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Abstract. We develop and propose an approach modeled with multi-attribute 
utility theory for sensor fusion in context-aware environments. Our approach is 
distinguished from existing general purpose fusion techniques by a number of 
factors including a general underlying context model it is built upon and a set 
of intuitions it covers. The technique is developed for context-aware applica-
tions and we argue that it provides various advantages for data fusion in con-
text-aware scenarios. We experimentally evaluate the performance of our ap-
proach with actual use cases using real sensors.

1   Introduction

Various approaches attempting to partially reduce the incurred uncertainty associ-
ated with context and attempts to build effective models that describe context are still 
at an early stage. Context itself can reflect circumstances borrowed from a variety of 
domains, including social interactions and human perception, and reasoning about 
context often involves the task of identifying human users’ situations. Subsequently, 
the diversity and complexity of the conditions involved in reasoning about context 
contribute to the inference challenge. 

One key ingredient in inferring and interpreting context is fusing together sensor 
data. The integration of sensed information, preferably coupled with other (perhaps 
higher-level) reasoning methods provide a promising approach (although not com-
plete) for reasoning about context.

In this paper we develop and propose a novel approach modeled with multi-
attribute utility theory for fusing sensor data. Our approach is distinguished by its 
association with a general context model as the underlying description of context 
related knowledge. It attempts to incorporate various intuitions that should impact 
context inference, to produce a better fusion result. Our approach is specifically in-
tended for use in context-aware applications, and exhibits many characteristics desir-
able in reasoning about context. The underlying general context model offers a new 
theoretical perspective on context that enables development of new reasoning tech-
niques including the fusion technique discussed in this paper.



We organize this paper as follows. In Section 2 we introduce our theoretical mod-
eling approach referred to as the Context Spaces model, and discuss different con-
cepts, which are used during the development of the fusion process. In Section 3 we 
develop our fusion algorithm, as a practical extension of the Context Spaces model. 
We first discuss the intuitions we seek to cover in the fusion and then develop the 
technique itself. We experimentally evaluate our proposed approach in Section 4 in 
two stages. We use simulation experiments with which we analyze the performance 
of the fusion and the intuitions we seek to cover; and we provide results of our fusion 
technique in actual office-related use cases using combinations of real-life sensors. 
We conclude our paper in Section 5.

2  The Context Spaces Theoretical Model

Our objective is to develop an approach for inferring the occurrence of situations 
by a context-aware system for any type of situation it is familiar with. It should be 
able to provide a solution to a query such as: “Is situation X occurring?” 

To enable this capability for general use (i.e. by different applications for different 
types of situations and available information) we develop a formal model that repre-
sents perceived context and situations of interests of a system. We then develop a 
technique for fusing the modeled information to achieve situation awareness.

The paradigm of context-aware computing can be regarded as an attempt to obtain 
information with limited sensing capabilities, but which nevertheless reflects circum-
stances useful to the application at hand. Designers of a context-aware application 
would seek to define perceivable context, which reflects interesting circumstances or 
real-life situations, as accurately as possible, governed by limitations such as tech-
nology and cost. 

The fundamental nature of context (in context-aware computing) can therefore be 
regarded as a constrained view of a system over the world, which can either be im-
mediately used (for triggering actions) or can represent real-life situations (in which 
case further computation may be required to relate the context to the situation, e.g. 
data fusion techniques). 

The Context Spaces theory aims to model this fundamental nature of context and 
enable context and situation awareness for systems that are able to sense information 
with various degrees of imperfections at runtime. It is an attempt towards a general 
context model to aid thinking and describing context. The concepts use intuitions 
from geometrical spaces and state-space models - we hypothesize that geometrical 
metaphors such as states within spaces are useful to guide thinking about context, 
though the user will need to take the concepts and elaborate on them within the con-
text of the application to be built.

In the process of developing our fusion technique we will make use of the follow-
ing concepts. 

2.1 Context Attribute



Definition 1. A context attribute (denoted by ia ) is defined as any type of data that 
is used in the process of inferring situations. A context attribute is often associated 
with sensors, virtual or physical, having the value of the sensor readings denote the 
context attribute value at a given time t (denoted by t

ia ). 

2.2 Context State
Definition 2. A context state describes the application’s current state in relation to 
chosen context, and is denoted by a vector Si. It is a collection of context attributes’ 
values that are used to represent a specific state of the system at time t. A context 
state is ),...,,( 21

t
N

ttt
i aaaS = where t

iS denotes a vector defined over a collection of 

N attribute-values, where each value t
ia corresponds to an attribute ia ’s value at 

time t.

2.3 Situation space
Definition 3. A situation space represents a real-life situation. It is a collection of 
regions of attribute values corresponding to some predefined situation and denoted 
by a vector space ),...,,( 21

R
N

RR
i aaaR = (consisting of N acceptable regions for 

these attributes). An acceptable region R
ia is defined as a set of elements V that 

satisfies a predicate P, i.e. R
ia = {V |P(V)}.

For example, in numerical form the accepted region would often describe a domain 
of permitted real values for an attribute ia . A region of acceptable values is defined 
as a set which satisfies some predicate; hence, it can contain any type of information, 
numerical or non-numerical.

We complete the basic model with a set of functions, which add more realism to 
the representation by relating interesting facts to the fundamental concepts. In this 
paper we will consider two of these functions, as follows.

2.4 Relevance function 

Definition 4. Given a situation space i, a relevance function iε associates 

weights Nww ,...,1 with regions of values R
N

R aa ,...,1 of i, respectively, 

where 1
1

=∑
=

N

j
jw . A weight ]1,0(∈jw represents the relative importance of an 

attribute region R
ja to other regions in the situation space’s definition.

In many cases some types of information are more important than others for infer-
ring a situation, e.g. high body temperature may be a strong indication of a general 
sickness of a person while other attributes may not be so important to infer that spe-



cific situation. For example, high respiratory rate may be caused by and therefore 
also indicative of other situations, such as a person doing physical exercise. To 
model this variation in the importance of context attributes for inferring a situation, 
we define the relevance function, which assigns weights to context attributes. The 
weights reflect how important each attribute is (relative to other attributes) in de-
scribing a situation.

2.5 Contribution function
Definition 5. A function jη assigns a contribution level ]1,0(∈c for each element 
in a region of values j. The contribution level of an element in a region reflects how 
well is that element (an attribute value) associated with the modeled situation. 

In the relevance function we model the relative importance between the regions of a 
situation space, whereas in the contribution function we model the individual contri-
bution of elements within a specific region for inferring a situation. 
This allows a differentiation between different values for the same context attribute. 
For example, it might be that some values are better reflecting the purpose of that 
specific region than others. E.g., for a context attribute of ‘body temperature’ in the 
definition of ‘subject is healthy’ the values between 36.5 and 36.7 would reflect a 
contribution of 1 (on a scale between 0 and 1) and values between 36.3 and 36.5 and 
between 36.7 and 36.8 would reflect a lesser degree of supportive contribution. 

3 Data Fusion Algorithm for Context-Aware 

The most basic intuition covered in the Context Space paradigm is that of repre-
senting context in terms of state and space. The existence of the context state within 
some situation space indicates, to a certain degree, the occurrence of the situation 
represented by that space. While this represents an initial reasoning approach, we 
have argued that additional information is necessary for more accurate and realistic 
modeling of the situation and therefore needs to be considered during inference. 

We develop a data fusion technique, based on multi-attribute utility theory
(MAUT) [6] that takes the information represented by the model (i.e. the condition 
of the context state and the definition of the situation space to be inferred) and com-
putes a degree of support for the occurrence of that situation. The degree of support 
is then compared with support for other alternative situations or with a support 
threshold predefined by the system designers, to facilitate a decision regarding the 
occurrence of the situation.

The algorithm works by accumulating positive indications for the occurrence of a 
situation. These indications cover several intuitions that we believe are important to 
be considered in reasoning about context. They include the following:
(1) Individual significance and contribution of context attributes -



This information is modeled by the relevance and contribution functions in the 
model.
(2) Completeness of containment -

In context-aware computing application designers specifically choose a relatively 
small number of context attributes to represent a particular situation. Therefore it is 
significant that values of all chosen attributes correspond to the situation definition. 
(3) Different characteristics of context attributes and their effect over the fusion -
We distinguish between two types of context attributes in regard to the definition of a 
situation space, which have different effects over the fusion outcome, as follows. 
Intrinsic:
Definition 4. An intrinsic context attribute is an attribute which negatively affects 
the inference of a situation if its value is not within the acceptable region of values 
of the same attribute type.

If some context attribute (e.g. light level) is defined as intrinsic then having a 
value outside the corresponding region in the situation space would decrease the 
support for the occurrence of that situation.
Optional:
Definition 5. An optional context attribute is an attribute that assists in inferring a 
situation (i.e. having values of such attributes within the accepted regions would 
increase the probability of the situation), but sensing values outside the accepted 
region would not weaken the support for having the situation.

This distinction between different types of context attributes, therefore, exercises 
dissimilar impact over the final inference result. To clarify this distinction, examine 
the following intuitive examples. First consider a situation space defined for a situa-
tion of ‘subject is healthy’ with an intrinsic attribute of ‘Body Temperature’ and 
acceptable region of values between 36.6 and 37.2. Deg. Celsius. Any value outside
this region, say 38 Deg. Celsius, would mean (with some degree of confidence) that 
the subject is unhealthy. Therefore the values of this type of attribute must always 
remain within the region of values specified for it in the situation space. 

In contrast, when we use a context attribute ‘PDA location’ of a user to help us in-
fer ‘user in a meeting’ situation, the accepted region for this attribute would be loca-
tion information corresponding to the meeting room. Having indication of a PDA 
located in the meeting room will assist to infer the situation. However, if the PDA 
location is sensed to be elsewhere, the ‘user in a meeting’ situation may still be valid 
(e.g. the PDA was left at home or in the office). Therefore, this type of attribute 
would be referred to as optional, since it only assists in inferring a situation but does 
not refute a situation if its values are outside the situation space.
(4) Completeness of containment vs. individual contribution -
There is a trade-off between ensuring complete containment of all intrinsic attributes 
and their individual contributions. An important context attribute should produce 
greater impact on the final result of the fusion than one which is considered less 
important. In contrast, when several attributes are equally very significant for the 
evaluation of the real-life situation we may want to ensure that all of them are con-



tained, in particular when they are explicitly chosen at design time. We therefore 
need to account for this type of trade-off in the fusion process.
(5) Inaccuracies of sensors, yielding uncertain context attributes values -
Inherent inaccuracies associated with sensor readings should affect our confidence in 
the outcome of matching state (defined over inaccurate context attributes values) and 
space. The true state of an attribute which value is outside some region of values 
might actually be contained within that region, and vice-versa. Sensors are often 
inaccurate and it is important to naturally incorporate accuracy estimation in the 
fusion model. 

3.1 A Utility Based Fusion Approach

We make use of MAUT as the basis for deriving a measure that reflects the accu-
mulated support for the occurrence of a situation represented by the situation space. 
The process considers the intuitions previously described and results in a single nu-
merical-valued measure ranging between 0 and 1. 

MAUT provides a convenient way for combining together seemingly different 
contributions into a single measure, expressing the result in terms of utility [6]. In 
our case, utility can be defined as the contributed support of having a context attrib-
ute value within a corresponding region for inferring the situation, constrained by 
additional considerations. The more indications we have that the context state 
matches the definition of a situation space, greater utility is gained and vice versa. 

MAUT is considered an evaluating scheme, which provides a general evaluation 
function v(x) over an object x to denote the overall object’s utility. The evaluation 
function is traditionally defined as a weighted accumulation of evaluating the ob-
jects’ value dimensions [6, 3], which represents a combination of different contribu-
tions relevant to the object. Each dimension can also be individually evaluated using 
the general approach of weighted contribution by evaluating its own value dimen-
sions.

In the following we combine the model’s concepts and our intuitions to reflect a 
single utility measure. (If some intuition is irrelevant then it should not be included; 
the principle of a utility combination approach remains, however, the same.) 

We start by defining a dimension 1d , evaluating the fact that a context attribute 
value matches the situation space definition.
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=
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n
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having a context attribute ia ’s value contained in its corresponding region of val-
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pressing the relative importance of the specific context attribute evaluation to the 



overall utility. The calculations of iŵ is done using a process of weights redistribu-
tion. 

In general, in terms of MAUT, )( R
i

t
i aap ∈ reflects the evaluation of a particu-

lar attribute containment; the higher the probability of an attribute value being 
within the region, the greater contribution is evaluated for the attribute. The more 
confident we are in the containment of an attribute, the more this attribute can con-
tribute to support the situation. iŵ reflects the individual weight or significance of 

the attribute in the overall evaluation process of 1d . The need to determine weights 

with additional computation ( iŵ rather than iw ) is the result of considering the 
characteristics of the context attributes, being either intrinsic or optional. 

For example, an optional attribute may be an important ingredient in inferring a 
situation and therefore should be associated with a high weight value. However, if 
this attribute does not correspond well to the situation space, its absence should not 
affect the inference result (since it is defined as optional). This fact would affect the 
weight values of the remaining context attributes, which should still reflect the same 
relative importance between themselves.

The general steps for determining weights for equation (1) are the following.
Let Nmkk wwwww ,...,,...,,...,, 21 + denote initial weights associated with a given 

context state t
iS for the specific fusion procedure, where weights are determined 

according to their relative importance in regard to a specific situation.
1. Repeat for each optional context attribute k:

1.1 If )( R
k

t
k aap ∈ < C then kw = 0, where C defines a threshold value

2. Repeat for each context attribute i (both optional and intrinsic): 

∑
=

=
N

j
jii www

1

/ˆ  

During redistribution of weights, the system examines how well an optional attribute 
fits the definition of a situation space. If a sufficiently low confidence in the con-
tainment of that context attribute is gained (thereby reflecting the disassociation of 
the attribute with the space) it is ignored by assigning its weight to zero. Finally, 
after the adjustment of all optional attributes, the overall remaining attributes’ 
relative weights are recalculated.   

Next, we define a dimension 2d , evaluating the contribution of the fact that the 
entire intrinsic attributes match the definition of the situation space. We com-
pute 2d as the joint probability of the containment of all intrinsic attributes in the 
situation space, where we assume attributes are independent, as follows. 

(2) ∏
=

∈=
m

i

R
i

t
i aapd

1
2 )( , where ia is an intrinsic context attribute



We have so far defined two dimensions that express different aspects that are im-
portant in obtaining an accumulated support measure and contribute to an overall 
utility estimate ( 1d looks at individual attribute contribution and 2d at having a com-
plete containment of all attributes). We now proceed and combine these two dimen-
sions in a general utility function, as follows.
(3) 2211 dqdqU += , where 121 =+ qq

The overall utility U considers each dimension’s relative weight in determining a 
combined result. The individual weight (i.e. iq ) of each of the two dimensions in the 
overall utility measure greatly depends on the situation at hand. More specifically, it 
depends on the distribution of the weights in equation (1).

An interpretation of 1d and 2d reveals a trade-off between the need to have all the 

attributes contained within a space (reflected by 2d ), and the need to account for 

their individual contributions ( 1d ). If for example, all context attributes are equally 
significant (e.g., as an application developer determines), then it is sensible to put 
more emphasis on 2d , i.e. having all the attributes contained within the space. So 
that if an attribute is outside the situation space, an overall low confidence would be 
achieved. If on the other hand, some context attributes are much less significant, 
then it would be more appropriate to give greater importance to 1d , i.e. give more 
weight to the significant attributes containment, rather than insisting on having all 
attributes contained. 

Consistent with this line of reasoning, we set the overall utility weights by analyz-
ing the differences between the weights defined in the situation space definition. 
Greater differences increase 1q and smaller differences increase 2q . We suggest the 
following simple computation to determine the weights:

max

min
2 ˆ

ˆ
w
wq = , where 0ˆ min ≠w , and minŵ and maxŵ denote minimal and maximal 

weights after weights redistribution process, respectively. Alternatively, other ap-
proaches such as standard deviation analysis can be used.

3.2 Estimating containment
We have so far used the expression )( R

i
t
i aap ∈ to denote an estimate for the con-

tainment of an attribute within its corresponding region. As long as no sensor inac-
curacy is considered, t

ia also represents the actual value or true state of the sensed 
attribute value. However, as sensors can in general be inaccurate, the true state might 
be significantly different than what is reflected by the sensor readings. We would 
therefore need to estimate the probability of the true state being within the region of 
values, i.e. )( R

i
t
i asp ∈ , where t

is denotes the true value. (If we are unable to per-



form such estimation, then )( R
i

t
i aap ∈ would represent complete confidence in the 

actual observation represented by the sensor readings).
Knowledge about sensors and data accuracy can be obtained by various means. 

These include manufacturer specifications or confidence estimation as part of the 
provided service (e.g. in [9] the position engine provides a confidence measure asso-
ciated with the inferred location). Alternatively, testing sensors for accuracy with 
sufficient sample sizes and knowledge of the true state can be used to derive esti-
mates of readings errors. Similar approaches have been suggested in [7] for using 
ground truth knowledge on the current actual sensor performance and using histori-
cal knowledge on sensor performance as they age. 

3.3 A General approach for Estimating Containment 

We now develop a general approach for deriving confidence in containment of the 
true state of a context attribute sensed value in a region of values, given a known
distribution of the reading errors or some estimation for it. For simplicity we assume 
that changes in the context attribute values do not significantly change the errors’
distribution behavior (i.e. their mean and standard deviation). This estimation is 
intended for sensor readings that correspond to continuous region of values as well as 
discrete regions, which contain all possible elements between some minimum and 
maximum boundaries. (E.g. all enumerated values of some semantic non-numeric 
attribute between some maximum and minimum enumerated values). 

Let t
i

t
ij sae −= denote an error of a sensor reading from the true state of the 

context attribute value it senses, where t
is represents the true state measured by a 

sensor for context attribute ia and t
ia denotes the sensor reading value. Note that the 

error is intentionally characterized as having signed value rather than absolute; 
(when a sensor is biased, reading errors may have significantly different densities for 
values higher or lower than the true state).
Let 

min

R
ia and 

max

R
ia denote minimum and maximum values of an accepted region of 

values R
ia , which corresponds to a context attribute ia . 

Proposition. The probability of the true state t
is being contained within the region 

R
ia can be computed by:
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Proof: For containment in a continuous region of values the context attribute true 
value must be greater or equal to

min

R
ia and smaller or equal to

max

R
ia , i.e.: 
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Substitute t
is with j

t
i ea − to obtain: (2)
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The practical implication of this is that given an estimation of the reading errors’
distribution we can estimate the true state containment in the region by the observa-
tion (i.e. the inaccurate sensed value) alone. For example, if we know that the read-
ing errors follows, say some Normal distribution estimation, than the containment of 
the state could be computed by: )()(

maxmin

R
i

t
ij

R
i

t
ij aaepaaep −<−−≤ .

4 Experimental evaluation

We have described a utility based approach, which considers various intuitions 
that we believe are important when fusing together sensors data for reasoning about 
context. We proceed with a set of experiments that examine the behavior of our 
measure and its sensitivity to various changes in the environment. We separate the 
experimental evaluation into two parts. In the first, we use a simulation of a variety 
of sensor types, inaccuracies and scenarios. We seek to show how our intuitions are 
captured in the outcome of the support measure. In the second part, we provide re-
sults of an experiment, which uses real-life sensors, where we try to distinguish be-
tween three types of situations in real-life office settings, using the fusion process. 

4.1 Performance Analysis

We compute the support measure in a setting of ‘user in a meeting’ situation, us-
ing a variety of simulated sensor types, accuracy levels and varying knowledge over 
the sensors accuracies. A description of the sensors used here is provided in Table 1. 
Each sensor activity is simulated using random value generation according to natural 
changes in the true event it senses and its defined inaccuracy. We allow different 
knowledge and type of inaccuracy for different sensor types. For example, we pro-
duce Normal approximated discrete samples to characterize location errors, assign 
Boolean result with fixed known accuracy for light detection and assume no knowl-
edge whatsoever about the inaccuracy of noise level detection.   

We assign importance on a scale between 1 and 5 and associate a relative weight 
for each sensor, corresponding to its significance for inferring the situation. Here, we 
seek to obtain a general sense of relative importance, using expert knowledge, rather 
than an exact resolution of the weights, which may be harder to achieve. For exam-
ple, in estimating if a specific user is in a meeting, the fact that the user is located in 
the meeting room is more significant than the fact that noise is detected in the room.

Finally, we characterize each context attribute in the situation space definition as 
being either optional or intrinsic. For example, we assume that a user always carries 
his RFID tag but may leave his PDA behind, therefore refer to user location inferred 
by the PDA location as optional. Similarly, a projector may or may not be active 



during a meeting. Its activity would contribute to the inference of a meeting but not 
the opposite. 

attribute name importance (1-5) optional weight
User RFID Y Location 4 No 0.114286
User RFID X Location 4 No 0.114286
User PDA Y Location 3 Yes 0.085714
User PDA X Location 3 Yes 0.085714

MR Light Level 1 4 No 0.114286
MR Light Level 2 4 No 0.114286
MR Noise Level 2.5 No 0.071429

MR Motion Detected 2.5 No 0.071429
MR Projector Active 4 Yes 0.114286

MR Microphone Active 4 Yes 0.114286

Table 1 –Sensors definitions for simulation of ‘user in meeting‘.

First, we examine the effect of optional attributes over the support measure. Figure 
1 depicts the results of the measure for the ‘user in meeting’ situation for three sce-
narios. In the first scenario all sensors yield values that correspond to the definition 
of the situation space (i.e. all attributes values are contained in corresponding re-
gions). This results in relatively high support for the specific situation (i.e. A) and 
varies in time according to inherent inaccuracies of sensors and changes in the ex-
periment settings (such as user changes locations inside the meeting room). In the 
second scenario, we position the user’s PDA in his office. As this attribute is defined 
as optional the overall support remains nearly identical, yielding high support for the 
situation (i.e. B). Minor differences compared with the previous settings result from 
fewer number of attributes participating in the fusion (The PDA location is not con-
sidered).

Fig. 1. Effects of optional attributes

In contrast, the effects of positioning the user’s RFID tag outside the meeting 
room are significant. The support measure immediately drops to reject the ‘user in 
meeting’ situation. This corresponds to a scenario when the user is actually in his 
office but forgot his PDA for example, in the meeting room.
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Next we examine the general behavior of the measure when we significantly 
change the readings of various sensors. Figure 2 depicts different support levels for 
the situation in three different scenarios. In the first scenario all sensors yield values, 
which are contained in their corresponding regions of values. In the second scenario, 
values are only partially contained in the regions, due to their inherent inaccuracy 
and experiment settings. 

Fig. 2. Effects of sensors values
For example, simulating the user being located close to the boundaries of the room 

together with high inaccuracy of the positioning mechanism. The last scenario, de-
picts situations where some of the events the sensors sense are truly outside the re-
gion of values. For example, when the user is in the corridor close to the meeting 
room and do not participate in the meeting. As expected, the results show degrada-
tion in support as sensed values reflect notably different situations.  

Finally, we observe in figure 3 the effect of associated inaccuracies of sensors. The 
higher the inaccuracy of a sensor, a lower degree of support is gained for the situa-
tion and vice versa.

Fig. 3. Effects of sensors inaccuracies

The experiment’s results reafirm the expected behaviour of the fusion and the 
intuitions it attempts to capture.
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4.2 Performance in a real-life use case

We follow with a performance analysis of a real-life use case fusing together a 
blend of different real sensors and data sources. In the following experiment we were 
interested in identifying and distinguishing between three types of user activities, 
taking place in our smart meeting room, namely, (1) a user giving a presentation, (2) 
a user attending another’s presentation and (3) a user attending a meeting. 

To reason about these activities we have selected four basic context attributes 
physically positioned in different locations, specifying the user location, the meeting 
room light level, the user’s notebook keyboard and mouse activity and presence of 
active presentation processes on the user notebook. We defined the corresponding 
region of values of the context attributes for each situation space with different ap-
propriate values, including optional and intrinsic attributes and associated inaccura-
cies of readings. For user location we used Ekahau Positioning Engine [9] that tracks 
the user’s personal devices such as her PDA and notebook. The positioning service 
computes spatial positions by analyzing wireless signal strengths and comparing 
them to previous calibration. It provides an associated confidence of its inferred loca-
tion with a measure between 0 and 1. We used Berkeley Motes [10] for sensing and 
communicating light levels in the meeting room. For retrieving information about 
the user’s presentation activity we have implemented a service that hooks to the 
notebook operating system and provides information on latest keyboard and mouse 
activity. We also provide a service that identifies active presentation processes in the 
notebook. 

In the meeting room we use a portable light-weight presentation projector that is 
connected to the presenting user’s notebook. It is a common practice and the assump-
tion in this experiment that each presenter uses his personal notebook. 

During experimentation we have revealed significant inaccuracy in location esti-
mation due to less than optimal wireless network settings that affect signal strength 
and number of optimal access points. The Positioning Engine Server itself is located 
in a remote location and communicates with an agent that performs the fusion via 
wireless 802.11b infrastructure. 

The functional architecture of the reasoning process is as follows. An agent work-
ing on behalf of the user and running on the user notebook is equipped with commu-
nication protocols for exchanging information with remote sensing services as well 
as with local independent processes that provide information on notebook activity. 
The agent performs fusion using the inputs of the incoming information and assigns 
a support measure to each of the candidate situation spaces, which represent the real-
life activities. Before applying the fusion, information is pre-processed either by the 
agent or remotely, depending on the type of data. For example, light levels are sam-
pled by the motes sensors a number of times and then averaged. The Motes Interface 
Service, which handles this information, matches the averaged result against prede-
fined light levels and communicates back a predefined value. In contrast, interpreta-
tion of keyboard and mouse activity is preformed directly by the agent. Here, the 
amount of time lapsed since the last captured activity influences the confidence that 
the user is currently using his notebook. Various similar approaches of preprocessing 



raw sensor readings (also known as cooking the data or using cues) are common in 
fusion for context recognition and have been shown to significantly improve infer-
ence results (e.g. [2, 1]).

During actual experimentation we have switched between the activities and ob-
served the results of the measures for the different situations. Figure 4 provides sup-
port measures for the three activities. In this experimental run we have started with 
the user presenting first for 15 minutes then attending a colleague’s presentation for 
15 minutes and finally participating in a discussion or general meeting on the topics 
presented (again for 15 minutes). Interpretation of the results reveals matching sup-
port levels with the actual activity taking place. At the time the user is presenting, 
the support for this particular activity averages around 0.9 whereas support for other 
situations is significantly lower. A change in the situation towards the user only 
attending another’s presentation results in a drop of the ‘User Presenting’ situation 
to support levels below 0.4, and a rise in the support for the ‘User attending a presen-
tation’ situation to levels around 0.9. 
Similarly, when a discussion (equivalent to a meeting) over the presentations involv-
ing our user is starting right after the second presentation, the support for ‘User in a 
meeting’ situation rises to 0.9 and support for the former situation drops signifi-
cantly.

The successful results of this experiment can be partly contributed to observing as-
sumed behaviors associated with the defined activities, such as having the lights 
switched off during presentations and on during the following general discussion, or 
controlling the presentation shown from the user’s notebook.

Fig. 4. Experimental run

In order to relax these assumptions more context attributes need to be introduced, 
such as those discussed and demonstrated in section 4.1. Here, the choice and design 
of sensor networks clearly affects the quality of inference [8, 4, 5]. In this experiment 
we have shown that our approach is applicable for fusion in real-life scenarios using 
real sensors and data.
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5. Conclusion

We have presented an approach for fusing sensor readings that considers intui-
tions that we believe are pertinent in reasoning about context. Our approach can be 
considered within the general field of sensor fusion modeled with MAUT for situa-
tion classification. We have also offered a unique theoretical perspective about con-
text that we use to develop a general context model and general purpose inference 
procedures.
Having an inference technique, which is an extension of a general context model, is 
an appealing feature in itself, as it can be applied seamlessly over different domains 
and context-aware scenarios. Given information captured by the general context 
model, the fusion can be immediately applied to infer the occurrence of a situation of 
interest.
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