcu-
lated by the Student’s t-test and Mann-Whitney U test be-
tween that zeitgeist and the context zeitgeist. We show the
results for each task, and the average across both tasks.

We draw three conclusions from these results. First, the
context results are significantly better than the best incor-
rect result in all cases, indicating that context tagging is suc-
cessful. Second, the context results in Task 1 perform as
well the decoy results8. This indicates that SeeTrieve’s snip-
pets are able to capture the relevant text of an indexable
document at least as accurately as document content alone.
Third, the context results for Task 2 are extremely accu-
rate, achieving an average score of nearly 3. This indicates
that SeeTrieve accurately classifies documents that contain

8Although the average score is higher for context, we did not have
enough users to show a statistically significant difference, as evi-
denced by the p-value.

195

no indexable terms at all, an impossible task with traditional
content-based schemes.

We believe SeeTrieve classification could be applied in
cases where users have documents whose origin or use they
do not recall. For example, when discovering an unfamiliar
document in a long-before used folder, enabling the user to
see important words from the surrounding activity might re-
veal important insight (e.g., the paper was downloaded in a
previous literature review).

Summary
The evaluation of personal information management tools
remains a difficult problem [11, 19]. While our evaluation
was designed to illuminate the abilities of our system, we be-
lieve there are lessons from the evaluation that could consti-
tute a contribution to personal information evaluation. Hence,
we detail the advantages, disadvantages, challenges, and nu-
ances in our approach.

Controlled vs. Field study
The effects of time and data set size are important to con-
sider in personal information management. In a controlled
study, there is the danger of too little data, making retrieval
tasks trivial or uninteresting. This is less likely in a live de-
ployment; however, building a sizeable data set for a single
user requires a large amount of time and may be impractical.

We address this problem by having multiple users share
the same computer at different times to simulate the effect
of a single user working on multiple, similar tasks. While
this enhances the amount of data that can be collected within
a limited time period, it introduces a challenge during re-
trieval that users issue queries on a corpus that contains large
amounts of “personal” data of which they are unaware. This
blind spot occasionally manifested in unsuccessful queries
(e.g., a user searches for “ACM pdf” on a system contain-
ing over 100 ACM papers). We addressed this problem both
through the design of the data creation tasks and the design
of the retrieval task.

Data creation
When designing our phase one tasks, we considered two
points. First, that users should be made aware of the ex-
panded corpus of “personal” data, outside of the files they
directly interact with. Second, that because the other data on
the machine is unknown to the user, the users should have
discriminating information about their files that they can use
to avoid overlapping terms that might, unintentionally, re-
trieve another user’s data, as this would not occur if a single
user performed all tasks.

To inform users of existing data in the paper review task,
users selected their papers from a local folder that was pop-
ulated with a large number of papers. This tacitly commu-
nicated that they might need to use more specific keywords
when later retrieving the document. To prevent overlap in the
paper review task, papers that were read by one user were re-
moved from the papers directory after they completed their
summary to avoid two users sharing the same item. In the
photo album task, each user was assigned a unique topic area
to research, resulting in distinct sets of relevant keywords
among users.

Retrieval
We used query refinement during the retrieval task to further
mitigate the problem of unknown “personal” data. For each
document, users were given three opportunities to generate
a query that placed the document as the first result in the list.

Although this approach improves a user’s ability to isolate
his or her own files, we also want to prevent users from uti-
lizing information within a set of results to refine their query,
as this context information, if used in a query, could falsely
boost the results of SeeTrieve. Although use of context infor-
mation independent of the query results is our expectation,
we did not want to guide users to use context information
during query refinement. To ensure this we developed a thin
wrapper to Google Desktop that reveals only the file name
in the result, and all papers were given cryptic names from
the beginning to ensure that author or title information could
not be derived from the results.

DISCUSSION
It is important to consider not only how the systems differed
in performance, but why they differed. In this section, we
identify the major cases in which the content based system
was not amenable to the way in which the user recalled their
document.

Implicit Linking
During their retrieval task, many of the users reported — es-
pecially when unable to recall documents — their preferred
retrieval method would have been to first find the wiki page
or photo album page, which typically linked to the forgot-
ten documents. This illustrates a case in which users would
have applied relationships between documents as a retrieval
tool. Since SeeTrieve was able to implicitly recreate this
linking through the user’s activity, it was successful in re-
trieving task files even when the user forgot enough details
about them to form a successful content query.

Abstract vs. Detailed recall
Of the 12 users who completed the paper reviewing task,
only 2 were able to recall all three of the reviewed papers.
Users were more successful with the photo album task, with
9 of 13 users recalling all three photos used. The most ap-
parent quality observed was that in most cases users remem-
bered their documents abstractly rather than in detail. Below,
we discuss two areas where this tendency manifested.

Author vs. Reader
Although users tended to forget at least one read paper, in
almost every case they recalled the summary page they cre-
ated. We attribute this to the personalization derived from
authorship.

Many users recalled keywords from the paper they had
placed on their summary pages, and used them as queries to
retrieve their papers. This suggests that users place words
in their summaries that they believe are effective descriptors
of the read document, and, by identifying these words and
using them in authoring, are more likely to recall them. In
practice, these descriptors were very effective in retrieval.

Also, users often remembered words that were of their
own origin and successfully applied them in searches for

196

their summary page. For example, a number of users re-
called words from the unique or clever title they produced
for the document.

We believe that the act of authoring summaries forces
users to engage with the documents they read in more depth.
When summarizing, users choose words that intuitively de-
scribe the document to them; these words reflect the user’s
own concept of the document and do not necessarily have
to exist within the document itself. Because users are more
prone to recalling information through an authoring task, we
believe that this property of recollection, not accomplished
well by existing content based systems, is important to sup-
port.

Topic vs. Item
In the photo album task, every user recalled the broad topic
for which they acquired images, and were able to retrieve
their album web page in every instance. However, they were
not always able to retrieve each individual photo. We believe
there are two reasons that explain this observation.

First, as in the paper review case, there were instances
where an item within the topic was forgotten. Some of the
users were able to remember specific aspects of their topic
that lead them to originally choose to research the forgotten
items. These aspects were usually captured in the summary
of their photo album. For example, one user, given the topic
of “dinosaurs,” selected a specific time period within which
to select particular instances. In this case, a search for “Tri-
assic period” retrieved their photo page.

Second, users often remembered specific items without
recalling important features of those items that would be
necessary for retrieval. One user, researching politicians for
the photo album task, recalled a specific politician whom
he or she chose but could not recall the exact spelling of
the name, preventing a successful retrieval of the image file.
When trying to recall the web page from which the photo
originated, the user applied alternate information about the
candidate, issuing a successful query including the state which
the candidate represents. This was an application of knowl-
edge about the item that simply did not exist within the item
itself.

These scenarios indicate that users are more likely to re-
member broad topic information about a document than spe-
cific details about it. By capturing task-based context infor-
mation, SeeTrieve is more likely to contain keywords a user
is likely to remember, improving document recall.

Summary
An important lesson in this work is that users are generally
more able to recall the context in which a file used than the
file itself. One of the primary reasons for this is that this
context often contains information about the personal ways
in which a user conceptualizes a document.

In the process of doing a literature search for a research
paper on contextual retrieval, one might issue the query “pa-
pers on contextual retrieval”, to which a search engine like
Google might be able to return papers on a conceptually sim-
ilar topic like “personalized search”. This retrieval is en-
abled in part by the fact that the hyperlinked structure of the
web can leverage the multiple ways in which the universe

of users organizes information. For example, an individ-
ual might link to a “personalized search” paper within their
“context retrieval” web page, enabling search tools to con-
nect the similar concepts. In local document retrieval, this
structure cannot be leveraged. However, being able connect
the user’s initial query to the document which was ultimately
retrieved through a system like SeeTrieve allows the user to
implicitly describe their own documents through their be-
havior.

FUTURE WORK
Our evaluation of SeeTrieve was designed to show a few
cases in which context might be useful in retrieval. The next
important step in this research is to evaluate how the sys-
tem will perform in more natural settings, where context can
be leveraged in the myriad ways in which the modern user
interacts with their documents. Additionally, we are inter-
ested in identifying the effects of time and multiple use on
documents. For example, it would be useful to know what
features of context would be useful in documents with which
the user frequently interacts.

We also plan to extend SeeTrieve to enable the retrieval of
snippets themselves. Due to the abstract nature activity on
the web, there is not always a clear mapping between a set of
text and a retrievable item. For example, personalized “start
pages” like iGoogle can show a listing of recent news article
headlines which frequently changes. As dynamic content,
these pages have no concrete or permanent representation;
future accesses to the same URL will likely depict different
content, and a user might not be able to recall a headline for
an article they later wish to read. As a set of text, such a page
would be indexable to a system like SeeTrieve; by returning
this item upon a query, an important information need could
be satisfied.

CONCLUSIONS
This paper presents three contributions to the personal infor-
mation management and task retrieval communities. First, it
details the advantages to building context from the text re-
vealed in the user interface and addresses the challenges in
interpreting this information in the absence of application in-
formation. Second, it presents methods for correlating text
in the user interface with local documents using temporal
locality and the results of its user study provide strong evi-
dence that these techniques are effective. Third, its evalua-
tion methodology can inform the evaluation of future task-
based or personal information management systems.

ACKNOWLEDGEMENTS
We thank Diane Kelly and Alistair Veitch for their assistance
in designing and implementing the user study, and the par-
ticipants in the study for their valuable time and feedback.

REFERENCES
1. R. A. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

197

2. D. K. Barreau. Context as a factor in personal
information management systems. Journal of the
American Society for Information Science,
46(5):327–339, 1995.

3. T. Bauer and D. Leake. Using document access
sequences to recommend customized information.
Intelligent Systems, IEEE, 17(6):27–33, 2002.

4. T. Blanc-Brude and D. L. Scapin. What do people
recall about their documents? Implications for desktop
search tools. In IUI ’07, pages 102–111, New York,
NY, USA, 2007. ACM Press.

5. J. Budzik and K. J. Hammond. User interactions with
everyday applications as context for just-in-time
information access. In IUI ’00, pages 44–51, New
York, NY, USA, 2000. ACM Press.

6. P. Chirita, C. S. Firan, and W. Nejdl. Personalized
query expansion for the web. In SIGIR ’07, pages 7–14,
New York, NY, USA, 2007. ACM Press.

7. E. Cutrell, S. T. Dumais, and J. Teevan. Searching to
eliminate personal information management. Commun.
ACM, 49(1):58–64, 2006.

8. Google Desktop. http://desktop.google.com.

9. Yahoo! Desktop. http://desktop.yahoo.com.

10. S. Dumais, E. Cutrell, JJ Cadiz, G. Jancke, R. Sarin,
and D. C. Robbins. Stuff I’ve seen: a system for
personal information retrieval and re-use. In SIGIR ’03,
pages 72–79, New York, NY, USA, 2003. ACM Press.

11. D. Elsweiler and I. Ruthven. Towards task-based
personal information management evaluations. In
SIGIR ’07, pages 23–30, New York, NY, USA, 2007.
ACM Press.

12. K. Eshghi and H. K. Tang. A framework for analyzing
and improving content-based chunking algorithms.
Technical Report 30, Hewlett-Packard Labs, 2005.

13. X. Fu, J. Budzik, and K. J. Hammond. Mining
navigation history for recommendation. In IUI ’00,
pages 106–112, New York, NY, USA, 2000. ACM
Press.

14. K. Gyllstrom, C. Soules, and A. Veitch. Confluence:
enhancing contextual desktop search. In SIGIR ’07,
pages 717–718, New York, NY, USA, 2007. ACM
Press.

15. D. M. Hilbert and D. F. Redmiles. Extracting usability
information from user interface events. ACM
Computing Surveys, 32(4):384–421, 2000.

16. Indri. http://www.lemurproject.org/indri/.

17. V. Kaptelinin. Umea: translating interaction histories
into project contexts. In CHI ’03, pages 353–360, New
York, NY, USA, 2003. ACM Press.

18. D. Karger, K. Bakshi, D. Huynh, D. Quan, and
V. Sinha. Haystack: A General Purpose Information
Management Tool for End Users of Semistructured
Data. In CIDR, 2005.

19. D. Kelly. Evaluating personal information management
behaviors and tools. Commun. ACM, 49(1):84–86,
2006.

20. Microsoft Office Live.
http://office.microsoft.com/en-us/officelive.

21. Google Mail. http://mail.google.com.

22. N. Oliver, G. Smith, C. Thakkar, and A. C. Surendran.
SWISH: semantic analysis of window titles and
switching history. In IUI ’06, pages 194–201, New
York, NY, USA, 2006. ACM Press.

23. T. Rattenbury and J. Canny. Caad: an automatic task
support system. In CHI ’07, pages 687–696, New York,
NY, USA, 2007. ACM Press.

24. J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker. A
hybrid learning system for recognizing user tasks from
desktop activities and email messages. In IUI ’06,
pages 86–92, New York, NY, USA, 2006. ACM Press.

25. C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. In SOSP ’05, pages
119–132, New York, NY, USA, 2005. ACM Press.

26. Mac OS X Spotlight.
http://www.apple.com/macosx/features/spotlight/.

27. K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive
web search based on user profile constructed without
any effort from users. In WWW ’04, pages 675–684,
New York, NY, USA, 2004. ACM Press.

28. J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing
search via automated analysis of interests and activities.
In SIGIR ’05, pages 449–456, New York, NY, USA,
2005. ACM Press.

29. R. W. White and D. Kelly. A study on the effects of
personalization and task information on implicit
feedback performance. In CIKM ’06, pages 297–306,
New York, NY, USA, 2006. ACM Press.

198

