
Using the Event Calculus for the Performance Monitoring of Service-Level
Agreements for Utility Computing

Andrew D H Farrell, Marek J Sergot,
Department of Computing,
Imperial College London,

United Kingdom.
{adf02, mjs}@doc.ic.ac.uk

Mathias Salle, Claudio Bartolini,
HP Labs,

Palo Alto, California,
United States of America.

{mathias.salle, claudio.bartolini}@hp.com

Abstract

The automated performance monitoring of contracts,
in terms of tracking contract state, is an important issue
investigated in this work. We define contract state to be
the sum of the normative relations that hold between
contract parties. In order to facilitate state tracking, we
define an XML formalisation of the Event Calculus,
ecXML. This language is used to describe how a
contract’s state evolves, according to events that are
described in the contract.

The work is grounded in the domain of Utility
Computing (UC). UC is concerned with the
provisioning of computational resources (compute-
power, storage, network bandwidth), on a per-need
basis, to corporate businesses. Service-level Agreements
(SLAs) - contracts between a provider and a customer -
are a sine qua non in the deployment of UC.

1. Introduction

Utility Computing (UC) [1] offers an opportunity to
corporate businesses to maximise the efficiency and
efficacy of their IT service provision (both in-house and
to customers). It will allow them to out-source large
areas of their IT service provision to UC-data centres,
which will agree to provide computational resources,
packaged as services to them.

The levels of service that are agreed between a UC
service-provider and customer are mandated by Quality-
of-Service (QoS) guarantees, written as Service-Level
Guarantees (SLGs) within Service-Level Agreements
(SLAs) [2]. An example SLG might be:
• Service Availability should be greater or equal to

99%, weekdays 9a.m.–5p.m.

• Service Availability should be greater or equal to
95%, at all other times

• Availability metric is measured over each calendar
month; penalty for SLG violation: refund to
customer monthly fee

SLAs are essential for formalising the objectives of a
UC service, and to manage expectations [3].

In this work, we have been interested in monitoring
the state of contracts while they are active. We define
contract state as the sum of the normative relations that
hold between contract parties. An example of a
normative relation might be: Service Provider is
permitted to terminate the SLA.

The work that has been realised here has been
concerned with one particular aspect of the life cycle of
a contract (such as an SLA), namely, automated run-
time performance monitoring [4]. In our view,
performance monitoring is concerned with (at least) two
functional aspects: (i) Tracking the effect of events
(pertinent to a contract) on contract state – the
contractual (or, normative) relations that hold between
contract parties – and informing interested parties of
past, present and (possible) future contract states; and,
(ii) Assessing the current state of the contract, in terms
of its utility (that is, worth), and other metrics related to
business intelligence [5]. The work presented in this
paper is primarily concerned with the first of these,
which is known as automated contract (state) tracking to
distinguish it.

Notably, approaches to automated tracking of
contract state, thus far, can be largely characterised in
one of two ways [6]: (i) As general-purpose reasoning
frameworks that (mainly) have not been applied in
actual, deployed systems; or (ii) In the case of SLAs, as
being fairly limited in capability. The work presented
here is considered to be distinguished from such
approaches in that: (i) It has been developed in the

context of a real-world deployment scenario (namely,
SLAs for UC), while being generalised so to be
applicable to other domains; and (ii) It represents an
advance (over many approaches) in what can be realised
regarding performance monitoring for contracts.

This paper is structured as follows. In section 2, we
present an example contract (namely, an SLA for a UC
scenario), used to ground our discussions. In section 3, a
brief analysis of this contract is given. In section 4, an
informal introduction to the Event Calculus is presented.
In section 5, a brief overview of the representation of the
example contract in the Event Calculus is given. In
sections 6 and 7, we discuss the implementations of a
reasoner for contracts written in the Event Calculus, and
of a deployment tool for SLAs. In section 8, we present
related work and conclude the paper in section 9.

2. Example contract

In this paper, we use the following Mail Service UC
SLA in order to ground our discussions. Portions in bold
are referred to in the course of this paper.
• The Service Provider (SP) will provide a mail

service to the Service Consumer (SC), which
includes a mailbox with a quota of s GBytes. SC
will be charged a fixed monthly fee of s x c0 for
the service.

• In the case that the mail service is unavailable,
SP will pay $p for every whole t minutes that it is
unavailable. SP is obliged to pay any penalties to
SC within a month of their accruement.

• Whenever u>s, where u is the mailbox utilisation
in GBytes, SP will charge SC c1 for each GByte
over s, calculated daily, until u≤ s

• Whenever u>s+e, where e is a level of tolerance in
GBytes, SC will not be able to receive emails.

• All billing of SC occurs monthly, and SC is given
a month thereafter to pay. If SC fails to pay
within the given time, SP may terminate the
mailbox service without notice.

3. Brief Analysis of Contract
For the purposes of representing a contract in order

to facilitate state tracking, we are concerned with
identifying events described in the contract that can
have an effect on contract state. Once identified, we
need to express, in our representation, the effects on
contract state of these events

For example, the contract excerpt: “All billing of SC
occurs monthly” indicates a monthly billing event. One
effect of such an event is that SC receives an invoice for
service. But this is not an effect on contract state, per se.
We shall say that another effect of this event – this time,

on the contract state – is to activate a normative relation,
namely an obligation bearing on SC to pay SP for
service, where “SC is given a month thereafter to pay”
– that is, SC has a month to fulfil its obligation to pay.

Another example is: “If SC fails to pay within the
given time, SP may terminate the mailbox service
without notice”. This statement talks about another
event; that of SC failing to fulfil their obligation (to pay
for service) on time. We shall say that an effect of this
event is to activate another normative relation, namely a
(vested) permission for SP to terminate the mailbox
service

4. Using the Event Calculus

From the perspective of what needs to be represented
for contract state tracking, then, we need some way of
representing the effects of events on contract state. For
this, we use the Event Calculus (EC) [7]. In this work,
we have defined an XML formalisation of EC, called
ecXML. We use XML as a convenient file format for our
implementation of a reasoner – the Event Calculus State
Tracking Architecture (ECSTA) – for contracts written
in ecXML.

In the sequel, we will not describe the XML
formalisation, rather we will introduce EC informally.
We say that a contract (as represented for state tracking)
in the Event Calculus is a conjunction of:
• A finite set of initially statements, e.g.:

o1 initially holds1 (if some condition holds)
• A finite set of initiates statements, e.g.:

the occurrence of a billing event initiates o1 (if
some condition holds)

• A finite set of terminates statements, e.g.:
the occurrence of a fulfilment event for o1
terminates o1 (if some condition holds)

• A finite set of occurs statements, e.g.:
a billing event occurs 1 month into the contract

• Plus some other statements

Then, axiomatic to every contract in EC is the holds
statement, which says: Normative relation r holds at
time T if and only if:
• There is a statement which says that it holds

initially or it has been initiated before or at T AND
• It has not been terminated, after its initiation, before

or at T

For example:

1 Where o1 may, for example, be an obligation on

SC to pay SP for service.

• The occurrence of a billing event initiates o1
• The occurrence of a fulfilment event for o1

terminates o1
• A billing event occurs 1 month into the contract
• A fulfilment event for o1 occurs 1.5 months into the

contract

According to the holds statement, o1 does not hold
at 0.5 month because it does not hold initially and it has
not been initiated before or at 0.5 month. However, o1
does hold at time 1.25 months because the billing event
occurring at 1 month initiates o1 and it has not been
terminated since 1 month but before or at 1.25 months.
Finally, o1 holds at time 2 months because
notwithstanding its initiation at 1 month, it is
terminated by the occurrence of the fulfilment event for
o1 at 1.5 months.

It is considered that a normative relation may be
parameterised. Different parameterisations using the
same relation name count as different normative
relations. As such, there is always a single proposition
that pertains to a normative relation. A
parameterisation for o1 might be: amount that SC owes,
along with the billing month. An example normative
relation pertaining to o1 would then be: o1(Charge,
Oct2004). Note that if o1 is not parameterised, then o1
itself would count as the normative relation.

Specifying parameters may be useful to external
components; in the example, a billing component may
use the information provided in sending SC an invoice.
Parameters may be passed back to the contract
representation within occurs statements.

Conditions in our formalisation of the Event
Calculus are used in initially, initiates and terminates
statements. They may comprise not, and, or, beq
(boolean equals), geq (double greater or equals), leq
(double less or equals), gt (greater), lt (less), deq
(double equals), bool (boolean value), bpara (boolean
parameter), btpara (boolean contract parameter),
occurs (event occurrence), and holds (normative
relation holds) statements.

The statements: geq, leq, gt, lt, and deq take
numerical (that is, double) operands, which may be
provided by the following statements: mul, add, sub, div,
num (double value), dpara (double parameter), dtpara
(double contract parameter), and value (contract
variable value).

Note that contract variables are used to maintain
live, numerical state – their use is normative in that it is
agreed by all parties when a contract is signed. A
contract parameter is assigned a value at the
instantiation of a contract, and facilitate the notion of

contract templates, which are customised for particular
scenarios.

Timers may be specified in our formalisation, where
these may be one-off or recurrent. They are used to
generate occurs statements which are then processed by
a reasoner for the instantiated contract. An example of
their use is for generating violation events for
obligations, which typically have a time constraint for
their fulfilment.

Finally, using our formalisation, it is possible to set
up state definitions for a contract, which allow us to
monitor states of interest. For example, we may say that
a “Payment Outstanding” state exists if normative
relation o1 holds. Thus, it is the holds statement that
allows us to query the state of a contract. That is, to ask
if the contract is in a “Payment Outstanding” state, we
ask whether o1 holds.

5. Event Calculus Representation of
Example Contract

Firstly, we give (unique) names to the identified
normative relations and events in the contract. For the
example contract, we shall use these names:
• Normative relations: Obligation (on SC to pay for

service) is o1, and Privilege (for SP to terminate
mailbox service) is p1

• Events: Billing event is bill_timer, and Failure to
fulfil obligation o1 is o1_violated

For each identified event, we need to state its effects in
the Event Calculus on contract state. For example, we
want to say that bill_timer initiates obligation o1. This
would usually be written in ecXML, but is given here in
English for clarity:
• The occurrence of event bill_timer initiates o1 with

a single initiation parameter Charge set to the
value obtained by summing the current values of
contract variable vDailyCharge and contract
parameter sc0

This statement in part accounts for the following
snippets of the example contract:
• “SC will be charged a fixed monthly fee of s X c0

for the service”. This is reflected in the use of sc0
in the contract statement.

• “Whenever u>s, where u is the mailbox utilisation
in GBytes, SP will charge SC c1 for each GByte
over s, calculated daily, until u• s”. This is
reflected in the use of vDailyCharge in the contract
statement.

• “All billing of SC occurs monthly, and SC is given
a month thereafter to pay”; in that, it initiates the
obligation o1 on SC to pay.

Another example is the contract excerpt: “Failure on
the part of SC to fulfil obligation o1 initiates privilege
p1”. This is written as:
• The occurrence of event o1_violated initiates p1

Finally, the contract excerpt: “In the case that the
mail service is unavailable, SP will pay $p for every
whole t minutes that it is unavailable” is, in fact, part of
a Service-Level Guarantee (SLG), namely, the SLG
pertaining to the provision of the mail service.
Specifically, it describes what course of action is
normative in the case that the SLG is violated by SP.

We assume that some monitoring agent tells us when
the SLG has been violated, that is that the mail service
is unavailable. This agent will generate an event,
SLG1_violated say, to this effect; and will generate an
event, SLG_restored say, when the mail service has
been restored.

We shall say that there exists elsewhere in our
representation of the example contract, a statement
setting up a timer, SLG1_timer, with a period of t
minutes. Also relation o2 is defined as an obligation that
bears on SP to restore the service.

This contract excerpt would then be written as
follows:
• The occurrence of event SLG1_violated initiates

SLG1_timer
• The occurrence of event SLG1_violated initiates o2
• The occurrence of event SLG1_restored terminates

SLG1_timer
• The occurrence of event SLG1_restored terminates

o2
• The occurrence of event SLG1_timer initiates

contract variable vPenalty to the value obtained by
summing the current value of vPenalty and $p

6. Event Calculus State Tracking
Architecture (ECSTA)

A reasoner for contracts written in ecXML, called the
Event Calculus State Tracking Architecture (ECSTA)
has been implemented in Java, supporting: instantiation
of contracts written in ecXML, assertion of event
narratives including speculative narratives which can be
unrolled, and querying of SLA state.

A full list of use-cases for ECSTA is as follows:
• Discover Registered Contract Templates, Register

Contract Template, Deactivate/Reactivate/Destroy
Contract Template

• Discover Instantiated Contracts,
Instantiate/Reactivate/ Deactivate/Destroy Contract,
Retrieve Contract

• Add Contract Clauses and User Rules, Overwrite
Timestamps in Clauses and User Rules,

• Request/Change Contract Parameters
• Assert Input Contract Events
• Query Contract, i.e. query global state of contract,

query particular fluent or contract variable (multi-
valued fluent), query global state history of contract,
query history of particular fluent or contract
variable

• Register for/Deactivate/Reactivate Notification of
Output Contract Events

• Register for/Deactivate/Reactivate Clause and User
Rule Triggering Notification Events

• Allocate/Destroy Shared Variable
• Register/Deactivate/Reactivate Shared Variable

Association
• Create/Destroy Simulation Context

One particularly useful functionality is for a user to
register an interest in being notified of particular
contract-related occurrences. This is supported through
user rules.

Say an incident manager, responsible for handling
the effects of UC-fabric incidents on the fulfilment of
SLAs, would like to be notified when the number of
violated obligations across a number of SLAs goes above
x.

As this requires reasoning across multiple SLAs, we
need to use the Allocate Shared Variable use-case to
get the reasoner to allocate a shared variable. Say, the
reasoner calls the shared variable v1. Then, we add the
following user rule to each pertinent SLA using the
Register Shared Variable Association and Add SLA
Clauses and User Rules use-cases (written here in
English, but would normally be ecXML): Whenever a
violation event for an obligation is received and is
pertinent, increment v1. Then, we add the following
user rule, u1, to a single SLA: For changes in the value
of v1, where v1 goes above x, do nothing. Importantly,
rule u1 is considered to be triggered whenever v1 goes
above x. Finally, we ask to be notified whenever rule u1
is triggered, by using the Register for Clause and Rule
Triggering Notification Events use-case.

7. SLA Visualiser
As well as the ECSTA reasoner, a tool called SLA

Visualiser has been implemented which allows for the
deployment management of SLAs. It provides a user-
interface to SLA deployment tasks, and supports all of

the use-cases given in section 6. The relationship
between ECSTA and SLA Visualiser is captured in
figure 1.

In figures 2 through to 9 a scenario is shown
unfolding, as captured by SLA Visualiser.

Figure 2: Top-Level View in SLA Visualiser

In figure 2, we select SLA 4 to look at its history. We see that it has been terminated, which would happen through the
customer failing to pay for service.

Figure 3: Scenario Unfolds 1

In figure 3, we see that the state of SLA is “Ok” to begin with.

Figure 4: Scenario Unfolds 2

In figure 4, we see that a “Service Violation” event occurs causing: the state of the SLA to change to “Service
Violation” and an obligation to be initiated bearing on the provider to restore the service.

Figure 5: Scenario Unfolds 3

Figure 1: Relationship between ECSTA and SLA Visualiser

In figure 5, we see that a “Service Restoration” event occurs causing: the state of SLA to return to “Ok”. Also the
obligation bearing on the provider to restore the service is fulfilled.

Figure 6: Scenario Unfolds 4

In figure 6, we see that two obligations are initiated (by timers that are specified in the SLA representation and
maintained by the reasoner) stipulating that: the Service Provider must refund $25 to the Service Customer for poor
service (before end of business day) and the Service Customer must pay $50 for service to the Service Provider (within 1
month). This causes the SLA to move into state: “Provider Payment Outstanding” + “Customer Payment Outstanding”.

Figure 7: Scenario Unfolds 5

In figure 7, we see that an input event saying that the Service Provider has fulfilled its obligation to refund $25 to the
service customer occurs causing: the state of the SLA moves from “Provider Payment Outstanding” + “Customer Payment
Outstanding” to just “Customer Payment Outstanding”. The fulfilment of the obligation bearing on the Service Provider
occurs just 10 minutes after it was initiated and within the business day as stipulated – the manifestation of the fulfilment
may be that the billing system sent the customer a cheque, or organised a fund transfer.

Figure 8: Scenario Unfolds 6

In figure 8, we see that the 1 month timer for the obligation bearing on the service customer to pay for service has
expired: this moves the SLA into a “Terminable” state – the Service Provider is permitted to terminate the SLA.

Figure 9: Scenario Unfolds 7

In figure 9, we see that, in keeping with the Service Provider being permitted to terminate the service, they do so: the
SLA moves into a “Terminated” state.

8. Related Work
There have been many diverse research contributions

that have utilised the Event Calculus (EC) for the
purpose of reasoning over the effects of events on a logic
theory. Those closest to the topics of this paper include
[8-10].

There has been a good deal of research concerning
the representation of contracts for performance
monitoring. In [4] Daskalopulu discusses the use of
Petri-nets for contract monitoring, and assessing
contract performance. Her approach is best suited for
contracts which can naturally be expressed as protocols.
One particular desirability of using Petri-nets is that
they naturally facilitate analysis. In the context of
contract representation, an example would be to show
that a contract will always terminate in a favourable
state for one, or more, contract parties. It is possible,
however, to carry out analysis of this nature using the
formalism described here. Moreover, our representation
has many advantages over Petri-nets (some of which are
as a result of a rule-based approach).

In [11] Milosevic and colleagues attempt to identify
the scope for automated management of e-contracts;
including: contract drafting, negotiation and
monitoring. In [12] Abrahams defines the EDEE
architecture (E-commerce application Development and
Execution Environment). Abrahams proposes Event-
Condition Obligation rules for handling occurrences.
Prima facie obligations are derived from the rules,
where subsequent obligation choice decides which of
these apply, and action choice decides which of those

that apply will be fulfilled. In [13] Grosof and
colleagues have sought to address the representation of
business rules for e-commerce contracts. For this
purpose, they have developed the SWEET (Semantic
WEb Enabling Technology) toolkit, which enables
communication of, and inference for, e-business rules
written in RuleML. These approaches demonstrate many
common themes with our approach.

9. Conclusions

In this work, we have proposed a formalisation of the
Event Calculus in XML, called ecXML. We have
informally shown its application to the representation of
contracts to facilitate automated tracking of contract
state for performance monitoring. We have grounded
our discussion in the domain of SLAs for Utility
Computing (UC), and have briefly presented how an
example UC SLA could be represented.

Through using EC, we are able to extract
information regarding which normative relations are
initiated, and what values contract variables have, for
arbitrary times (in the past, or present), according to a
supplied event narrative. It is also possible to simulate
the effects on contract state of a hypothetical event
narrative, which we have found useful for carrying out
prediction.

An inherent desirability of using EC is that the
computation of tracking contract state – in the context of
an event narrative – is externalised as a separate
component, rather than buried within an

implementation for contract monitoring. This promotes
better modularisation and makes for simplified code
maintenance. Also, as a consequence, it means that the
state tracking component may be re-used for a range of
automated reasoning tasks for which it is appropriate to
track state.

A comprehensive Java-based implementation of a
generic EC reasoning component, called the Event
Calculus State Tracking (ECSTA) architecture has been
developed. In fact, ecXML can be seen as the language
of the machine, and the implementation is capable of
supporting any contract language that might be defined,
so long as it has a tractable mapping to ecXML. All that
is required to support a different language is the writing
of a translator plug-in, which outputs ecXML. The
ability to support multiple languages is an example of
the re-use of the ecXML state tracking component.

ecXML has been evaluated against tens of SLAs,
which are considered to be representative for UC. We
have found it to be sufficient for facilitating contract
tracking (as defined in this paper) for these SLAs. We
have also designed our implementation to be capable of
supporting a high number of contracts simultaneously
and to support event narratives with a very large number
of events. We have optimised the implementation for
querying, and have found it to work extremely
efficiently. In the future, it is our intention to evaluate
the sufficiency of ecXML at facilitating contract tracking
for other sorts of SLAs, and for contracts from other
domains.

The work described herein represents a small part of
a larger effort considering a unifying approach to the
management and utilisation of contracts, policies and
business rules at all levels of a business enterprise,
including: management of IT infrastructure and
hardware, management of business processes using
business rules authored by business managers and
analysts, and management of agreements between
trading partners. For more information concerning this
work, see [14].

10. References

[1] Hewlett-Packard (www.hp.com). "HP Utility Data
Centre - Technical White Paper". October, 2001.

[2] Buco MJ, Chang RN, Luan LZ, Ward C, Wolf JL, Yu
PS. "Utility computing SLA management based upon
business objectives". In IBM Systems Journal,
43(1):159-78, 2004.

[3] J.J.Lee, R.Ben-Natan. "Integrating Service Level
Agreements: Optimising Your OSS for SLA Delivery".
Wiley, New York. 2002.

[4] A.Daskalopulu. "Modelling Legal Contracts as
Processes". In Proceedings of 11th International
Conference and Workshop on Database and Expert
Systems Applications, p. 1074-9. IEEE C. S. Press.

[5] M.Salle, C.Bartolini. "Management by Contract". In
Proceedings of IEEE/IFIP Network Operations and
Management Symposium (NOMS 2004), 19-23 April
2004, Seoul, Korea.

[6] A.D.H.Farrell. "Logic-based formalisms for the
representation of Service Level Agreements for Utility
Computing". Master's thesis, Imperial College,
London, U.K., 2003.

[7] R.Kowalski, M.Sergot. "A Logic-Based Calculus of
Events". In New Generation Computing, 4:67-95, 1986.

[8] A.Artikis. "Executable Specification of Open Norm-
Governed Computational Systems". PhD thesis,
Imperial College, London, U.K., 2003.

[9] A.K.Bandara, E.C.Lupu, A.Russo. "Using Event
Calculus to Formalise Policy Specification and
Analysis". In Proceedings of 4th IEEE Workshop on
Policies for Distributed Systems and Networks (Policy
2003), Lake Como, Italy, 2003.

[10] B.S.Firozabadi, M.Sergot, O.Bandmann. "Using
Authority Certificates to Create Management
Structures". In Proceedings of Proceedings of Security
Protocols, 9th International Workshop, London, UK,
April 2001.

[11] O.Marjanovic, Z.Milosevic. "Towards Formal
Modelling of e-Contracts". In Proceedings of Fifth
IEEE International Enterprise Distributed Object
Computing Conference, Seattle, USA, September,
2001.

[12] A.S.Abrahams. "Developing And Executing Electronic
Commerce Applications with Occurrences". PhD
thesis, Cambridge University, 2002.

[13] B.N.Grosof, Y.Labrou, H.Y.Chan. "A Declarative
Approach to Business Rules in Contracts: Courteous
Logic Programs in XML". In M.P.Wellman, editor,
Proceedings of 1st ACM Conf. on Electronic
Commerce (EC-99), Denver, CO, USA, November
1999. ACM Press, New York, NY, USA.

[14] http://www.doc.ic.ac.uk/~adf02/phd.

