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Abstract

In large scale online systems, such as electronic marketplaces and peer-to-peer systems,

users often act in their self interest without considering whether their actions lead to effi-

cient outcomes for the system. This thesis studies two important classes of mechanisms

that can be used to incentivize users to act in a way that promotes efficiency. Aggregation

mechanisms provide aggregate information on the past behavior of a user to other users

in the system. When there is such a mechanism in place, a user should expect that bad

behavior now affects his future interactions within the system, and may be incentivized to

act in a way that is beneficial for the system. Market mechanisms can be used to incen-

tivize contribution to the system by using prices to identify value, and associating a budget

with each user; the budget increases when the user contributes to the system and decreases

when he uses system resources. By requiring that users have non-negative budgets, users

can only use the system in return for valuable contributions.

In Chapter 2 we address a basic question: how do we design an aggregation mechanism

to encourage trustworthy behavior? Electronic marketplaces, such as eBay, are a natural

setting to study this question, since they usually rely on mechanisms that collect ratings of

sellers from past transactions, and provide aggregate information to potential buyers. First,

we show that weighting all past ratings equally gives sellers an incentive to falsely adver-

tise. We then study aggregation mechanisms that weight recent ratings more heavily, and

show that under increasing returns to reputation the optimal strategy of a sufficiently patient

and sufficiently high quality seller is to always advertise honestly. We suggest approaches

for designing an aggregation mechanism that maximizes the range of parameters for which

it is optimal for the seller to be truthful. We show that mechanisms that use information

from a larger number of past transactions tend to provide incentives for patient sellers to be
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more truthful, but for higher quality sellers to be less truthful.

In Chapter 3 we study the use of market mechanisms for peer-assisted content distri-

bution. We formulate a peer-to-peer filesharing system as an exchange economy: a price

is associated with each file, and users exchange files only when they can afford it. The ex-

change economy approach allows peers to exchange files multilaterally. This formulation

solves the free-riding problem, since uploading files is a necessary condition for being able

to download. We discuss existence, uniqueness, and dynamic stability of the competitive

equilibrium, which is always guaranteed to be Pareto efficient. In addition, a novel aspect

of our approach is an allocation mechanism for clearing the market out of equilibrium. We

analyze this mechanism when users can anticipate how their actions affect the allocation

mechanism (price anticipating behavior). For this regime we characterize the Nash equi-

libria that will occur, and show that as the number of users increases, the Nash equilibrium

rates become approximately Pareto efficient. Finally, we consider a system with a general

network structure and show that maintaining a single price per peer (even across multiple

files) suffices to achieve the benefits of multilateral exchange.

Most prevalent peer-to-peer systems incentivize users to contribute their upload capac-

ity in a bilateral manner: downloading is possible in return for uploading to the same user.

In Chapter 4 we provide a formal comparison of peer-to-peer system designs based on

bilateral exchange with those that enable multilateral exchange via a price-based market

mechanism to match supply and demand. First, we compare the two types of exchange in

terms of the equilibria that arise. A competitive equilibrium allocation is Pareto efficient,

while we demonstrate that bilateral equilibrium allocations are not Pareto efficient in gen-

eral. We show that Pareto efficiency represents the “gap” between bilateral and competitive

equilibria: a bilateral equilibrium allocation corresponds to a competitive equilibrium allo-

cation if and only if it is Pareto efficient. Second, we compare the two types of exchange

through the expected percentage of users that can trade in a large system, assuming a fixed

file popularity distribution. Our theoretical results as well as analysis of a BitTorrent dataset

provide quantitative insight into regimes where bilateral exchange may perform quite well

even though it does not always give rise to Pareto efficient equilibrium allocations.
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3.3 Tâtonnement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Proportional Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Two Files, Two Peer Types . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Homogeneous Utilities . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Comparing Pricing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Implications for System Design . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Proofs for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Bilateral and Multilateral Exchange 111
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Exchange Ratios in Bilateral Protocols . . . . . . . . . . . . . . . . . . . . 113

4.3 Bilateral and Competitive Equilibria . . . . . . . . . . . . . . . . . . . . . 115

4.3.1 Bilateral Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.2 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Efficiency of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.1 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ix



5 Conclusions 140
5.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

x



List of Figures

2.1 Sample eBay auction listing. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Sigmoid and step payments. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 A setting with a per-peer price equilibrium and no per-file price equilibrium. 96

4.1 Optimization problems for price-based exchange. The two optimization

problems differ only in the last constraint (budget constraint). . . . . . . . . 115

4.2 Percentages of users that cannot trade bilaterally and multilaterally when

users desire and possess one file (from simulations). . . . . . . . . . . . . . 124

4.3 Percentages of users that cannot trade bilaterally when each user desires

one file and possesses multiple files (from simulations). . . . . . . . . . . . 125

4.4 Cycles of Pareto improvements. . . . . . . . . . . . . . . . . . . . . . . . 135

xi



xii



Chapter 1

Introduction

An important feature of many online systems is that the value that a user derives from the

system depends on the behavior of other users. For instance, in electronic marketplaces,

such as eBay and the Amazon Marketplace, the value that buyers derive from the market

depends on whether sellers commit fraud. In peer-to-peer file-sharing systems the value

that a user derives depends on the collection of files and the upload rates that other users

make available. In review sites, where users share their opinions on products, users derive

more value when they find many high quality reviews.

We consider two types of user behavior that play a critical role in many prominent on-

line systems. First, the performance of the system may depend on the truthful revelation of

private information by users. This is the case in review sites, where users are expected to

accurately describe their experience with a product, and in electronic marketplaces, where

sellers are expected to truthfully describe the item they have for sale. Second, contribu-

tions by users are in many cases essential. The contributions may be in terms of band-

width or files (peer-assisted content distribution), CPU cycles (grid computing), or time

and knowledge (user generated content). In some settings it is important that contributions

are valuable; e.g., in the case of peer-to-peer systems a peer should share files that other

users desire.

Users, however, may behave selfishly and harm the system. On one hand, users may

be better off misrepresenting private information. For instance, a seller in an electronic

marketplace (such as eBay) may be tempted to exaggerate the value of the item he has for
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sale in order to increase his expected profit. On the other hand, it is generally costly for

users to contribute resources (such as bandwidth and CPU cycles) or time. As a result, users

often free-ride, i.e., use the resources and information that have been contributed by others

without contributing themselves. To ensure that the system works well, it is important to

align users’ incentives with the overall system objective.

Moral incentives and legal action, which are widespread incentive mechanisms in the

offline world, are often hard to use in online systems because of the inherent anonymity

of participants. Moral incentives are usually not strong in online systems, because many

interactions are between users that do not know each other and will probably never interact

again. On the other hand, in many cases a user can easily change his identity in the system

without significant effort [30], or legal consequences. Moreover, interactions often do not

involve monetary transactions, and as a result legal action may not fit within the system’s

business plan.

Incentive mechanisms in online systems usually try to incentivize a user by linking his

behavior with the utility he gets from using the system. With such a mechanism in place,

the user needs to trade off the cost of behaving in a way that is beneficial for the system

with the value he derives from using the system. As a result, a user that values interactions

within the system may be incentivized to contribute or to reveal information truthfully, even

though he would not do so in the absence of an incentive mechanism.

A user’s behavior can be linked with the utility he gets from using the system in two

ways. First, interactions with other users in the system can be affected if information on the

user’s past behavior is aggregated in a score which other users can see. The information

that is aggregated in the user’s score either consists of ratings that the user has received

after past interactions with others in the system, or is a measure of his contribution to the

system (e.g., in terms of upload rate or reviews). By convention, a high score indicates

good behavior (e.g., contribution of resources or truthful information). In many settings a

user with a high score is considered trustworthy, and as a result other users may prefer to

interact with him. For instance, in electronic marketplaces buyers are willing to pay more

when interacting with a seller that has a high score.

Second, by design the system may reward good behavior by allowing the user to enjoy

certain privileges, and punish bad behavior by banning the user from the system. These
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devised rules of the system often depend on aggregate information on users’ past behavior

(i.e., users’ scores). For instance, private peer-to-peer trackers reward peers that meet spe-

cific ratio requirements by giving them certain privileges such as granting permission to a

new user to register at the site. In the BitTorrent protocol a peer splits its upload capac-

ity between the peers from which he gets the highest download rates. On the other hand,

electronic marketplaces often ban sellers with very bad history from participating in the

market.

In order to design an effective mechanism, it is necessary to understand the effect of

an incentive mechanism on the behavior of users. In particular, an important modeling

decision concerns the interaction of a user with the incentive mechanism and other users

in the system. A strategic user chooses a strategy that is a best response to the mechanism

and the strategies of others in the system. If all users are strategic, then the outcome will

correspond to a Nash equilibrium of the game between all users with respect to the incen-

tive mechanism. However, this level of sophistication may be unrealistic in the context of

a large scale online system, since it postulates very strong knowledge and rationality as-

sumptions. A user may not know the strategies of others, especially if he has not interacted

with them in the past as is usually the case in a large system. Users’ behavior may often

depend on simple heuristics, Bayesian techniques, or some combination of the two [61]. In

general, different users may exhibit different levels of sophistication.

1.1 Related Literature

This thesis studies the design of mechanisms that incentivize users to provide valuable con-

tributions and reveal private information truthfully. We study the former for peer-assisted

content distribution, and the latter in the setting of electronic marketplaces. In this section

we provide a brief overview of related work. A more detailed and focused literature review

is contained in each chapter.

Mechanisms that associate a score with each user are usually called reputation mech-

anisms in the literature. The score aggregates information on past performance and repre-

sents the user’s reputation within the system. As mentioned above, such a score may serve

two purposes. First, it may affect the behavior of others in the system towards the user.

3



Second, there may be specific rules imposed or suggested by the system (e.g., through a

protocol) on how much a user with a specific score can benefit from using the system.

In a market, buyers tend to trust reputed sellers more. As a result, reputed sellers enjoy a

reputation premium, i.e., on average they sell at higher prices than sellers with lower scores.

Shapiro studies the emergence of a premium for sellers of high quality products [64]. A

number of empirical studies quantify the reputation premium in electronic marketplaces,

i.e., consider the effect of a seller’s score on the payment he receives [53, 47, 48, 37, 16, 31].

For example, a controlled experiment on vintage postcard auctions on eBay showed that an

experienced seller enjoyed an 8% premium [61].

In electronic marketplaces, a reputation mechanism collects ratings from buyers and

aggregates them in the seller’s reputation score [59]. The two main design issues are (1) to

elicit informative feedback [52, 14, 45], and (2) to aggregate ratings in a way that provides

the right incentives to the seller and promotes trust (aggregation mechanism) [25, 22, 26].

We study the design of aggregation mechanisms in Chapter 2.

Reputation mechanisms have also been considered in the context of peer-assisted con-

tent distribution, where the goal is to incentivize contribution of upload capacity. The score

of a user is usually a function of his contribution. Kazaa associates a participation level

(low, medium, or high) with each peer depending on whether the peer is downloading

more megabytes from other users than other users download from him. Other peer-to-

peer systems such as eDonkey and eMule use similar metrics. A differential service-based

incentive scheme is proposed in [34].

Market mechanisms also associate a score with each user: the user’s budget. The budget

(score) increases when the user contributes to the system and decreases when he uses sys-

tem resources. Prices are associated with different types of contributions to identify their

values. As a result, the budget of a user increases more for valuable contributions. The

monetary incentives that have been considered in the literature [34, 39, 70] do not associate

different prices with different types of contributions and therefore do not incentivize valu-

able contributions. We study market mechanisms for peer-assisted content distribution in

Chapter 3.

BitTorrent’s “tit for tat” is one of the most celebrated incentive mechanisms for peer-to-

peer systems. This is an incentive mechanism with no naturally defined score for each user;
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however, by design a user can increase his download rate by increasing his contribution.

According to the BitTorrent protocol, each peer splits its available upload rate among peers

from which it gets the highest download rates. As a result, the total download rate of

a peer is a nondecreasing function of his total upload rate, and peers are incentivized to

contribute [19]. We observe that the BitTorrent protocol incentivizes users in a bilateral

basis: an increase in the upload rate to one peer may increase the download rate from that

particular peer. On the other hand, with a system-wide score or a market mechanism in

place, by increasing the upload rate to one peer, a user may increase his download rate

from other peers in the system. This distinction is important in a system with multiple files

and is a central theme of Chapter 4.

1.2 Contribution of this Thesis

1.2.1 Aggregation Mechanisms for Electronic Marketplaces

An aggregation mechanism that maps past ratings of the seller into reputation scores is

a key component of a reputation system. In Chapter 2, we address a basic question: how

should we aggregate information into the user’s reputation score to best incentivize him? To

address this question, it is important to understand the tradeoff that a user faces. We study

this in the context of an electronic marketplace: a seller should expect that bad behavior

now may increase the payment he receives in the current period, but will decrease future

reputation scores, and thus future expected payments.

We model the seller as a long-lived player who believes that the expected payment he

receives is a function of his reputation score and the description he posts. We assume that

the expected payment is increasing in the seller’s score, an assumption that is supported

by empirical studies. We formulate the seller’s decision problem, and study its properties

using results from dynamic programming [11].

We take a non-equilibrium approach to study aggregation mechanisms. We model the

buyer population by an exogenously defined premium function that captures the premium

high-reputation sellers can command for goods declared to have high quality. Importantly,

we do not assume that buyers play a best response to the seller’s strategy. Our motivation
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comes from the fact that buyers may not know the strategy of the seller. Buyers often

interact with sellers that they never interacted with before, so even if buyers can learn the

strategy of a seller with repeated transactions, this effect will be limited.

Our goal is to incentivize the seller to always describe his items truthfully, a goal that

is closely related to efficient trade. Our first result is that weighting all past ratings equally

gives sellers an incentive to falsely advertise. This result supports eBay’s decision in May

2008 to base the Positive Feedback percentage on the past 12 months of feedback, rather

than the entire lifetime of the seller.1

We then study aggregation mechanisms that weight recent ratings more heavily. In par-

ticular, we assume that the seller’s score s is a weighted sum of his past ratings, where the

weights are given by some vector ~w. We assume that the expected premium to the seller

is b~w(s), i.e., the premium may explicitly depend on the weights of the aggregation mech-

anism. Special cases of this class of mechanisms include showing the mean of the seller’s

ratings in the last T transactions (the window mechanism), and exponential smoothing. We

show that when recent ratings are weighted more, it is possible to incentive the seller to be

always truthful. We identify conditions under which the optimal strategy of a sufficiently

patient and sufficiently high quality seller is to always advertise honestly.

We suggest approaches for designing a weighted aggregation mechanism that maxi-

mizes the range of parameters for which it is optimal for the seller to be truthful. We show

that mechanisms that use information from a larger number of past transactions tend to

provide incentives for patient sellers to be more truthful, but for higher quality sellers to be

less truthful. We show this tradeoff both for the general weighted aggregation mechanism

where the decision is to choose the vector of weights ~w and for the window aggregation

mechanism where the design parameter is the window size T .

We also show the tradeoff between incentivizing patient and high quality sellers for

a broad range of settings. First, we consider the case of perfect monitoring, where buyers

rate sellers accurately. Then, we consider two types of imperfect monitoring: the seller may

not receive ratings after some transactions, and the rating that the seller receives may not

accurately reflect his action. Our analysis employs monotone comparative statics [68, 51].

1http://pages.ebay.com/help/feedback/scores-reputation.html
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1.2.2 Market Mechanisms for Peer-to-Peer Systems

Market mechanisms can be used to incentivize user contribution. These mechanisms asso-

ciate a budget with each user; the budget increases when the user contributes to the system

and decreases when he uses system resources. Prices are associated with different types of

contributions to identify their values. As a result, the budget of a user increases more for

valuable contributions. We note that market mechanisms can be interpreted as a subclass

of reputation mechanisms. In particular, we can interpret the budget of a user as his repu-

tation score: a user that has contributed a lot of valuable content to the system has a high

reputation score, which he can use to download valuable content.

We study market mechanisms in the context of peer-assisted content distribution. In

peer-to-peer systems, users share files or resources with each other. By sharing, a peer

incurs a cost (because uploading a file consumes network resources), but no direct benefit.

Thus, if there is no mechanism that stimulates sharing, a peer has a strong incentive to free

ride, i.e., use the resources of other peers without contributing his own. Such behavior is

observed in existing peer-to-peer systems; for instance, early data showed that nearly 70

percent of peers of Gnutella were sharing no files, and nearly 50 percent of all responses

were returned by the top 1 percent of sharing hosts [1]. A more recent study shows that

85 percent of Gnutella peers share no files [38]. Even worse, according to [1], there were

peers in Gnutella who were free riding on the system despite sharing files: the files that

they were sharing were unpopular, and hence not widely uploaded.

In our model, we consider an internal currency and associate a price with each file.

Peers decide which files they are willing to upload, and the total upload rate they are willing

to serve. In return, the system uses the current prices to provide a menu to the peers of files

available for download. The upload rate of a peer generates a “budget” that can be spent

to download available files. By maintaining different prices for different files, we avoid

situations where peers free-ride the system because the files they are sharing are unpopular.

In particular, unpopular files will be assigned low prices.

In Chapter 3 we show how a peer-to-peer system can be formulated as an exchange

economy. Even though monetary incentives have been previously proposed to incentivize
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uploading in peer-to-peer systems [34, 70, 66], these approaches neither study the effi-

ciency benefits nor the optimal way to set prices. We show that the most suitable prices are

the ones that align supply and demand when all peers have optimized. This is the concept

of competitive equilibrium in economics [50]. We refer to this exchange as multilateral,

because it allows peers to trade multilaterally. In Chapter 4 we compare a system that

allows multilateral exchange with a system that restricts exchange to being bilateral.

We discuss existence, uniqueness, and dynamic stability of the competitive equilibrium,

which is always guaranteed to be Pareto efficient. That is, it is not possible to reallocate

rates in a way that makes some user better off without making someone else worse off. An

important aspect of competitive equilibrium is that users are assumed to be price takers [50].

That is, users optimize with respect to given prices, and not with respect to the strategies of

others. This is a reasonable assumption for a large peer-to-peer system, where we do not

expect users to be able to optimize with respect to the strategies of others.

A novel aspect of our approach is an allocation mechanism for clearing the market

out of equilibrium. If users exhibit price taking behavior, then prices will converge to

equilibrium. Moreover, we analyze our allocation mechanism when users can anticipate

how their actions affect the allocation mechanism (price anticipating behavior). For this

regime we characterize the Nash equilibria that will occur, and show that as the number of

users increases, the Nash equilibrium rates become approximately Pareto efficient. In other

words, in a large system, even if users are strategic the allocation will be efficient. Finally,

we consider a system with a general network structure and show that maintaining a single

price per peer (even across multiple files) suffices to achieve the benefits of multilateral

exchange.

1.2.3 Bilateral and Multilateral Exchange

Users of the BitTorrent file sharing protocol and its variants are incentivized to contribute

their upload capacity in a bilateral manner: downloading is possible in return for uploading

to the same user. A market mechanism on the other hand uses multilateral exchange to

match user demand for content to available supply at other peers in the system. The fact that

BitTorrent accounts for the majority of peer-to-peer traffic raises the following question:
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how do bilateral and multilateral exchange compare? In Chapter 4, we provide a formal

comparison of peer-to-peer system designs based on bilateral exchange with those that

enable multilateral exchange via a price-based market mechanism to match supply and

demand.

We start with a fundamental abstraction of content exchange in systems like BitTorrent:

exchange ratios. The exchange ratio from one user to another gives the download rate

received per unit upload rate. Exchange ratios are a useful formal tool because they allow

us to define and study the equilibria of bilateral exchange. In a bilateral equilibrium each

user optimizes with respect to exchange ratios. By contrast, in a multilateral price-based

exchange, the system maintains one price per peer, and peers optimize with respect to these

prices. For bilateral (resp., multilateral) exchange, an equilibrium is a combination of a

rate allocation vector and an exchange ratio vector (resp., price vector) such that all peers

have solved their corresponding optimization problems. In this case, the exchange ratios

(resp., prices) have exactly aligned supply and demand. An equilibrium that corresponds

to multilateral exchange is called a competitive equilibrium, and is studied in Chapter 3.

We compare bilateral and multilateral peer-to-peer systems through the allocations that

arise at equilibria. A competitive equilibrium allocation is always Pareto efficient, while

bilateral equilibria may be inefficient. Our main result is that a bilateral equilibrium allo-

cation is Pareto efficient if and only if it is a competitive equilibrium allocation. This result

provides formal justification of the efficiency benefits of competitive equilibria. The proof

exploits an interesting connection between equilibria and Markov chains: an important

step of the proof is to show that Pareto efficiency of a bilateral equilibrium rate allocation

implies reversibility of an appropriately defined Markov chain, and that this chain has an

invariant distribution that corresponds to a price vector of a competitive equilibrium.

We also perform a quantitative comparison of bilateral and multilateral exchange. As

discussed in [40], “there may be many people wanting, and many possessing those things

wanted; but to allow of an act of barter, there must be a double coincidence, which will

rarely happen.” We quantify how rarely this double coincidence of wants occurs under dif-

ferent assumptions on the popularity of files in the system. We first perform an asymptotic

analysis assuming that file popularity follows a power law and study two extreme regimes.

We find that asymptotically all users are able to trade bilaterally when the file popularity is
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very concentrated. On the other hand, multilateral exchange performs significantly better

than bilateral when the file popularity is not concentrated. We complement our theoretical

analysis by studying file popularity from a BitTorrent dataset. Although bilateral equilibria

may in general be inefficient, the gap between bilateral and multilateral exchange can be

narrowed significantly if each user shares a sufficient number of files (in practice as small

as ten).
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Chapter 2

Aggregation Mechanisms
for Electronic Marketplaces

In online trading communities, sellers have a temptation to dishonesty, because poten-

tial buyers have to decide how much to pay for an item without being able to observe it

firsthand. In particular, the buyer typically cannot know in advance whether the seller is

describing the item honestly, and hence may be afraid that he might be exploited if he

trusts the seller. This effect is exacerbated because a buyer will often interact with sellers

with whom he has never interacted before and may only seldom interact in the future. The

absence of trust created by this information asymmetry may result in market failure [2].

Aggregation mechanisms can be used to encourage buyers to trust sellers. Such mech-

anisms provide buyers with aggregate statistics on the past behavior of sellers; as a result,

dishonest advertising by the seller involves a greater immediate payoff at the expense of

a lower long-term payoff. Aggregation mechanisms typically operate as follows: after a

transaction, the buyer rates the seller depending on how satisfied he was with the transac-

tion. Then all ratings are aggregated into the seller’s score. We note that electronic mar-

ketplaces typically also allow users to search for more detailed information on the seller’s

past ratings; nevertheless, aggregated statistics play an important role in buyers’ decisions,

because of the time and cognitive cost required to go through all available information.

Empirical studies have shown that sellers with high scores enjoy a price premium: on

average they sell at higher prices than sellers with lower scores. For example, a controlled
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experiment on vintage postcard auctions showed that an experienced seller enjoyed an 8%

price premium [61], and data from eBay auctions revealed that a one point increase in the

percentage of negative ratings led to a 9% decline in sale price [16]. These studies suggest

that aggregation mechanisms can effectively link current actions of the seller with future

payoffs, and thus may incentivize the seller to act in a way that benefits buyers and promote

trust.

With the goal of incentivizing truthful advertising, we study how the marketplace is

affected by (i) the aggregation mechanism, i.e., the way ratings are aggregated into the

seller’s score, and (ii) the premium function, i.e., the way buyers interpret the seller’s score.

Our main contributions are the following.

1. We demonstrate shortcomings of a system where all ratings are weighted equally in

the score of the seller. Such a mechanism will typically be unable to guarantee that a

seller is truthful after completing a large number of transactions.

2. We define an aggregation mechanism which weights ratings on recent transactions

more. We characterize conditions under which it is optimal for the seller to advertise

truthfully, and relate seller truthfulness to returns to reputation.

3. We propose approaches to choose the aggregation mechanism that achieves seller

truthfulness over the largest range of parameters. We show that mechanisms that use

information from a larger number of past transactions tend to provide incentives for

patient sellers to be more truthful, but for higher quality sellers to be less truthful.

In Section 2.1 we introduce the model. We assume that in each period the seller has a

high or low value item for sale. At the beginning of each period the seller observes the value

of the item and decides how to advertise it. Potential buyers observe the seller’s advertise-

ment and his score, i.e., an aggregate of the seller’s past ratings. Using this information,

we postulate that buyers employ simple heuristics [e.g., 69], Bayesian techniques, or some

combination of the two, in order to decide how much to bid [61]. The paper, however, does

not require specific models for the buyers’ behavior.

The expected payment to the seller is a function of his advertisement and his score,

called the premium function. Motivated by empirical studies [e.g., 31, 16], we assume that
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the premium function is increasing in the seller’s score. Moreover, we assume that the

payment is increasing in the seller’s advertisement, that is the expected payment that the

seller receives is higher when he advertises a high value item. Under these assumptions, a

rational seller advertises high value items truthfully, but may exaggerate the value of a low

value item in his advertisement. The seller faces the following trade-off: falsely advertising

may result in a higher payment now, but also in a bad rating which implies lower scores

and payments in the future.

After a transaction the buyer reports whether the seller advertised the item truthfully.

Then, the aggregation mechanism uses this information to compute the seller’s new score.

For most of this chapter we assume that buyers’ ratings accurately reflect the sellers’ ac-

tions; however, we also demonstrate how some of the results can be extended in the pres-

ence of imperfect monitoring. Note that here we do not concern ourselves with incentives

for buyers to rate truthfully; our focus is entirely on the optimal strategy of the seller.

In Section 2.2 we study an aggregation mechanism that weights all ratings equally (the

Unweighted Aggregation Mechanism). We show that with this mechanism the seller is

incentivized to falsely advertise at some rating histories for a large class of premium func-

tions, and thus demonstrate that this aggregation mechanism is not effective. In particular,

the temptation for the seller to become dishonest increases as the total number of ratings

increases, because each additional rating has a smaller and smaller effect on the seller’s

overall rating.

Our result on the Unweighted Aggregation Mechanism supports eBay’s recent decision

to base the Positive Feedback percentage on the past 12 months of feedback, rather than the

entire lifetime of the seller1. We refer to the previous mechanism employed by eBay, which

was in use from March 2003 until May 2008, as EBAY03-08. In EBAY03-08 all ratings were

weighted equally in the information shown next to the item’s description, since lifetime

statistics were given. Even though detailed information on recent ratings was available in

that system (by clicking through to view the seller’s profile), buyers did not always spend

the time and effort to search for detailed information. For instance, data collected before

and after the change in eBay’s aggregation mechanism in March 2003 showed that buyers

respond to the reputation information that is easiest to access [16]. This suggests that it is

1http://pages.ebay.com/help/feedback/scores-reputation.html
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better to primarily show information that weights recent ratings more, as validated by our

analysis.

In Section 2.3 we study the class of Weighted Aggregation Mechanisms, which weight

ratings from recent transactions more heavily. In particular, the score that is shown to the

buyers is a weighted average of past ratings of the seller. We study this class of mechanisms

because this is a natural way to weight recent ratings more, and because it includes as

special cases several well known aggregation mechanisms. The expected payment that the

seller receives is a function of his score. Depending on how buyers interpret the seller’s

score, the payment to the seller may take different forms.

In contrast to the Unweighted Aggregation Mechanism, under the Weighted Aggrega-

tion Mechanism it becomes possible, under some additional conditions, to ensure the seller

is always truthful. The main contribution of Section 2.3 is to identify for which premium

functions it is possible or impossible to have a seller that always advertises truthfully. We

show that under increasing returns to reputation (i.e., the premium function is convex) the

optimal strategy of a sufficiently patient and sufficiently high quality seller is to advertise

honestly. On the other hand, we show that if returns to reputation are decreasing (i.e., the

premium function is concave) and there is no premium for low value items, then for any

seller it is optimal to falsely advertise at some scores. The intuition behind this result is

that when returns to reputation are increasing, the seller suffers a large reduction in future

payment due to even a single deviation from truthful advertising. By contrast, this reduc-

tion is relatively small when returns to reputation are decreasing. We also study the effect

of step premium functions on the seller’s optimization, and give conditions under which it

is optimal for the seller to be truthful. In this setting, our main finding is that when there is

no premium for low value items to make a sufficiently patient and sufficiently high quality

seller truthful, the mechanism must give sufficient weight to the two most recent ratings.

In Section 2.4 we address the design question of choosing the right Weighted Aggrega-

tion Mechanism. We note that online marketplaces often change their aggregation mecha-

nisms, which indicates that it is hard to design an effective aggregation mechanism. We first

study the Window Aggregation Mechanism, a widely used Weighted Aggregation Mecha-

nism which only reveals the percentage of positive ratings within some fixed window. We

define an optimal window size as one which maximizes the range of parameters for which
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the seller is truthful, and we study the dependence of the optimal window size on the pa-

rameters of the model. The optimal sufficient statistic (i.e., window size) neither has very

short-term memory (since then current actions do not affect future scores), nor has very

long term memory (since then the seller is not incentivized to be truthful). The best choice

of averaging window lies between these extremes. We also note an interesting qualitative

tradeoff in the choice of window size: informally, increasing the window size is more likely

to make patient sellers truthful, while it is less likely to make high quality sellers truthful.

We show the tradeoff between incentivizing patient and high quality sellers for a range of

monitoring settings. First, we consider the case of perfect monitoring, where the buyers

rate the seller accurately. Then, we consider two types of imperfect monitoring: the seller

may not receive ratings after some transactions, and the rating that the seller receives may

not accurately reflect his action.

We then formulate the design problem for the general class of Weighted Aggregation

Mechanisms; here the goal is to choose the optimal vector of weights applied to past rat-

ings to compute a score. Our results here match the insights obtained in our study of the

Window Aggregation Mechanism: mechanisms that use information from a larger number

of past transactions tend to provide incentives for patient sellers to be more truthful, but for

higher quality sellers to be less truthful. Moreover, our insight suggests that the Window

Aggregation Mechanism (which weights all ratings within some fixed window equally) is

not optimal and a more robust mechanism might be one that weights more recent ratings

even more heavily than older ratings. This is particularly interesting when one considers

that nearly all online marketplaces that use mechanisms which only weight recent ratings,

tend to use a Window Aggregation Mechanism to do so.

In Section 2.5 we demonstrate that the results also hold for a setting with multiple pos-

sible values for the item and the ratings, where a buyer’s rating depends on the difference

between the advertised and true value of the item. This setting shows our results are robust

even if the seller has potentially many “levels” of dishonesty possible.
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Related Work

In this section we discuss related literature on seller reputation that can be applied to an

online market setting. There are two main approaches. In the adverse selection approach

the seller has a hidden type which buyers are trying to learn. Alternatively, reputation

can only be used to incentivize the seller to behave well. A standard assumption is that a

long-lived seller interacts with short-lived buyers.

In the adverse selection approach, the seller’s reputation is studied in a Bayesian setting.

The seller is assumed to have a type which buyers are trying to learn from his past ratings.

In this setting, the seller’s reputation is the belief that buyers have about his type after

observing the available information on his past behavior.

A common assumption in the adverse selection literature on reputation is that with some

(small) probability the seller’s type is such that he always plays an action that promotes trust

[49]. If the buyers have access to all past ratings of the seller, they are eventually going

to discover his type [21], which means that reputations are not sustainable; this is similar

to our insight regarding the Unweighted Aggregation Mechanism (cf. Section 2.2). In this

setting, information censoring can result in sustainable reputation [25]. Also, if buyers

have to pay to discover the seller’s past behavior, then equilibrium behavior is cyclical: the

seller builds his reputation up only to exploit it [46].

In the setting we study, the seller does not have a hidden type and the seller’s score

is only used to incentivize good behavior by the seller. The objective of the reputation

mechanism is to induce sellers to behave in a way that promotes trust. This approach has

also been taken by [22] and [26].

Dellarocas studies a setting where the seller has two possible effort levels which buyers

observe imperfectly [22]. He shows that there is no equilibrium where the seller always

exerts high effort, and that eBay’s simple mechanism is capable of inducing the maximum

theoretical efficiency. In this paper we take a non-equilibrium approach. We consider

the best response of the seller to a fixed Markov strategy of the buyers; that is, a fixed

payment function which only depends on the information available to buyers. Our work

takes the point of view that aggregation mechanisms calculate sufficient statistics of the

past, and act as the “state” in the interaction between buyers and sellers. We believe that
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this nonequilibrium approach is reasonable in practice, because of the coordination required

for “convergence” to equilibrium. The large and dynamic set of participants in the major

online markets makes the rationality, knowledge, and coordination required for equilibrium

improbable.

[26] considers a similar setting, where the seller exerts high or low effort, but take a

non-equilibrium approach and assume that the seller has a belief over the average bidder

behavior. For a specific behavior of bidders it is shown that two simple aggregation mech-

anisms are inadequate and propose exponential smoothing instead. We consider a general

class of payment functions and aggregation mechanisms. Moreover, in our model, the seller

decides whether to advertise truthfully and not whether to choose a high or low cost action.

Thus, in this paper the goal of an aggregation mechanism is to incentivize truthful behavior

by the seller.

Although we do not consider incentives for buyers to leave honest feedback in this

paper, another line of research considers how truthful feedback can be elicited. In online

markets agents may undertake fake transactions in order to enhance their reputation. This

can be avoided if a specific relation between the reputation premium and the transaction

cost holds [12]. Alternatively, even if fake transactions can not be undertaken, buyers may

not leave honest feedback after a transaction. [52] devises a scoring system that induces

honest reporting of feedback. In this paper, we assume that buyers always leave truthful

feedback in order to focus on the seller’s decisions.

We conclude by noting that a number of papers have empirically studied the effect that

the seller’s score has on the average payment he receives (a survey is provided in [60]).

Some sample studies include data about eBay auctions for coins [48]; Palm Pilots [43];

Pentium III processors [37]; collectible coins, Thinkpads and Beanie babies [16]; and post-

cards [61]. The last of these papers [61] conducts a controlled experiment on eBay to study

the price premium of an experienced seller. Finally, [31] and [56] study the effect of dif-

ferent dimensions of a seller’s reputation on pricing power by considering text comments

on Amazon and eBay respectively.
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2.1 Model

We consider a single seller who is a long-lived player with discount factor δ. The seller

interacts with short-lived potential buyers, i.e., buyers who are interested in the seller’s item

for exactly one round and then depart. We do not explicitly model the market mechanism

at each time period, and instead abstract the aggregate behavior of all the buyers in a single

time period via a single premium function, described further below.

In every period the seller has an item for sale whose value is high (vH) with probability

qH and low (vL) with probability 1− qH . We assume that 0 ≤ vL < vH ≤ 1. The seller

observes the value of the item at the beginning of a period and decides what advertisement

to post. Potential buyers observe the seller’s advertisement and his score, i.e., an aggre-

gate of the seller’s past ratings. The expected payment to the seller is a function of his

advertisement and his score.

After purchase, the buyer accurately reports whether the seller described the item cor-

rectly.2 The rating is good if the seller described the item truthfully and bad otherwise (i.e.,

a binary rating system). For simplicity, for most of this paper we assume that both the

item’s value and the rating can only have two possible values; however, these assumptions

can be weakened. In Section 2.5 we demonstrate that our results can be generalized for a

setting with multiple possible values for the item and ratings, where the value of the rating

depends on how much the seller exaggerates the item’s value in his description.

An aggregation mechanism specifies the rules for calculating the score (i.e., the infor-

mation shown to potential buyers) from past ratings of the seller. Let ri be the i-th most

recent rating of the seller. In particular ri = 1 or ri = 0 depending on whether the corre-

sponding rating was good or bad. Let~r = (r0,r1, ...) be the vector of ratings that the seller

has received up to now. We denote the aggregation mechanism by s(~r). In particular, s(~r)

is a function that maps rating vectors to scores. Both the seller and the mechanism know~r,

but potential buyers only observe s(~r). The score may either be a scalar or a vector. In the

next sections we consider both cases: in the Unweighted Aggregation Mechanism (Section

2.2) it is a vector consisting of the total number of ratings and the number of good ratings,

while in the Weighted Aggregation Mechanism (Section 2.3) it is a scalar.
2In Section 2.4.2 we also consider imperfect monitoring, where buyers’ ratings do not always accurately

reflect the seller’s action.

18



We assume that the expected payment that the seller receives when his score is s and he

chooses advertisement a, where a is either high or low is a ·b(s); we call b(s) the premium

function. We assume that the premium function is non-negative and non-decreasing.3

Two realistic assumptions are incorporated in the form of the premium function we

chose. First, better ratings yield higher payments to the seller, as has been shown by empir-

ical studies [e.g., 31, 16]. Second, the premium function is increasing in the advertisement

a.

The seller chooses a policy that is a best response to the premium function b(·). In our

model, we emphasize that the seller is not intrinsically honest or dishonest; he is rational

and chooses the advertisement that maximizes his payoff. This is in contrast to the adverse

selection approach, where the seller has an intrinsic type (see Section 2). Under the as-

sumptions we made on the payment, it is optimal for the seller to advertise a high value

item truthfully.

Let V (~r) be the maximum infinite horizon discounted payoff of the seller when his

current vector of ratings is~r. The seller’s optimal policy is given by solving the following

dynamic program.

V (~r)= qH(vH ·b(s(~r))+δ·V (1,~r))+(1−qH)max{vH ·b(s(~r))+δ·V (0,~r),vL ·b(s(~r))+δ·V (1,~r)}
(2.1)

In particular, with probability qH the seller has a high value item for sale, which he ad-

vertises truthfully. The immediate payment he receives is vH · b(s(~r)) and his ratings “in-

crease” to (1,~r). With probability 1− qH the seller has a low value item for sale. If he

advertises it as a high value item, his payoff is vH · b(s(~r))+ δ ·V (0,~r), since he receives

vH ·b(s(~r)) now, but his ratings “decrease” to (0,~r). If he advertises truthfully, he receives

a low payment now (vL ·b(s(~r))), but his ratings “increase” to (1,~r). The seller will choose

the advertisement with the maximum payoff.

We say that the seller is truthful at~r if it is optimal for him to advertise a low value item

truthfully when his vector of ratings is~r. By (2.1), it is optimal for the seller to be truthful

3In particular, we assume that for any n,m≥ 0, we have b(s(~x;1;~y))≥ b(s(~x;0;~y)) for all~x ∈ {0,1}n,~y ∈
{0,1}m.
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at~r if and only if

(vH− vL)b(s(~r))≤ δ(V (1,~r)−V (0,~r)). (2.2)

In particular, if the seller is untruthful, his current payoff will increase by (vH− vL)b(s(~r))

but his expected payoff starting from the next period will decrease by V (1,~r)−V (0,~r)

(relative to being truthful).

We use this model to study the seller’s optimal strategy under various aggregation mech-

anisms. In particular, we are interested in which aggregation mechanisms and which pre-

mium functions induce truthful behavior.

2.2 Unweighted Aggregation Mechanism

In this section, we consider an aggregation mechanism that weights all ratings equally, and

show that the seller has an incentive to falsely advertise after a sufficiently large number

of ratings. This suggests that weighting recent ratings more is a necessary condition for

efficiency.

In the Unweighted Aggregation Mechanism, the seller’s reputation score consists of the

total number of ratings (sT ) and the number of positive ratings (sP). In particular, given the

vector of past ratings~r, we have sT (~r) = |~r| and sP(~r) = |{ri : ri = 1}|. (We use the notation

| · | to denote both the number of components of a vector and the cardinality of a set.) At

score (sP,sT ), we assume that the seller receives payment a · b(sP,sT ) for advertising an

item of value a.

Proposition 1 shows that under some assumptions on the premium function, the seller

will eventually be better off falsely advertising a low value item. The intuition is that when

all ratings are weighted equally, after a large number of ratings one more positive rating

does not make an appreciable difference to the seller’s payoff. This was partially the case

with eBay’s aggregation mechanism until May 2008 (EBAY03-08), where the information

that was shown to potential buyers on the item description page weighted all ratings equally.

For clarity, all proofs are in the appendix.
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Proposition 1 If b(sT ,sT ) is bounded away from zero as sT → ∞ and

b(sT ,sT )−b(sT −1,sT )→ 0 as sT → ∞, (2.3)

then there exists an sT at which it is optimal for the seller to falsely advertise a low value

item.

Proposition 1 relies on two assumptions. The assumption on b(sT ,sT ) is not particularly

restrictive: we expect the payment to a seller with maximum reputation to be bounded away

from zero after a large number of ratings.

Condition (2.3) is a regularity condition on the slope of the premium functions; this

formalizes the idea that as the total number of ratings increases, the marginal effect of each

additional positive rating on the seller’s expected payment eventually becomes negligible.

This condition is not particularly restrictive; e.g., see Example 2. On the other hand, if

Condition (2.3) does not hold, then it may be optimal for a sufficiently patient seller to be

always truthful. In particular, this is the case if a single bad rating causes a discrete drop in

premium regardless of how many positive ratings have been received, i.e., if there exist T

and α > 0 such that b(sT ,sT )−b(sT −1,sT ) > α for all sT ≥ T , and (vH − vL)b(T ′,T ′)≤
(qHvH +(1−qH)vL)αδ/(1−δ) for all T ′ ≥ T .

We briefly discuss related results in the literature. A similar result is shown by Fan et al.

for a specific premium function and two specific unweighted reputation mechanisms [26].

Moreover, we observe that Proposition 1 is similar to the result Cripps et al. that reputations

are not sustainable with imperfect monitoring and incomplete information [21]. This is a

different setting than ours, since buyers are optimizing with respect to the seller’s strategy,

while we assume that the buyers’ behavior only depends on the aggregation mechanism

that is being used, and the seller’s score and advertisement. The result in [21] depends on

imperfect monitoring: the seller chooses low effort with some small probability, because

it will not significantly affect the buyers’ beliefs in the near future, and eventually buy-

ers learn the seller’s type. In our model, after a large number of transactions it becomes

profitable for the seller to be untruthful, even though monitoring is perfect.

Example 1 EBAY03-08
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Figure 2.1: Sample eBay auction listing. 99% of the ratings that user satmr2 received in
the last twelve months were positive.

The seller’s score shown by the EBAY03-08 mechanism next to the description of the item

consisted of: (1) the difference between positive and negative ratings (i.e., 2sP− sT ), and

(2) the ratio of positive ratings over the total number of ratings (i.e., sP/sT ). Users could

access more information on the seller’s past ratings by clicking on the seller’s pseudonym.

However, if many users did not spend the time to search for more information when bidding,

this aggregation mechanism would not be effective in the long run for a large class of

premium functions. In particular, it is possible that a seller would exaggerate the value of

the item once he had a large number of ratings. This intuition is supported by data analyzed

by [60], which show a decline in performance once the seller completed a large number of

transactions. This observation may have influenced eBay’s decision to change the initially

shown information; the new system includes statistics about the ratings the seller received

in the last twelve months (cf. Figure 2.1). 2

Proposition 1 shows that the seller will eventually be better off falsely advertising a low

value item. How many transactions pass before the seller is tempted to be dishonest? We

can compute a bound on this time by upper bounding the increase in payment due to one

more positive rating with a function of the total number of ratings. In particular, suppose

there exists a function f (sT ) such that

max
0≤sP≤sT−1

{b(sP +1,sT )−b(sP,sT )} ≤ f (sT ).
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Let s∗T denote the first time a seller would choose to falsely advertise a low value item; it

follows from the proof of Proposition 1 that an upper bound for s∗T is:

ŝT = min
{

sT : (vH− vL)b(sT ,sT )≥ δ

1−δ
f (sT )

}
. (2.4)

By computing ŝT we know that the seller will not advertise low value items truthfully

for more than ŝT consecutive transactions. The following example upper bounds s∗T for a

specific premium function.

Example 2 Let b(sP,sT ) = α/(α+1− sP/sT ) for some α ∈ (0,1); this model arises when

buyers use a certain maximum likelihood estimate based on the rating history, [cf. Ap-

pendix 2, 7]. Note that this function only depends on the proportion of positive ratings.

Further b(sT ,sT ) = 1, and b(sP + 1,sT )− b(sP,sT ) ≤ 1/(sT ·α). Let f (sT ) = 1/(sT ·α).

By (2.4),

ŝT =
⌈

δ

1−δ

1
α(vH− vL)

⌉
.

This upper bound on the number of consecutive truthful transactions of the seller is in-

creasing in δ, the seller’s discount factor. This is something we expect: the more the seller

values the future, the greater the effectiveness of the aggregation mechanism, and thus the

greater his incentive to tell the truth. 2

2.3 Weighted Aggregation Mechanism: Characterization

In Section 2.2 we showed that weighting all ratings equally does not incentivize truthful-

ness. In this section we analyze mechanisms which put more weight on recent ratings, and

show that it is possible to incentivize truthfulness and promote trust under these mecha-

nisms.

We first introduce the Weighted Aggregation Mechanism; as we will discuss, special

cases of this mechanism are widely used in practice. Let ri be the value of the i-th most

recent rating. We consider an aggregation mechanism where buyers only see the following
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score:

s(~r) =
∞

∑
i=0

wi · ri,

where wi ≥ 0, and w0 ≥ w1 ≥ w2 ≥ ·· · , with ∑i wi = 1. We assume that the weights wi are

non-increasing in i so that recent ratings are weighted more. We make the seller’s score a

scalar, because aggregation mechanisms typically rely primarily on a summary of ratings.

According to the general model introduced in Section 2.1, at score s, the seller receives

expected payment equal to the product of his advertisement and the premium function

b~w(s). We use the subscript ~w on the premium function to denote that the payment may

explicitly depend on the aggregation mechanism. We assume that b~w(s) is increasing in s

for each vector ~w.

Both the seller and the mechanism have access to ~r; the seller remembers his past

actions and the mechanism keeps this information in order to update the seller’s score.

However, as we discuss in the following examples of Weighted Aggregation Mechanisms,

it may not be necessary to keep the whole vector of ratings.

Example 3 In the Window Aggregation Mechanism, wi = 1/T for i = 0,1, ...,T −1, and

wi = 0 for i ≥ T , for some T ≥ 1, which we call the window size. Thus the score is the

percentage of good ratings that the seller received in the last T transactions. To compute

the seller’s score, the aggregation mechanism needs to keep information on the T most

recent ratings of the seller. This score is widely used in online marketplaces, such as eBay

and Amazon, and has been studied in various settings [22, 7]. 2

Example 4 In the Exponential Aggregation Mechanism wi = (1− α)αi, for some α ∈
(0,1). To compute the seller’s score, the aggregation mechanism only needs to know the

score of the seller in the previous period (ŝ) and his most recent rating (r0). Then the

new score is αŝ + (1−α)r0. We note that the Exponential Aggregation Mechanism has

been previously suggested as a good design [26]. Moreover, even though to the best of

our knowledge exponential smoothing is not being used by any electronic marketplace to

promote trust, it is a good model of how people update their impressions without an aggre-

gation mechanism in place [e.g., 4, 36, 44]. 2

We study the Weighted Aggregation Mechanism because (1) it is a natural way to

24



weight recent ratings more, and (2) it is a generalization of both the Window Aggrega-

tion Mechanism and the Exponential Aggregation Mechanism. However, there are other

ways to summarize feedback by incorporating text comments (which are more descriptive

than numerical ratings) and weighting recency. Such a summary score could offer richer

information without increasing the buyers’ search costs [56].

In Section 2.3.1 we derive necessary and sufficient conditions for the truthful policy to

be optimal for the seller. We use these conditions in subsequent sections to show that effi-

ciency can be achieved under strictly increasing returns to reputation and may be possible

under decreasing returns to reputation (Section 2.3.2), and under a step premium function

(Section 2.3.3). In Section 2.3.4 we discuss empirical studies on eBay and Amazon. In

Section 2.3.5 we show that under an additional assumption on the premium function, we

can simplify the sufficient condition for the seller to be always truthful; this assumption is

valuable in part because it is satisfied by all logarithmically concave premium functions.

We use this assumption in Section 2.3.6, where we identify a dominance relation between

premium functions such that if b1 dominates b2, then b1 better incentivizes truthful adver-

tisement.

2.3.1 Conditions for Optimality of Truthfulness

We are interested in whether it is optimal for the seller to be always truthful. It is op-

timal for the seller to be always truthful if and only if any one step deviation from the

truthful policy (i.e., the policy of always advertising items truthfully) does not yield a

higher payoff. Let V̂ (~r) be the infinite horizon discounted expected value when the seller’s

current ratings are ~r and the seller is always truthful. Let si(~r) be the seller’s score af-

ter i periods if his current ratings are ~r and receives positive ratings in the following

i periods. Note that s0(~r) = s(~r). This implies that V̂ (1,~r)− V̂ (0,~r) = (qHvH + (1−
qH)vL)∑

∞
i=0 δi(b~w(si(1,~r))− b~w(si(0,~r))) and si(1,~r)− si(0,~r) = wi. By (2.2), the seller

is not better off deviating from the truthful policy when his ratings are ~r if and only if

(vH − vL)b~w(s(~r)) ≤ δ(V̂ (1,~r)− V̂ (0,~r)). We conclude that it is optimal for the seller

to be always truthful if and only if the previous condition holds for all ~r. Substituting

V̂ (1,~r)−V̂ (0,~r) in the previous condition, the following lemma is proved.
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Lemma 1 It is optimal for the seller to be truthful at all~r if and only if

b~w(s(~r))≤ q
vH− vL

∞

∑
i=0

δ
i+1(b~w(si(1,~r))−b~w(si(0,~r))) (2.5)

for all rating vectors~r.

Thus, if we know the premium function b~w(·) and the seller’s parameters δ and q, we

can check whether it is optimal for the seller to be truthful by checking whether condition

(2.5) is satisfied for all~r.

2.3.2 Increasing and Decreasing Returns to Reputation

Depending on how buyers interpret the information on the seller available to them, i.e., the

score ∑i wi · ri, the payment to the seller may exhibit increasing or decreasing returns to

reputation. Increasing returns to reputation correspond to a convex premium function, i.e.,

there are increasing marginal benefits to higher reputation. On the other hand, decreasing

returns to reputation are associated with a premium function that is concave in the seller’s

score.

The following lemma indicates that it is easier to incentivize truthfulness under increas-

ing returns to reputation, since it is more likely that (2.5) holds.

Lemma 2 (i) If the premium function b~w is strictly convex, w0 < 1 and b~w(0) = 0, then

b~w(s(~r)) <
∞

∑
i=0

(b~w(si(1,~r))−b~w(si(0,~r)))

for every~r.

(ii) If the premium function b~w is concave and b~w(0)≥ 0, then

b~w(s(~r))≥
∞

∑
i=0

(b~w(si(1,~r))−b~w(si(0,~r)))

for~r =~1.
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The following proposition demonstrates a dichotomy between convex and concave pre-

mium functions when vL = 0 and b~w(0) = 0. If the premium function exhibits increasing

returns to reputation, and if δ and qH are sufficiently large, then it is possible to achieve our

goal of making the seller truthful regardless of his rating history. On the other hand, if the

payment is concave in the score, then it is not optimal for the seller to be truthful at all rating

histories; in particular, (2.5) can not be satisfied since if vL = 0, then q/(vH−vL) = qH < 1.

Proposition 2 (i) If vL = 0, the payment function b~w is strictly convex, w0 < 1 and

b~w(0) = 0, then it is optimal for the seller to be always truthful for all sufficiently

large δ < 1 and pH < 1.

(ii) If vL = 0, the payment function b~w is concave and b~w(0)≥ 0, then there do not exist

values of δ < 1 and pH < 1 for which it is optimal for the seller to always advertise

truthfully.

If vL = 0, the condition w0 < 1 is necessary for truthfulness under convex premia. In

particular, if only the most recent rating affects the seller’s score, then it will be optimal

for the seller to exaggerate the value of a low value item in his advertisement when his

score is high. This happens because the seller discounts future payments and prefers a high

payment now to a high payment in the next period. We conclude that if the payment is

convex and there is no premium for low value items, then the weights on the two most

recent ratings must both be strictly positive to induce truthfulness.

If vL is strictly greater than zero, then it may be possible to have a truthful seller under a

concave premium. For any concave strictly increasing premium, there exists a sufficiently

large vL such that it is optimal for the seller to be always truthful for a given δ and qH . In

particular, this is the case if

vL

vH− vL
≥max

~r

{
b~w(s(~r))

∑
∞
i=0 δi+1(b~w(si(1,~r))−b~w(si(0,~r)))

}
−qH .

We conclude that it is possible to have a truthful seller under both convex and concave

premium functions. However, increasing returns to reputation tend to better incentivize

truthfulness.
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Figure 2.2: Sigmoid and step payments. The grey line represents a premium function that is
convex at low scores and concave at high scores. The black line represents a step function
that approximates it.

2.3.3 Step Functions

In Section 2.3.2 we considered premium functions that exhibit either increasing or decreas-

ing returns to reputation throughout their domains. Another natural class of payments are

step premium functions, which are functions that are constant throughout most of their do-

mains. Our motivation for studying this class of functions is that it may provide a good

approximation for the expected payment in electronic marketplaces. These premium func-

tions capture the following intuition: a potential buyer is not willing to buy an item from

a seller that has a very low score; however, there is some threshold on the seller’s score,

above which the buyer trusts the seller and is willing to pay up to his valuation for the item.

Since different buyers may have different thresholds and different valuations for the item,

the premium function may be a smoothed step function, e.g., a function that is convex at

low scores and concave at large scores (see Figure 2.2). In this section we study step pre-

mium functions, and note that similar results can be obtained for smooth approximations.

In this section we show that with step premium functions, optimality of the truthful

policy heavily depends on the aggregation mechanism, and in particular on the magnitude

of w1 (i.e., the second largest weight) relative to the threshold of the payment. We then

apply the result to the Window Aggregation Mechanism, which was introduced in Example

3.

We formally define a step premium function in the following definition.
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Definition 1 The premium function b~w is a step function with threshold s∗ ∈ (0,1] if b~w(s)=

b~w(1) > 0 for s≥ s∗, and b~w(s) = 0 otherwise.

We are interested in understanding the conditions under which a Weighted Aggregation

Mechanism can make a seller truthful when the payment is a step function. A necessary

condition is s∗ > 1−w0; otherwise the seller will not be truthful when his score is equal to

1. If vL/(vH − vL) is large then it may be possible to incentivize the seller to be truthful as

long as s∗ < 1−w0. In this section we focus on the case that vL = 0. Our main result is the

following proposition.

Proposition 3 Suppose the premium function b~w is a step function with threshold s∗ and

vL = 0.

(i) If s∗ ≤ 1−w1, then there are no values of qH < 1 and δ < 1 for which it is optimal

for the seller to be always truthful;

(ii) If s∗ > 1−w1, then it is optimal for the seller to be truthful for all sufficiently large

δ < 1 and qH < 1.

We note that w1 is the weight on the second most recent rating and that w0 ≥ w1. The

result provides a useful insight: recent ratings, in particular the one and two period old

ratings, must be weighted sufficiently to ensure that sellers can be made truthful.

As a specific application, we consider the Window Aggregation Mechanism, which was

introduced in Example 3, and a premium function that yields a positive expected payoff for

at least some score less than 1. These premium functions are reasonable in many applica-

tions: buyers often trust a seller with an almost maximum score. In the following example,

we show that even though for any fixed window size it is not optimal for the seller to be

always truthful, truthfulness may be optimal when information from multiple window sizes

is aggregated. This suggests that the use of multiple window sizes, a common practice in

online marketplaces, may better incentivize truthfulness.

Example 5 Assume that a Window Aggregation Mechanism with window size T is used

and vL = 0. The payment is a step function with threshold s∗. We consider premium func-

tions that are positive for at least some possible scores other than 1 (the maximum possible
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score). This implies that s∗ ≤ 1− 1/T . Thus, s∗ ≤ 1−w0. Then, there do not exist δ < 1

and q < 1 for which it is optimal for the seller to be always truthful.

Surprisingly, there is a way to aggregate information from multiple window sizes, so

that it is optimal for the seller to always be truthful under step functions that are not only

positive at the maximum possible score. For example, suppose the aggregation mechanism

is using information on k windows with sizes Tk ≥ Tk−1≥ ...≥ T1≥ 2. Let si be the score on

window i and assume that the aggregate score of the seller is the average of the scores for

each window, i.e., s = (∑k
i=1 si)/k. Thus w1 = (1/k)∑

k
i=1 1/Ti, while the smallest positive

weight is wTk−1 = 1/(kTk). In this case, by Proposition 3, the seller can be made truthful if

1/(kTk)≤ 1− s∗ < (1/k)∑
k
i=1 1/Ti; depending on the value of s∗, these inequalities can be

satisfied if more than one window is used. 2

2.3.4 Empirical Insights

In Sections 2.3.2 and 2.3.3, we have studied the Weighted Aggregation Mechanism un-

der various premium function forms. A natural question arises: what is the form of the

premium function in electronic marketplaces? In this section we attempt to answer this

question using results from empirical studies on eBay and Amazon. In particular, we wish

to understand the dependence of the expected payment on the percentage of positive rat-

ings (since this is the information shown in these markets that best matches the seller’s

score in a Weighted Aggregation Mechanism). We note however, that eBay’s mechanism

has changed multiple times within the last years, and thus different studies collect data on

different versions of the mechanism.

Two empirical studies explore whether negative feedback is associated with increasing

or decreasing returns, and suggest increasing returns in the percentage of positive ratings

on eBay.4

4There have also been studies that find decreasing returns in reputation; however, these studies look
at different metrics than the one we are interested in here. [47] studies the effect of the total number of
positive ratings on the expected payment to the seller, and finds severely decreasing marginal returns. [53]
finds decreasing marginal returns in the difference between the total number of positive and negative ratings.
However, these results do not apply here, because we are interested in the effect of the percentage of positive
ratings.
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1. Kalyanam and McIntyre collect data from Palm Pilot auctions on eBay and conjec-

ture diminishing impact of negative feedback [43]. In particular, they suggest that

the dependence of price on percentage of negative feedback is − f (Negative %) for

some concave function f , which implies increasing returns in the percentage of pos-

itive ratings.

2. A panel data set from eBay indicates that the first negative is very harmful for the

seller’s growth rate, while subsequent negatives have lower impact [16]. This implies

increasing returns in the percentage of positive feedback for the growth, and suggests

a similar effect for the expected payment to the seller.

Other studies suggest a specific dependence based on the regression that is used, without

explicitly stating it. For instance, an OLS regression on data from Amazon’s retail platform

suggests that the price premium is convex in the number of stars, a measure similar to the

percentage of positive ratings [31]. On the other hand, there are also studies which find that

the percentage of positive feedback has no effect on the selling price [e.g., 61]. We note that

eBay was only showing the difference between the number of positive and negative ratings

(and not the percentage of positive ratings) next to the description of the item when this

experiment was conducted. Nevertheless, [43] and others collected data under the same

mechanism and found that the percentage of negative ratings had an effect on the expected

price.

To interpret these contradictory results, we need to consider that most eBay sellers have

an extremely high percentage of positive ratings [60]. Low variability in the percentage

of positive ratings may be one reason that, for some data sets [e.g., 61], the price does not

significantly depend on the percentage of positive ratings. Another possible interpretation is

that the payment does not depend on the exact percentage of positive ratings, above a certain

threshold; this behavior is consistent with a step premium function. On the other hand,

the results of [43] and [16] suggest increasing returns at least in some part of the domain.

Plausible interpretations are that the premium function may either exhibit increasing returns

throughout its domain, or have the form of a sigmoid function (i.e., increasing returns

initially and decreasing returns for large values of the percentage, cf. Figure 2.2). The

latter is a smooth approximation of a step function, which was studied in Section 2.3.3.
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The fact that there are such high percentages of positive ratings on eBay may also shed

light on the form of the premium function. In particular, potential explanations of this

phenomenon are that (1) the reputation system works well in general, (2) users tend to

not report negative ratings out of fear of retaliation [23], and (3) sellers with bad records

exit and possibly re-enter under a new identity. We next give evidence of (3) and argue

that it implies that a low percentage of positive ratings significantly decreases the expected

payment to the seller.

A seller with a non-negligible percentage of negatives may re-enter the market under a

new identity, especially given the high levels of competition on eBay (anecdotal evidence

is provided in [43]). Moreover, data from eBay show that an increase in the percentage

of negatives in a seller’s record translates into an increase in exit probability [16]. Such

behavior may imply that a seller without an almost perfect percentage of positive ratings

is better off rejoining the system than keeping his current score. This suggests that a low

percentage of positives has a significant effect on the expected payment to the seller, and is

consistent with increasing returns to reputation or a step premium function.

2.3.5 A Simplified Condition for Truthfulness

In this section we present an assumption that simplifies the task of checking whether the

seller is always truthful; notably, this assumption is satisfied whenever the premium func-

tion is logarithmically concave. We use this assumption in the following subsection when

we study dominance relationships among premium functions, as well as throughout our

analysis in Section 2.4.

Assumption 1 For any parameters δ and qH , if it is not optimal for the seller to deviate

from the truthful policy at~r =~1, then it is optimal for him to be truthful at all rating vectors.

Assumption 1 says that if (2.5) holds at~r =~1, then (2.5) holds at all~r, and it is optimal

for the seller to always be truthful. Thus, if Assumption 1 holds, then in order to check

whether truthfulness is optimal for the seller, it suffices to check whether (2.5) holds at

~r =~1. Using the facts that s(~1) = 1, si(~1) = 1 and si(0,~1) = 1−wi, we can prove the

following lemma.
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Lemma 3 If Assumption 1 holds, then it is optimal for the seller to be truthful at all~r if

and only if

(vH− vL)b~w(1)≤ q
∞

∑
i=0

δ
i+1(b~w(1)−b~w(1−wi)). (2.6)

The following lemma shows that a large class of premium functions satisfies Assump-

tion 1. In particular, the assumption holds for premium functions whose logarithm is con-

cave in the seller’s score.

Lemma 4 A logarithmically concave premium function satisfies Assumption 1.

We observe that if the premium function b~w is convex, then its logarithm may or may not

be concave depending on how fast the slope of the premium function increases compared

to the payment itself. We note, however, that log-concavity is not a particularly restrictive

assumption. For example, the functions xn, enx are logarithmically concave for any n > 0.

We note that various empirical studies suggest that the expected premium is logarith-

mically concave in the mean value of ratings of the seller [e.g., 16, 48, 31]. These studies

regress the payment to the seller or its logarithm against some function of the average rating

of the seller or some other function of the number of positive and negative ratings (in the

case of eBay). Even though these studies consider all the ratings that the seller has received

in his lifetime as a seller or in the last twelve months, we can get some insight in the de-

pendence of the payment on the percentage of positive ratings in the last T transactions by

fixing the total number of transactions to T . [16] uses a data set from eBay and regresses

the logarithm of the price against the percentage of positive ratings of the seller. Since the

logarithm of the price is a linear function of the average rating, the expected payment is

logarithmically concave in the seller’s score (by definition). [31] uses a data set from the

Amazon Marketplace and regresses the logarithm of the premium against the mean rating

of the seller in the last twelve months. We note that the Amazon Marketplace asks buyers to

rate sellers out of five stars. Again, this corresponds to a logarithmically concave function.

[48] uses a data set from eBay and regresses the price against the logarithm of the number

of positive ratings and the logarithm of the number of negative ratings. Setting T equal to

the sum of the number of positive and negative ratings, we observe that according to this

regression the price is a logarithmically concave function of the seller’s score.
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2.3.6 Dominance

In this section we define a dominance relation such that if the premium function b~w domi-

nates the premium function b̃~w, then optimality of truthfulness under b̃~w implies optimality

of truthfulness under b~w. The dominance relationship we consider informally captures the

idea that a “steeper” premium function should lead the seller to be “more truthful.”

To have a fair and interesting comparison between two premium functions b~w and b̃~w,

they should take the same values at minimum and maximum scores; i.e., b~w(0) = b̃~w(0)

and b~w(1) = b̃~w(1). Under this condition and Assumption 1, the dominance relation for

truthfulness is b~w(s)≤ b̃~w(s) for all s ∈ [0,1], as the following proposition shows.

Proposition 4 Let b~w, b̃~w be premium functions such that

(i) b~w(s)≤ b̃~w(s) for all s ∈ [0,1],

(ii) b~w(0) = b̃~w(0), b~w(1) = b̃~w(1),

(iii) b~w satisfies Assumption 1.

For any q < 1, δ < 1, and ~w, if it is optimal for the seller to be always truthful under b̃~w,

then it is optimal for him to be always truthful under b~w.

For example, if always advertising truthfully is optimal for a seller with parameters δ,q

when the premium function is b̃~w(s) = sk where k > 1, then always advertising truthfully

is also optimal under b~w(s) = sm for any m ≥ k. In particular, this observation suggests

that increasing the elasticity of the premium function improves incentives for the seller

to be truthful. This is consistent with our observation in Section 2.3.2 that it is easier

to incentivize truthfulness with convex premium functions than with concave premium

functions.

2.4 Weighted Aggregation Mechanism: Design

The results of the preceding section show that for a given vector of weights ~w and a given

premium function b~w, under certain conditions there exists a range of q < 1, δ < 1, for
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which the seller is always truthful. Can we use this insight to guide the design of the

aggregation mechanism, i.e., to maximize the range of parameters for which the seller is

always truthful? In this section we consider the problem of designing a good aggregation

mechanism; in particular, we consider a setting where the system designer is considering

choosing the weight vector ~w in a Weighted Aggregation Mechanism.

Throughout this chapter, we have considered a “good” aggregation mechanism to be

one that ensures sellers are truthful. Accordingly, we assume that the mechanism designer’s

goal is to maximize the range of seller parameters q and δ for which truthfulness can be

guaranteed. Throughout this section we assume that the premium function satisfies As-

sumption 1. We begin in Section 2.4.1 by formulating the design problem under a range

of assumptions regarding the information available to the designer regarding q and δ. We

subsequently consider specific examples, corresponding to the Window Aggregation Mech-

anism (Section 2.4.2) and Weighted Aggregation Mechanism (Section 2.4.4), both of which

were previously introduced in Section 2.3. Ultimately, our analysis of this design problem

lends qualitative insight into the design of aggregation mechanisms; in particular, we find

that aggregation mechanisms that average over a longer past history of ratings are more

likely to incentivize patient sellers to be truthful, but less likely to incentivize high quality

sellers to be truthful.

2.4.1 The Design Problem

In this section we formulate a general design problem for the Weighted Aggregation Mech-

anism. We assume the mechanism designer chooses the weights ~w from a set W ; special

cases are considered in the subsequent subsections.

By Lemma 3, if Assumption 1 holds, then it is optimal for the seller to be always

truthful if and only if

b~w(1)≤ q
vH− vL

∞

∑
i=0

δ
i+1(b~w(1)−b~w(1−wi)).

We conclude that the seller is always truthful if and only if q, δ, and ~w jointly satisfy the
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following constraint:

q ·F(~w,δ)≥ 1 (2.7)

where

F(~w,δ) =
1

vH− vL

∑
∞
i=0 δi(b~w(1)−b~w(1−wi))

b~w(1)
. (2.8)

Note that F(~w,δ) is increasing in δ for any fixed ~w.

As discussed above, our approach is to maximize the range of parameter values for

which the seller will be truthful, given available information regarding δ and/or q. In what

follows, our analysis depends on analyzing the set ~w∗(δ) defined as follows for each δ:

~w∗(δ) = argmax
~w∈W

F(~w,δ). (2.9)

For tractability, we assume for the duration of this section that for all δ, the set ~w∗(δ) is

nonempty.

We now consider the optimal choice of weights depending on the available information

regarding δ and q.

1. Both δ and q are known by the mechanism designer. In this case, the goal is to find

weights ~w ∈W such that (2.7) holds. Whether or not this will be possible depends

on whether q and δ are large enough, given the premium functions b~w. In particular,

we can ensure the seller is always truthful if and only if max~w∈W F(~w,δ) ≥ 1/q; in

this case any choice of weights in ~w∗(δ) is optimal.

2. The mechanism designer knows δ, but not q. A reasonable choice of ~w is one which

maximizes the range of values of q for which the seller will be always truthful. From

(2.7), this implies we should maximize F(~w,δ) subject to ~w ∈W , i.e., any ~w ∈ ~w∗(δ)

is an optimal choice.

3. The mechanism designer knows q, but not δ. A reasonable choice of ~w is one which

maximizes the range of values of δ for which the seller will be always truthful; thus,
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given q, we solve:

minimize δ (2.10)

subject to q ·F(~w,δ)≥ 1; (2.11)

~w ∈W. (2.12)

Let δ∗(q) denote the optimal value of the preceding problem; this is the smallest

value of δ such that a seller with quality q and discount factor δ can be guaranteed

to be truthful under some weight vector. It then follows that any ~w ∈ ~w∗(δ∗(q)) is

an optimal choice of weights. Observe that since the constraint is increasing in q, it

follows that δ∗(q) is decreasing in q; we will use this fact in our subsequent analysis

to characterize the dependence of the set ~w∗(δ∗(q)) on q.

Of course, there is a fourth possibility: the mechanism designer may know neither δ

nor q. In this scenario, the mechanism designer will typically need to consider whether it

is preferable to make sellers truthful over a greater range of δ, or a greater range of q. We

delineate such a tradeoff in subsequent subsections.

A critical theme emerges from the preceding discussion: regardless of the information

available to the mechanism designer, solving (2.9) is an important step in finding the best

weight vector. We apply this insight in the following subsections to study both the Window

Aggregation Mechanism and the more general Weighted Aggregation Mechanism.

2.4.2 Window Aggregation Mechanism

The Window Aggregation Mechanism (introduced in Example 3) is characterized by the

window size, which we denote by T . As previously discussed, it is a special case of a

Weighted Aggregation Mechanism, where w0 = w1 = · · · = wT−1 = 1/T , and all other

weights are zero; the feasible set W consists of all weight vectors of this form for window

sizes T ≥ 1. Thus the window size is the only design choice.

In this section, we apply the methodology of the Section 2.4.1 to determine an optimal

window. Our main result is that an optimal window size is increasing in the discount factor

δ, and decreasing in the quality q. Thus a longer window is more likely to make patient
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sellers always truthful, but less likely to make high quality sellers always truthful.

In a slight abuse of notation, we write bT (·) for the premium function to indicate that

the buyers’ behavior may depend on window size T . Throughout the section we implicitly

assume that the family of premium functions bT is known by the mechanism designer. We

further assume that bT (·) is strictly convex and satisfies Assumption 1 for each T ; as noted

in Lemma 4, this Assumption is satisfied by logarithmically concave premium functions.

In the case of a Window Aggregation Mechanism, by a slight abuse of notation, we

redefine F from (2.8) as:

F(T,δ) =
1

vH− vL

bT (1)−bT (1−1/T )
bT (1)

T

∑
i=1

δ
i.

Calculation of the optimal weight vector in (2.9) then reduces to calculating the optimal

window size via the following optimization:

T ∗(δ) = argmax
T≥1

F(T,δ). (2.13)

As before, we assume for the duration of this section that for all δ, the set T ∗(δ) is

nonempty.

The following proposition characterizes the behavior of T ∗(δ).

Proposition 5 If Assumption 1 holds, then T ∗(δ) is increasing in δ in the following sense:

for δ≥ δ′,

(i) max{T : T ∈ T ∗(δ)} ≥max{T : T ∈ T ∗(δ′)}; and

(ii) min{T : T ∈ T ∗(δ)} ≥min{T : T ∈ T ∗(δ′)}.

Surprisingly, note that this result holds regardless of the dependence of bT on T .

Using this proposition, we now consider the optimal choice of window depending on

the available information regarding δ and q, as in the preceding subsection.

1. Both δ and q are known by the mechanism designer. As in Section 2.4.1, any window

size in T ∗(δ) is optimal, and whether the seller can be made truthful depends on
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whether q and δ are sufficiently large to ensure that (2.7) holds. In this case any

window size in T ∗(δ) is optimal.

2. The mechanism designer knows δ, but not q. As in Section 2.4.1, if we wish to

maximize the range of values of q for which the seller will be truthful, then any

T ∈ T ∗(δ) is an optimal choice. Note that in this case, from Proposition 5, the set

of optimal windows is increasing in δ. This is an intuitive result, since sellers with

larger δ are more patient, and thus an aggregation mechanism with longer memory

can successfully couple current behavior with distant future payoffs.

3. The mechanism designer knows q, but not δ. As in Section 2.4.1, let δ∗(q) denote

an optimal solution to (2.10)-(2.12), where again the set W consists of all possible

weight vectors corresponding to Window Aggregation Mechanisms. It then follows

any T ∈ T ∗(δ∗(q)) is an optimal choice of window size. Recall that δ∗(q) is decreas-

ing in q. From Proposition 5, we conclude the set of optimal windows T ∗(δ∗(q))

is decreasing in q. This is an intuitive result, since as q increases, it is possible to

make less patient sellers truthful, and for such sellers a smaller window size is more

appropriate.

We can now see the tradeoff discussed at the beginning of the section: informally, in-

creasing the window size is more likely to make patient sellers (those with high δ) truthful.

On the other hand, it is less likely to make high quality sellers (those with high q) truthful.

When q is high and the window is large, the seller is likely to have a high score regardless

of what actions he takes when he receives a low value item, because most items are high

quality. This makes a smaller window more desirable, because it magnifies the impact of

the seller’s actions in those periods where he has a low value item for sale.

By choosing a window size T , the system designer determines how much and for how

long the seller’s future scores decrease if he does not describe his current item truthfully.

In particular, if the seller exaggerates his description in the current period, then his score

will decrease by 1/T in each of the next T periods (relative to being truthful). We observe

the following tradeoff between the intensity and the duration of this score reduction: the

intensity is decreasing in T , while the duration is increasing in T . The optimal value of T

will depend on the available information on the seller’s attributes and the premium function.
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As δ increases the duration effect becomes more important, so the optimal window size

increases. On the other hand, as q increases the intensity effect becomes more important,

so the optimal window size decreases.

Finally, we observe that this tradeoff is also faced by a mechanism designer who knows

neither q nor δ: a choice must be made regarding the incentives provided to patient sellers

and those provided to high quality sellers.

2.4.3 Window Aggregation Mechanism with Imperfect Monitoring

Throughout this chapter we are focusing on perfect monitoring, i.e., we are assuming

that the seller receives a rating which accurately reflects his action after every transac-

tion. However, various studies have shown that monitoring may be imperfect in practice

[e.g., 23, 18, 14]. In this section we relax the assumption on perfect monitoring in two

ways. First, we consider the case of missing feedback, where after some transactions the

buyer does not rate the seller. Second, we consider the case where ratings may not always

reflect the seller’s action. For both cases we show the same tradeoff as in the perfect mon-

itoring case: a larger window size tends to better incentivize patient sellers, but does not

incentivize high quality sellers as well.

Missing Feedback

Let pav be the probability that the seller receives no rating when his action is a ∈ {t,u} for

being truthful and untruthful respectively, and the true value of the item is v ∈ {vH ,vL}. If

the seller receives a rating, we assume that it accurately reflects his action: he receives a

good rating (of value 1) for describing his item truthfully, and a bad rating (of value 0) for

exaggerating the value of a low value item in his description. We assume that ptH is not

significantly larger than puH , so that it is optimal for the seller to describe a high value item

truthfully.

Let V (~r) be the maximum infinite horizon discounted value when the current vector of

ratings is~r; then:
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V (~r) =qH

(
vH ·bT

(
T

∑
i=1

ri/T

)
+δ((1− ptH)V (1,~r)+ ptHV (~r))

)

+(1−qH)max

{
vH ·bT

(
T

∑
i=1

ri/T

)
+δ((1− puL)V (0,~r)+ puLV (~r)),

vL ·bT

(
T

∑
i=1

ri/T

)
+δ((1− ptL)V (1,~r)+ ptLV (~r))

}
(2.14)

In particular, with probability qH the seller has a high value item for sale, which he de-

scribes truthfully. The immediate payment he receives is vH ·bT (∑T
i=1 ri/T ); with probabil-

ity 1− ptH he receives a good rating and with probability pn
tH he receives no rating. With

probability 1−qH the seller has a low value item for sale. If he describes it as a high value

item, his payoff is vH · bT (∑T
i=1 ri/T ) + δ((1− puL)V (0,~r) + puLV (~r)), since he receives

vH ·bT (∑T
i=1 ri/T ) now, but his ratings “decrease” to (0,~r) with probability 1− puL and re-

main the same with probability puL. If he describes the item truthfully, he receives a lower

payment now, but his ratings “increase” to (1,~r) with probability 1− ptL. The seller will

choose the description that maximizes his payoff.

Let p≡ qH · ptH +(1−qH) · ptL be the ex ante probability (before the value of the item

is known) that the seller receives no rating if he is truthful.

Let

Fm(T,δ) =
1− puL

vH− vL

bT (1)−bT (1−1/T )
bT (1)

∞

∑
i=0

δ
i+1

min(T−1,i)

∑
j=0

(
i
j

)
(1− p) j pi− j

We use the subscript m to denote that we are considering the possibility of missing feed-

back. The function Fm is increasing in δ.

Lemma 5 If bT is logarithmically concave and puL ≥ ptL, then it is optimal for the seller

to be always truthful if and only if

q ·Fm(T,δ)≥ 1. (2.15)

Lemma 5 reduces the problem of finding whether it is optimal for the seller to be always
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truthful to checking whether the following inequality holds.

(vH− vL)bT (1)≤ (1− puL)q(bT (1)−bT (1−1/T ))
∞

∑
i=0

δ
i+1

min(T−1,i)

∑
j=0

(
i
j

)
(1− p) j pi− j

This condition requires that the seller does not deviate from being truthful when his cur-

rent score is equal to 1. The seller does not deviate from being truthful if the discounted

future gains for being truthful are greater (in expectation) than the current gains for being

untruthful. The current payment to the seller increases by (vH − vL)bT (1) if the seller de-

viates from being truthful. On the other hand, the future payments to the seller decrease by

bT (1)−bT (1−1/T ) in every period that is affected by the current rating. This is the case

until the seller receives T new ratings. The seller receives exactly j new ratings in i periods

with probability (1− p) j pi− j. Therefore, the probability that the seller has not received T

new ratings in i periods is ∑
min(T−1,i)
j=0

( i
j

)
(1− p) j pi− j.

Let T ∗m(δ) = argmaxT{Fm(T,δ)}.

Proposition 6 T ∗m(δ) is increasing in δ in the following sense: for δ≥ δ′,

(i) max{T : T ∈ T ∗m(δ)} ≥max{T : T ∈ T ∗m(δ′)}; and

(ii) min{T : T ∈ T ∗m(δ)} ≥min{T : T ∈ T ∗m(δ′)}.

As in Section 2.4.2, we conclude in the case of missing feedback (under the assumptions

of Lemma 5) when p is fixed: (1) if δ is known and the goal is to maximize the range of

q for which the seller is always truthful, then the set of optimal windows is increasing in

δ; (2) if q is known and the goal is to maximize the range of δ for which the seller is

always truthful, then the set of optimal windows is decreasing in q. We note that we are

assuming that p remains fixed as δ and q change. Since p = qH · ptH +(1− qH) · ptL and

q = qH ·vH +(1−qH) ·vL, we can assume that qH is fixed and q changes through vH and vL.

Alternatively, we can assume that qH is changing, but also ptH and ptL change accordingly

so that p is fixed.

We conclude by discussing two cases that can be viewed as special cases of (2.14).

First, consider the setting where the item that the seller has for sale is not always sold. If

the probability that the item is not sold depends on the description that the seller posts, but
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not on his score, then we can use (2.14) and still interpret bT (s) as the expected premium

to the seller.

Second, we note that our current model aggregates ratings from rounds in which the

seller has a low value item in exactly the same way as ratings from rounds in which the

seller has a high value item. This modeling decision was motivated by the way ratings are

aggregated in online markets. However, the seller faces no moral hazard for describing a

high value item, and it may be reasonable to assume that the seller is not given a rating for

advertising a high value item truthfully. Then we can assume that ptH = 1 in (2.14) and

still conclude that the optimal window is increasing in δ and decreasing in q.

Inaccurate Ratings

The rating that the seller receives may not reflect his action, because the buyer may make

a mistake. In this section we identify conditions under which in the presence of inaccurate

ratings the optimal window is increasing in δ and decreasing in q.

We model inaccurate ratings by assuming that with probability pav the seller receives

the wrong rating when his action is a ∈ {t,u} for being truthful and untruthful respectively,

and the true value of the item is v ∈ {vH ,vL}. We assume that the probability ptH is suffi-

ciently small so that the seller always describes a high value item truthfully. Let V (~r) be the

maximum infinite horizon discounted payoff when the current vector of ratings is~r. Then,

the optimization problem of the seller is given by the following dynamic program.

V (~r) =qH

(
vH ·bT

(
T

∑
i=1

ri/T

)
+δ((1− ptH)V (1,~r)+ ptHV (0,~r))

)

+(1−qH)max

{
vH ·bT

(
T

∑
i=1

ri/T

)
+δ((1− puL)V (0,~r)+ puLV (1,~r)),

vL ·bT

(
T

∑
i=1

ri/T

)
+δ((1− ptL)V (1,~r)+ ptLV (0,~r))

}

In particular, if the seller describes a low value item as a high value item, he receives a bad

rating with probability 1− puL and a good rating with probability puL. On the other hand,

if the seller has a low value item for sale and describes it truthfully, then he receives an
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immediate payment of vL ·bT
(
∑

T
i=1 ri/T

)
in expectation, and gets a good rating with prob-

ability 1− ptL; with probability ptL he gets a bad rating despite the fact that he described

the item truthfully.

Let p≡ qH · ptH +(1−qH) · ptL be the ex ante probability (before the value of the item

is known) that the seller receives a negative rating if he is truthful. Let

Fw(T,δ) =
1− puL− ptL

vH− vL

T−1

∑
i=0

δ
i+1

i

∑
k=0

(
i
k

)
pk(1− p)i−k bT (1− k/T )−bT (1− (k +1)/T )

bT (1)

We use the subscript w to denote that we are considering that possibility of wrong feedback,

i.e., that the rating may not accurately reflect the seller’s action. We observe that Fw(T,δ)

is increasing in δ.

Lemma 6 Suppose that one of the following conditions holds.

(i) bT is concave; or

(ii) bT is logarithmically linear, i.e., bT (s) = eα·s+β with α > 0; or

(iii) bT is strictly logarithmically concave and p is sufficiently small.

Then, it is optimal for the seller to be truthful at all~r if and only if:

q ·Fw(T,δ)≥ 1. (2.16)

Lemma 6 reduces the problem of finding whether it is optimal for the seller to be always

truthful to checking whether the following inequality holds.

(vH−vL)bT (1)≤ (1− puL− ptL)q
T−1

∑
i=0

δ
i+1

i

∑
k=0

(
i
k

)
pk(1− p)i−k bT (1− k/T )−bT (1− (k +1)/T )

bT (1)

This inequality checks whether the seller would deviate from being truthful if his current

score is equal to 1 and he has a low value item for sale. The seller does not deviate from

being truthful if the discounted future gains for being truthful are greater (in expectation)

than the current gains for being untruthful. If the seller deviates from being truthful by

describing a low value item as a high value item, then his current payment increases by
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(vH − vL)bT (1). If the seller gets a good rating now and is truthful in future periods, then

in i periods from now his score is 1− k/T with probability
( i

k

)
pk(1− p)i−k. On the other

hand, if the seller gets a bad rating now and is truthful in future periods, then in i periods

from now his score is 1− (k +1)/T with probability
( i

k

)
pk(1− p)i−k. The right hand side

considers the difference in the expected payments in the next T periods, and discounts

appropriately.

We conjecture that the condition that p must be sufficiently small in condition (iii) of

Lemma 6 can be weakened. Numerical experiments with specific premium functions sug-

gest that in the result of Lemma 6 holds for any value of p under condition (iii). However,

technical verification of this fact in general remains an open problem.

In order to conclude that the optimal window is increasing in δ and decreasing in q, we

will derive conditions under which the set

T ∗w (δ) = argmax
T
{Fw(T,δ)}

is increasing in δ. This is done in the following Proposition.

Proposition 7 Let

hT,T ′(k) =
bT ′(1− k/T ′)

bT ′(1)
− bT (1− k/T )

bT (1)
.

If for every T ′ > T there exists a k0 ∈ {0, ...,T} such that hT,T ′(k)≤ hT,T ′(k+1) for k < k0

and hT,T ′(k)≥ hT,T ′(k +1) for k > k0, then T ∗w (δ) is increasing in δ in the following sense:

for δ≥ δ′,

(i) max{T : T ∈ T ∗w (δ)} ≥max{T : T ∈ T ∗w (δ′)}; and

(ii) min{T : T ∈ T ∗w (δ)} ≥min{T : T ∈ T ∗w (δ′)}.

We conclude (as in Section 2.4.2) that if the premium function satisfies one of the first

two conditions of Lemma 6 and the condition of Proposition 7, then the optimal window is

increasing in δ and decreasing in q (when p is fixed). Moreover, if condition (iii) of Lemma

6 and the condition of Proposition 7 hold, then for any δ̄ < 1 and for sufficiently small p

the optimal window is increasing in δ in the interval [0, δ̄].5 Similarly, if q is known and the

5For condition (iii) of Lemma 6, the upper bound on p is some increasing function of T , say u(T ).
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goal is to maximize the range of δ for which the seller is always truthful, for every range of

q and for sufficiently small p the optimal window is decreasing in q.

We have seen in Section 2.4 that requiring the premium function to be logarithmically

concave is not a particularly strong condition. Moreover, the condition of Proposition 7 is

satisfied by many premium functions. As an example, consider premium functions of the

form bT (s) = α(T ) ·b(s)+γ(T ), where α(T ) is nondecreasing in T and γ(T ) is nonincreas-

ing in T . This form captures the following intuition: as the window size increases, buyers

trust the information that is aggregated in the seller’s score more. For instance, if the seller

has the maximum possible score (s = 1), we expect that the premium will increase as T

increases; this is captured by the assumption that α(T ) is increasing. On the other hand,

if the seller has the minimum possible score (s = 0), we expect the premium to decrease

as T increases; this is captured by the assumption that γ(T ) is nonincreasing. Simple cal-

culations show that the condition of Proposition 7 is satisfied for various functions of this

form; e.g., if b(s) = sn or b(s) = ens, and α(·), γ(·) are arbitrary functions of T . We note

that many empirical studies use regression forms that correspond to premia of the form

α(T ) ·b(s)+ γ(T ), where b(s) = ens [e.g., 16, 48, 31].

The following Corollary restricts attention to premia that do not explicitly depend on

the window size.

Corollary 1 Suppose bT (·) ≡ b(·). If b′(s) is logarithmically concave, then T ∗w (δ) is in-

creasing.

Examples of functions with a logarithmically concave derivative are b(s) = sn, b(s) = es

and the logistic function b(s) = 1/(1 + ea−bs) for b > 0. We note that the conclusion of

Corollary 1 holds more generally if b′(1− y)− yb′′(1− y) < 0 for some y ∈ [0,1] implies

that b′(1− z)− zb′′(1− z) < 0 for z > y.

We conclude by summarizing the results of this section. In the case of inaccurate rat-

ings, if any of the assumptions of Lemma 6 and the assumption of Proposition 7 hold, then

assuming that p is fixed: (1) if δ is known and the goal is to maximize the range of q for

which the seller is always truthful, then the set of optimal windows is increasing in δ; (2) if

Consider δ̄ < 1. If bT satisfies the condition of Proposition 7, then the optimal window is increasing for
δ ∈ [0, δ̄] if p≤ u(max{T ∗w (δ̄)}).
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q is known and the goal is to maximize the range of δ for which the seller is always truthful,

then the set of optimal windows is decreasing in q.

2.4.4 Weighted Aggregation Mechanism

In the previous section we studied the problem of finding the best mechanism in the class

of Window Aggregation Mechanisms. In this section we consider the optimization within

the general class of Weighted Aggregation Mechanisms; i.e., we let W denote the set of all

weight vectors such that ∑i wi = 1, and wi ≥ 0 for all i, with w0 ≥ w1 ≥ w2 · · · .
In this section we make the following assumption.

Assumption 2 The premium function is b(·), and does not depend on the weight vector ~w.

Further, it is strictly convex and logarithmically concave.

Note that we assume that the premium depends on the weights of the aggregation mech-

anism only through the score. Since Assumption 2 implies Assumption 1, we conclude (as

before) by Lemma 3 that it is optimal for the seller to be always truthful if and only if

condition (2.7) holds.

Applying the formulation of Section 2.4.1, it can be easily shown that finding the opti-

mal weight vector ~w∗(δ) in (2.9) is equivalent to solving the following optimization prob-

lem.6

minimize
∞

∑
i=0

δ
i ·b(1−wi) (2.17)

subject to
∞

∑
i=0

wi = 1; (2.18)

wi ≥ 0,∀i. (2.19)

By Assumption 2, the premium function is strictly convex and thus (2.17)-(2.19) has a

unique solution.

For the general Weighted Aggregation Mechanism it may seem plausible that all past

6It is straightforward to show that at the optimal solution the weights will be nonincreasing, and thus we
do not need to explicitly include the constraints wi ≥ w j for i < j.
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transactions of the seller should be assigned strictly positive weights in order to best incen-

tivize truthfulness. The following lemma shows that this is not the case under Assumption

2: it is optimal to only include a finite number of ratings in the seller’s score. In particular,

we note that this result implies that the Exponential Aggregation Mechanism introduced in

Example 4 never arises as an optimal weight vector.

Lemma 7 If the premium function satisfies Assumption 2 and δ ∈ (0,1), then only finitely

many weights are positive in ~w∗(δ).

In light of Lemma 7, let N∗(δ) be the number of strictly positive weights at the optimal

solution; i.e., w∗i (δ) > 0 for i = 0, ...,N∗(δ)−1, and w∗i (δ) = 0 for i≥N∗(δ). The following

proposition characterizes ~w∗(δ) and N∗(δ).

Proposition 8 If Assumption 2 holds, then

(i) w∗i (δ) is strictly decreasing in i for i < N∗(δ);

(ii) For sufficiently small i, w∗i (δ) is decreasing in δ; and

(iii) N∗(δ) is nondecreasing in δ.

According to (i), the optimal weights are strictly decreasing in i for i < N∗(δ), and

thus each strictly positive weight is different at the optimal solution. This implies that the

Window Aggregation Mechanism, which has weights wi = 1/T for i = 0, ...,T − 1, does

not arise as an optimal weight vector. The preceding observation is particularly interesting

when one considers that nearly all online marketplaces that use mechanisms which only

weight recent ratings, tend to use a Window Aggregation Mechanism to do so; for example,

eBay’s current mechanism weights all ratings equally over the past 12 months of feedback.

Our insight suggests that a more robust mechanism might be one that weights more recent

ratings even more heavily than older ratings.

Following Section 2.4.1, we now consider the optimal choice of weights depending on

the available information regarding δ and q.

1. Both δ and q are known by the mechanism designer. As in Section 2.4.1, the vector of

weights ~w∗(δ) is optimal is this case, and whether or not it will be possible to make
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the seller always truthful depends on whether q and δ are large enough to ensure (2.7)

is satisfied.

2. The mechanism designer knows δ, but not q. As in Section 2.4.1, the weights ~w∗(δ)

maximize the range of values of q for which the seller will be truthful. From Proposi-

tion 8 (ii), as δ increases, the most recent transactions are weighted less. Informally,

this happens because the value to the seller of the distant future increases relative to

the near future. This effect implies that the aggregation mechanism should weight

distant past ratings more heavily relative to recent ratings when δ increases. More-

over, Proposition 8 (iii) states that the optimal number of strictly positive weights is

nondecreasing in δ. As in the case of the Window Aggregation Mechanism, the in-

tuition for this is that sellers with higher discount factors care more about the future,

and so truthfulness is better incentivized when information from more transactions is

included.

3. The mechanism designer knows q, but not δ. As in Section 2.4.1, let δ∗(q) be the

solution to (2.10)-(2.12). Then the weights ~w∗(δ∗(q)) maximize the range of values

of δ for which the seller will be truthful. Recall that δ∗(q) is decreasing in q; thus,

from Proposition 8 (ii), as q increases, the most recent transactions are weighted

more. Moreover, from Proposition 8 (iii), the optimal number of strictly positive

weights is decreasing in q. As before, this is an intuitive result, since as q increases,

it is possible to make less patient sellers truthful, and such sellers value the future

less.

We observe that the dependence of the number of strictly positive weights on δ and q is

similar to the corresponding results on the optimal Window Aggregation Mechanism, i.e.,

that the optimal window size is nondecreasing in δ, and nonincreasing in q. Again, this

tradeoff directly affects a mechanism designer who knows neither δ nor q.

2.5 Non-Binary Values and Ratings

Throughout this chapter we assumed that the value of the item is either high or low, and

that ratings are either good or bad (binary rating system). In this section we discuss how the
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modeling and the results shown can be generalized when we relax this assumption. Thus,

our results are robust even if the seller has potentially many “levels” of dishonesty possible.

We assume that the possible values of the item are Ω = {0,1/Q,2/Q, . . . ,1} for some

integer Q ≥ 1, instead of only {low,high}. Let pv be the probability that the seller has an

item of value v for sale, so ∑v∈Ω pv = 1.7 Note that we allow the possibility pv = 0 for all

but one value in Ω; in this case, the seller has the same item in every period, but may be

tempted to exaggerate its value in his advertisement.

Let va ·b~w(s) be the expected payment to the seller when he advertises an item as having

value va and his score is s. Thus the highest quality item is worth b~w(s), and the expected

payment to the seller is scaled in proportion to the advertised quality. We assume that b~w(s)

is an increasing function of s.

Further, we assume that when the advertised value is va and the true value v, then the

seller receives rating ri = 1− (va− v)+, where x+ ≡max(x,0) denotes the positive part of

x. That is, the buyer “penalizes” the seller by the difference between the advertised and the

true value, whenever this difference is positive.8 Since the payment va ·b~w(s) is increasing

in va and s, the seller will only ever consider exaggerating the value of his advertisement,

and we can safely assume that ri = 1− (va− v). We consider the Weighted Aggregation

Mechanism: the seller’s score that the buyers see is s(~r) = ∑ j w jr j, where wi ≥ 0, and

w0 ≥ w1 ≥ ..., with ∑i wi = 1.

Let si(~r) be the seller’s score in i periods if his current ratings are~r and he is truthful in

all other periods. Our main insight is the following lemma.

Lemma 8 If b~w is convex, then it is optimal for the seller to be always truthful if and only

if

b~w(s(~r))≤

(
∑

v′∈Ω

pv′ · v′
)

∞

∑
i=0

δ
i+1 · (b~w(si(1,~r))−b~w(si(0,~r))) (2.20)

for all rating vectors~r.

In words, Lemma 8 says that if the premium function is convex, then the seller is more

7It is straightforward to extend the result to continuous probability distributions [8].
8The same results hold if ri = 1− |va− v| instead. In this case the buyer “penalizes” the seller by the

absolute difference between the advertised and true value. However, it seems more realistic and fair to only
“penalize” the seller when he exaggerates the value of the item in his advertisement.
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tempted to post an advertisement that is significantly higher than the true value. The in-

tuition for this is that a small lie now is associated with a small gain now, but a relatively

large reduction in future payments (because of convexity). If the payment is convex and the

seller considers exaggerating the value of the item in his description, he is better off signif-

icantly exaggerating it. Then, the reduction in future payments is not that large relative to

the current gain. When the premium function is concave, the reverse occurs: small lies are

more beneficial for the seller. This is because under concavity a small lie only imposes a

small reduction in future payments (relative to current gains).

Inspired by the preceding result, define:

q≡ ∑
v′∈Ω

pv′ · v′,

to be the seller’s quality. As a result, condition (2.20) is equivalent to (2.5). From this

observation, we immediately obtain analogs of most results of the paper.

If we assume that b~w is strictly convex and logarithmically concave, then we get analogs

of the design results of Section 2.4. In particular, the optimal weights are strictly decreasing

whenever positive, and the number of strictly positive weights is finite. Thus, neither the

Window Aggregation Mechanism nor the Exponential Aggregation Mechanism is optimal.

Moreover, the tradeoff discussed for the binary case still holds: informally, increasing the

number of strictly positive weights is more likely to make patient sellers (those with high

δ) truthful, while it is less likely to make high quality sellers (those with high q) truthful.

Finally, we note that the results on the design of the Window Aggregation Mechanism

with perfect monitoring can also be extended to the setting with non-binary values and

ratings [8].

2.6 Proofs for Chapter 2

Proof of Proposition 1: We will show that there exists a sufficiently large N such that if

the seller is truthful up to that time, then he is better off advertising a low value item as a

high value item at time N. We assume that the seller is truthful up to time N and so his

score is (sP,sT ) = (N,N). Substituting in (2.2), the seller will advertise a low value item
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truthfully at reputation (N,N) only if

(vH− vL)b(N,N)≤ δ(V (N +1,N +1)−V (N,N +1)). (2.21)

We wish to upper bound V (N +1,N +1)−V (N,N +1). Let αM = b(M,M)−b(M−1,M).

By (2.3), αM→ 0 as M→ ∞. Choose k∗(N) ∈ argmaxk≥0 αN+k+1. Then,

V (N +1,N +1)−V (N,N +1)≤
∞

∑
k=0

δ
k
αN+k+1 ≤

1
1−δ

αN+k∗(N)+1→ 0 as N→ ∞.

Thus, for every ε > 0 there exists N1 such that V (N + 1,N + 1)−V (N,N + 1) < ε for all

N ≥ N1. Since b(N,N) is assumed to be bounded away from zero as N → ∞, there exist

ε > 0 and N2 such that (vH−vL)b(N,N) > ε for all N ≥ N2. Thus, there exists N for which

(2.21) is not satisfied, which implies that there exists an sT at which it is optimal for the

seller to falsely advertise a low value item.

Proof of Lemma 2:

We first prove (i). Fix a vector of ratings~r. Note that if b~w(s(~r)) = 0, then the condition

trivially holds. We thus assume that b~w(s(~r)) > 0 in what follows.

We first observe that if wi > 0, then si(1,~r) > wi. In particular, we could only have

si(1,~r) = wi > 0 if i = 0 and w0 = 1, which contradicts the assumption that w0 < 1.

If wi > 0, then

b~w(si(1,~r))−b~w(si(0,~r))= b~w(si(1,~r))−b~w(si(1,~r)−wi)> wi ·
b~w(si(1,~r))

si(1,~r)
≥wi ·b~w(s(~r)).

The equality holds because si(0,~r) = si(1,~r)−wi. The first inequality follows because b~w

is strictly convex and b~w(0) = 0, and the second because s(~r)≤ si(1,~r)≤ 1. We conclude

that b~w(si(1,~r))−b~w(si(0,~r)) > wi ·b~w(s(~r)) for all i with wi > 0. Summing over all i and

using the fact that ∑i wi = 1, we show (i).

We now show (ii). By concavity of b~w,

∞

∑
i=0

(b~w(1)−b~w(1−wi))≤
∞

∑
i=0

wib~w(1) = b~w(1),
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since b~w(0)≥ 0, and ∑i wi = 1.

Proof of Corollary 2:
We first prove (i) by showing that there is no profitable deviation from the policy of

always advertising truthfully when b~w is strictly convex and q and δ are sufficiently large.

Fix a vector of ratings~r. Note that if b~w(s(~r)) = 0, then the seller has no reason to deviate

from the truthful policy. We thus assume that b~w(s(~r)) > 0 in what follows.

We first observe that if wi > 0, then s1
i (~r) > wi. In particular, we could only have

s1
i (~r) = wi > 0 if i = 0 and w0 = 1. But this can not happen under the assumption w1 > 0,

since wi ≥ 0 and ∑i wi = 1.

If wi > 0, then

b~w(s1
i (~r))−b~w(s0

i (~r)) = b~w(s1
i (~r))−b~w(s1

i (~r)−wi) > wi ·
b~w(s1

i (~r))
s1

i (~r)
≥ wi ·b~w(s(~r)).

The equality holds because s0
i (~r) = s1

i (~r)−wi. The first inequality follows because b~w is

strictly convex and b~w(0) = 0, and the second because s(~r)≤ s1
i (~r)≤ 1. We conclude that

b~w(s1
i (~r))−b~w(s0

i (~r)) > wi ·b~w(s(~r)) for all i with wi > 0. Let

ε =
1
qδ

∑
i:wi>0

δ
i
(

b~w(s1
i (~r))−b~w(s0

i (~r))
b~w(s(~r))

−wi

)

The seller will always be truthful if δ and q are such that,

b~w(s(~r))≤ qδ∑
i

δ
iwib~w(s(~r))+ εb~w(s(~r)),

(so that (2.5) holds), or equivalently

1− ε≤ qδ∑
i

δ
iwi. (2.22)

We next show that for any ε > 0, we can choose δ < 1 and q < 1 such that (2.22) holds.

We consider the following cases.

(a) There exists k such that wi = 0 for i > k. Then it suffices to choose δ < 1 and q < 1

such that qδk+1 ≥ 1− ε.
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(b) wi > 0 for all i. Then there exists a finite k such that ∑
k
i=0 wi ≥ 1− ε/2. By choosing

δ,q < 1 such that δk+1 ≥ (1− ε)/(1− ε/2), we have

qδ∑
i

δ
iwi ≥ qδ

k

∑
i=0

δ
iwi ≥

1− ε

1− ε/2

k

∑
i=0

wi ≥ 1− ε.

If (2.22) holds for given q < 1 and δ < 1, then it also holds for all q′ and δ′ with q′ ≥ q and

δ′ ≥ δ. This concludes the proof of (i).

We now show (ii) by demonstrating that condition (2.5) is not satisfied at~r =~1 when

b~w is concave. At ~r =~1, condition (2.5) is b~w(1) ≤ δq∑
∞
i=0 δi(b~w(1)− b~w(1−wi)). By

concavity of b~w, we upper bound the right hand side

δq
∞

∑
i=0

δ
i(b~w(1)−b~w(1−wi))≤ δq

∞

∑
i=0

δ
iwib~w(1) < b~w(1),

since q,δ < 1, b~w(0) ≥ 0, and ∑i wi = 1. Thus, it is optimal for the seller to deviate from

always being truthful. This shows that always advertising truthfully is not optimal for the

seller under decreasing returns to reputation.

Proof of Proposition 3: We note that if s(~r) < s∗, then the seller has no reason to deviate

from the truthful policy. We thus consider what happens for s(~r)≥ s∗.

We first show that if s∗ ≤ 1−w1, then the seller is better off deviating from the truthful

policy at s(~r) = 1. If he receives a low value item and does not deviate, his infinite horizon

expected payoff is vHqH ∑
∞
i=1 δib~w(1), while if he does deviate his expected payoff is at

least vH(1+qH ∑
∞
i=2 δi)b~w(1), which is strictly greater for any δ < 1. This shows (i).

We now show (ii). If s∗> 1−w1, then w0≥w1 > 1−s∗. We will show that (2.5) is satis-

fied for any vector of ratings~r with s(~r)≥ s∗. We note that b~w(s(~r)) = b~w(s(1,~r)) = b~w(1).

Moreover, s(0,~r) = si(1,~r)−wi, so s0(0,~r),s1(0,~r) < s∗ and b~w(s0(0,~r)) = b~w(s1(0,~r)) =

0. Thus,

δqH

∞

∑
i=0

δ
i(b~w(si(1,~r))−b~w(si(0,~r)))≥ δqH

1

∑
i=0

δ
i(b~w(si(1,~r))−b~w(si(0,~r)))= qH(δ+δ

2)b~w(1),

and thus if qH(δ+δ2)≥ 1, the seller does not deviate.

54



Proof of Lemma 4:

By Lemma 1, it is optimal for the seller to always be truthful if q ≥ q∗(b~w,δ,~r) for

all~r, where q∗(b~w,δ,~r) ≡ (vH − vL)b~w(s(~r))/∑
∞
i=0 δi+1(b~w(si(1,~r))−b~w(si(0,~r))). If it is

not optimal for the seller to deviate from the truthful policy at maximum reputation, then

q≥ q∗(b~w,δ,~1).

Let b~w be logarithmically concave. To show the statement of the proposition, it suffices

to show that q∗(b~w,δ,~1)≥ q∗(b~w,δ,~r) for all~r, i.e., if for all~r, b~w(1) ·∑∞
i=0 δi(b~w(si(1,~r))−

b~w(si(0,~r)))≥ b~w(s(~r)) ·∑∞
i=0 δi(b~w(1)−b~w(1−wi)).

It suffices to show that

b~w(1) · (b~w(s1
i (~r))−b~w(s0

i (~r)))≥ b~w(s(~r)) · (b~w(1)−b~w(1−wi)). (2.23)

To conclude the proof we show that (2.23) is satisfied by a logarithmically concave func-

tion.

Let w > 0 and x ∈ [w,1]. Since b~w is logarithmically concave, then log(b~w(x))−
log(b~w(x−w)) is nonincreasing in x, which implies that b~w(x−w)/b~w(x) is nondecreasing

in x. Thus, b~w(1−wi)/b~w(1)≥ b~w(si(0,~r))/b~w(si(1,~r)) and (b~w(1)−b~w(1−wi))/b~w(1)≤
(b~w(si(1,~r))−b~w(si(0,~r)))/b~w(si(1,~r)). Using the fact that b~w(si(1,~r))≥ b~w(si(0,~r)), this

implies that (2.23) holds and concludes the proof.

Proof of Proposition 4: If the seller is always truthful under b̃~w, it must be that (vH −
vL)b̃~w(1)≤ δq∑

∞
i=0 δi(b̃~w(1)− b̃~w(1−wi)), since in particular he is truthful when his score

is equal to 1. Since b~w(s) ≤ b̃~w(s) for all s, and b~w(1) = b̃~w(1), we have b̃~w(1)− b̃~w(1−
wi)≤ b~w(1)−b~w(1−wi) for all wi. Thus,

(vH−vL)b~w(1)= (vH−vL)b̃~w(1)≤ δq
∞

∑
i=0

δ
i(b̃~w(1)− b̃~w(1−wi))≤ δq

∞

∑
i=0

δ
i(b~w(1)−b~w(1−wi)).

Since b~w satisfies Assumption 1 and condition (2.6), the optimal policy of the seller is to

always advertise truthfully under b~w (by Lemma 3).

Proof of Proposition 5: We will show that log(F(T,δ)) satisfies increasing differences.
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Let T ′ ≥ T .

log(F(T ′,δ))− log(F(T,δ)) = log

(
1−δT ′

1−δT

)
+ t(T,T ′),

where t(T,T ′) does not depend on δ. Thus, to show that log(F(T,δ)) has increasing dif-

ferences in (T,δ) it suffices to show that (1− δT ′)/(1− δT ) is increasing in δ. The first

derivative with respect to δ is positive if and only if

T ·δT−1

1−δT ≥
T ′ ·δT ′−1

1−δT ′ .

Since T ′ ≥ T it suffices to show that r(x) ≡ (x · δx−1)/(1− δx) is decreasing. We proceed

by differentiating r:

r′(x) =
δx−1

(1−δx)2 (1−δ
x− x ln(1/δ)).

To complete the proof, we show that δT + T ln(1/δ) > 1 holds for T ≥ 1, δ ∈ (0,1). First

note that δT +T ln(1/δ) is increasing in T , since

∂(δT +T ln(1/δ))
∂T

= ln(1/δ) · (1−δ
T ) > 0.

So it suffices to show that ĝ(δ)≡ δ+ ln(1/δ) > 1. g is strictly decreasing in (0,1), because

ĝ′(δ) = 1+
−1/δ2

1/δ
=

δ−1
δ

< 0,

and ĝ(1) = 1. So, ĝ(δ) > 1 for δ ∈ (0,1).

This proves that log(F(T,δ)) has increasing differences in (T,δ); the result follows by

applying Topkis’ Theorem [68].

Proof of Lemma 5: It is optimal for the seller to be always truthful if and only if any

one step deviation from the truthful policy (i.e., the policy of always advertising items

truthfully) does not yield a higher payoff. The seller may consider to exaggerate an item in

his description if in that period he has a low value item for sale. Let V̂ (~r) be the expected

infinite horizon discounted payoff to the seller if he is always truthful and his current vector
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of ratings is~r. The seller does not deviate from the truthful policy at~r if and only if

(vH− vL) ·bT

(
T

∑
i=1

ri/T

)
≤ δ[(1− ptL)V̂ (1,~r)− (1− puL)V̂ (0,~r)+(ptL− puL)V̂ (~r)].

(2.24)

With probability a(i, j) ≡
( i

j

)
(1− p) j pi− j exactly j new ratings arrive in i periods. Let

s j(~r) be the score of the seller after j good rating arrive with initial rating vector~r. Then

s0(~r) = ∑
T
i=1 ri/T , and

(1− ptL)V̂ (1,~r)− (1− puL)V̂ (0,~r)+(ptL− puL)V̂ (~r) =

q ·
∞

∑
i=0

δ
i
min(T−1,i)

∑
j=0

a(i, j)[(1− ptL)bT (s j(1,~r))− (1− puL)bT (s j(0,~r))+(ptL− puL)bT (s j(~r))] =

q ·
∞

∑
i=0

δ
i
min(T−1,i)

∑
j=0

a(i, j)[(1− ptL)(bT (s j(1,~r))−bT (s j(~r)))+(1− puL)(bT (s j(~r))−bT (s j(0,~r)))]

This shows that q ·Fm(T,δ)≥ 1 is equivalent to (2.24) for~r =~1, and thus it is a necessary

condition for the seller to be always truthful. To show sufficiency, it suffices to show that

for j < T ,

(1− ptL)(bT (s j(1,~r))−bT (s j(~r)))+(1− puL)(bT (s j(~r))−bT (s j(0,~r)))
bT (s0(~r))

≥

(1− puL)(bT (1)−bT (1−1/T ))
bT (1)

Note that s j(1,~r)≥ s j(~r)≥ s j(0,~r) and s j(1,~r)= s j(0,~r)+1/T . Therefore, either s j(1,~r)=

s j(~r)+1/T or s j(~r) = s j(0,~r)+1/T .

57



We first assume that s j(1,~r) = s j(~r)+1/T and s j(~r) = s j(0,~r). Then

(1− ptL)(bT (s j(1,~r))−bT (s j(~r)))+(1− puL)(bT (s j(~r))−bT (s j(0,~r)))
bT (s0(~r))

=

(1− ptL)
bT (s j(1,~r))−bT (s j(~r))

bT (s0(~r))
≥

(1− ptL)
bT (1)−bT (1−1/T )

bT (1)
≥

(1− puL)
bT (1)−bT (1−1/T )

bT (1)

This first inequality is a consequence of the fact that bT is logarithmically concave; and the

second inequality holds because puL ≥ ptL.

We next assume that s j(1,~r) = s j(~r) and s j(~r) = s j(0,~r)+1/T . Then

(1− ptL)(bT (s j(1,~r))−bT (s j(~r)))+(1− puL)(bT (s j(~r))−bT (s j(0,~r)))
bT (s0(~r))

=

(1− puL)
bT (s j(~r))−bT (s j(0,~r))

bT (s0(~r))
≥

(1− puL)
bT (1)−bT (1−1/T )

bT (1)

This again holds because bT is logarithmically concave.

We conclude that if puL ≥ ptL, then the seller is always truthful if and only if q ·
Fm(T,δ)≥ 1.

Proof of Proposition 6: Let

g(T,δ)≡ bT (1)−bT (1−1/T )
bT (1)

∞

∑
i=0

f (T, i)δi,

f (T, i) =
min(T−1,i)

∑
j=0

(
i
j

)
(1− p) j pi− j.

Also let α(i, j)≡
( i

j

)
(1− p) j pi− j. Clearly, T ∗m(δ) = argmaxT{g(T,δ)}.

We will show that g satisfies the single crossing property in (T,δ), i.e., that g(T ′,δ) >

g(T,δ) implies g(T ′,δ′) > g(T,δ′) for δ′ > δ and T ′ > T . This will imply that T ∗(δ) is
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increasing in δ [51]. Let

c≡ (bT ′(1)−bT ′(1−1/T ′))/bT ′(1)
(bT (1)−bT (1−1/T ))/bT (1)

.

Equivalently we will show that if

∞

∑
i=0

(c · f (T ′, i))δi >
∞

∑
i=0

f (T, i)δi,

then the inequality also holds for δ′ > δ.

We first show that if c · f (T ′, i) > f (T, i), then c · f (T ′, i+1) > f (T, i+1). We consider

the cases i < T and i≥ T separately.

Suppose i < T . Then c f (T ′, i) > f (T, i) implies that

c
i

∑
j=0

a(i, j) >
i

∑
j=0

a(i, j),

which can only happen if c > 1. Also min(i+1,T ′−1) = i+1, while min(i+1,T −1) is

i+1 if i < T −1; and i if i = T −1. In either case, c · f (T ′, i+1) > f (T, i+1).

Now suppose that i ≥ T , and let k ≡ min(i,T ′− 1). Assume c · f (T ′, i)− f (T, i) > 0.

Then
k

∑
j=T

a(i, j) >
1− c

c

T−1

∑
j=0

a(i, j).

We observe that

a(i+1, j) = (1− p)
i+1

i+1− j
a(i, j) = (1− p)

(
1+

j
i+1− j

)
a(i, j).

Then,

k

∑
j=T

a(i+1, j)− 1− c
c

T−1

∑
j=0

a(i+1, j)

= (1− p)
k

∑
j=T

(
1+

j
i+1− j

)
a(i, j)− (1− p)

1− c
c

T−1

∑
j=0

(
1+

j
i+1− j

)
a(i, j)
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Moreover,

k

∑
j=T

i+1
i+1− j

a(i, j)≥ i+1
i+1−T

k

∑
j=T

a(i, j)>
1− c

c
i+1

i+1−T

T−1

∑
j=0

a(i, j)≥ 1− c
c

T−1

∑
j=0

i+1
i+1− j

a(i, j).

Since
k

∑
j=T

a(i, j)− 1− c
c

T−1

∑
j=0

a(i, j) > 0,

we have that

k

∑
j=T

i+1
i+1− j

a(i, j)≥ i+1
i+1−T

k

∑
j=T

a(i, j)>
1− c

c
i+1

i+1−T

T−1

∑
j=0

a(i, j)≥ 1− c
c

T−1

∑
j=0

i+1
i+1− j

a(i, j)

We conclude that if c · f (T ′, i)− f (T, i) > 0, then

k

∑
j=T

a(i+1, j) >
1− c

c

T−1

∑
j=0

a(i+1, j).

Since a(i+1, j)≥ 0, min(i+1,T ′−1)≥ k and min(i+1,T −1) = T −1, this implies that

c · f (T ′, i+1)− f (T, i+1) > 0.

The final step of the proof is to show that if ∑
∞
i=0(c · f (T ′, i))δi > ∑

∞
i=0 f (T, i)δi, then the

inequality also holds for δ′ > δ. Let T ′ > T and ei = c · f (T ′, i)− f (T, i). We have shown

that if ei > 0 then ei+1 > 0. If ei > 0 for all i, then trivially ∑
∞
i=0 eiδ

i > 0 for all δ.

Now suppose e0 < 0 and let k = max{i : ei < 0}. If ∑
∞
i=0 eiδ

i > 0, then

∞

∑
i=k+1

|ei|δi >
k

∑
i=1
|ei|δi.

Moreover,
∞

∑
i=k+1

i|ei|δi−1 >
k

∑
i=1

i|ei|δi−1.
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The last inequality is equivalent to

∂

∂δ

(
∞

∑
i=0

eiδ
i

)
=

∞

∑
i=1

ieiδ
i−1 > 0,

which concludes the proof.

Proof of Lemma 6: It is optimal for the seller to describe a low value item truthfully at~r

if

(vH− vL) ·bT

(
T

∑
i=1

ri/T

)
≤ δ(1− puL− ptL)(V (1,~r)−V (0,~r)).

It is optimal for the seller to be always truthful if and only if any one step deviation from

the truthful policy (i.e., the policy of always advertising items truthfully) does not yield a

higher payoff. The seller may consider to exaggerate an item in his description if in that

period he has a low value item for sale. Let V̂ (~r) be the infinite horizon discounted payoff

to the seller if he is always truthful. The seller will not deviate from being truthful when

his ratings are~r if

(vH− vL) ·bT

(
T

∑
j=1

r j/T

)
≤ δ(1− puL− ptL)(V̂ (1,~r)−V̂ (0,~r)).

We observe that the payments to the seller from V̂ (1,~r) and V̂ (0,~r) may differ in the next

T periods, but not after that. Let si(~r) be the seller’s score in i periods if his current rating

vector is~r and he gets good ratings in all future periods. Then,

V̂ (1,~r)−V̂ (0,~r) = q
i

∑
k=0

(
i
k

)
pk(1− p)i−k (bT (si(1,~r)− k/T )−bT (si(1,~r)− (k +1)/T ))

In particular, after i periods the seller gets k bad ratings (which are inaccurate) with prob-

ability a(i,k) ≡
( i

k

)
pk(1− p)i−k. We conclude that the seller will not deviate from being

truthful when his ratings are~r if

(vH−vL)·bT (s0(~r))≤ δ(1− puL− ptL)q
i

∑
k=0

a(i,k)(bT (si(1,~r)− k/T )−bT (si(1,~r)− (k +1)/T )) .
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To prove the Lemma it suffices to show that

i

∑
k=0

a(i,k)
(

bT (si(1,~r)− k/T )−bT (si(1,~r)− (k +1)/T )
bT (s0(~r))

− bT (1− k/T )−bT (1− (k +1)/T )
bT (1)

)
≥ 0.

(2.25)

This implies that if the seller does not deviate from being truthful at ~1, then he does not

deviate at any~r. The remainder of the proof shows that if (i), (ii) or (iii) is satisfied, then

(2.25) holds.

We first consider condition (i) and assume that bT is concave. Then,

bT (si(1,~r)− k/T )−bT (si(1,~r)− (k +1)/T )≥ bT (1− k/T )−bT (1− (k +1)/T )

by the concavity of bT , and

bT (1)≥ bT

(
T

∑
j=1

r j/T

)
since bT is increasing. We conclude that in this case(

bT (si(1,~r)− k/T )−bT (si(1,~r)− (k +1)/T )
bT
(
∑

T
i=1 ri/T

) − bT (1− k/T )−bT (1− (k +1)/T )
bT (1)

)
≥ 0,

and thus (2.25) holds.

Now assume that bT (s) = eα·s+β and α > 0 (condition (ii)). Then

bT (si(1,~r)− k/T )−bT (si(1,~r)− (k +1)/T )
bT
(
∑

T
i=1 ri/T

) − bT (1− k/T )−bT (1− (k +1)/T )
bT (1)

=

eα(si(1,~r)−k/T )+β− eα(si(1,~r)−(k+1)/T )+β

eα(∑
T
j=1 r j/T)+β

− eα(1−k/T )+β− eα(1−(k+1)/T )+β

eα+β
=

eα(si(1,~r)−k/T )− eα(si(1,~r)−(k+1)/T )

eα(∑
T
j=1 r j/T)

− eα(1−k/T )− eα(1−(k+1)/T )

eα
=(

eα(si(1,~r))

eα(∑
T
j=1 r j/T)

−1

)
(e−αk/T − e−α(k+1)/T )≥ 0

because si(1,~r)≥ ∑
T
j=1 r j/T and α > 0.

We now show (iii). We will show that if bT is strictly logarithmically concave, then
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(2.25) holds for sufficiently small p. If bT is strictly log-concave, then log(bT (x))−
log(bT (x−w)) is strictly decreasing in x. Thus bT (x−w)/bT (x) is strictly increasing in x

and bT (1−1/T )/bT (1) > bT (x−1/T )/bT (x). Let

c(T )≡ bT (1−1/T )
bT (1)

− bT (1−2/T )
bT (1−1/T )

.

Then
bT (1−1/T )

bT (1)
− bT (x−1/T )

bT (x)
≥ c(T )

for x ∈ {1/T,2/T, ...,(T −1)/T}, and c(T ) > 0. Moreover, there exists λ such that

bT (x− k/T )−bT (x− (k +1)/T )
bT (x)

− bT (1− k/T )−bT (1− (k +1)/T )
bT (1)

≥−λ

for x ∈ {1/T,2/T, ...,(T − 1)/T} and k ∈ {1,2, ...,T x− 1}. For instance, the aforemen-

tioned inequality holds for any premium function bT if λ = 2, since

bT (x− (k +1)/T )
bT (x)

+
bT (1− k/T )

bT (1)
≤ bT (x)

bT (x)
+

bT (1)
bT (1)

= 2.

We conclude that if

p≤ 1−
(

λ

c(T )+λ

)1/T

then condition (2.25) holds.

Proof of Proposition 7: Let

c(i) =
i

∑
k=0

(
i
k

)
pk(1− p)i−k f (k),

f (k) =
bT (1− k/T )−bT (1−1/T − k/T )

bT (1)
− bT ′(1− k/T ′)−bT ′(1−1/T ′− k/T ′)

bT ′(1)
,

g(T,δ) =
T−1

∑
i=0

δ
i

i

∑
k=0

(
i
k

)
pk(1− p)i−k bT (1− k/T )−bT (1− (k +1)/T )

bT (1)
.

Clearly, T ∗w (δ) = argmaxT{g(T,δ)}.
The proof consists of three steps. First, we show that if hT,T ′ satisfies the assumption of
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the proposition, then f (k) < 0 implies f (k+1) < 0. The second step is to show that c(i) < 0

implies that c(i+1) < 0. Then we show that g satisfies the single crossing property in (T,δ)

and conclude that T ∗w (δ) is increasing.

Step 1: Let

h(k) =
bT ′(1− k/T ′)

bT ′(1)
− bT (1− k/T )

bT (1)

We observe that

f (k)=
bT ′(1− (k +1)/T ′)

bT ′(1)
− bT (1− (k +1)/T )

bT (1)
− bT ′(1− k/T ′)

bT ′(1)
+

bT (1− k/T )
bT (1)

= h(k+1)−h(k).

Since there exists a k0 ∈ {0, ...,T} such that hk is increasing in k for k < k0 and decreasing

in k for k ≥ k0, we conclude that fk < 0 if and only if k ≥ k0. Thus, if f (k) < 0 then

f (k +1) < 0.

Step 2: Let

a(i,k) =
(

i
k

)
pk(1− p)i−k.

The key property we exploit is that:

a(i+1,k)
a(i,k)

= (1− p)
i+1

i+1− k

is strictly increasing in k. We have shown that f (k)≥ 0 for k < k0 and f (k) < 0 for k≥ k0.

Suppose c(i) < 0. Of course, in this case we must have i≥ k0. Then:

k0−1

∑
k=0

a(i,k) f (k) <−
i

∑
k=k0

a(i,k) f (k).

But now note that for all k < k0, i + 1− k > i + 1− k0; and for all k such that k0 ≤ k < i,
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i+1− k ≤ i+1− k0. So we get:

k0−1

∑
k=0

a(i+1,k) f (k) = (i+1)(1− p)
k0−1

∑
k=0

a(i,k) f (k)/(i+1− k)

< (i+1)(1− p)
k0−1

∑
k=0

a(i,k) f (k)/(i+1− k0)

<−(i+1)(1− p)
i

∑
k=k0

a(i,k) f (k)/(i+1− k0)

<−(i+1)(1− p)
i

∑
k=k0

a(i,k) f (k)/(i+1− k)

<−
i+1

∑
k=k0

a(i+1,k) f (k)

where the last inequality follows since f (i + 1) < 0. We conclude that c(i + 1) < 0, as

required.

Step 3: Let T ′ > T and δ′ > δ. The function g satisfies the single crossing property in

(T,δ) if g(T ′,δ) > g(T,δ) implies that g(T ′,δ′) > g(T,δ′). We observe that

g(T ′,x)−g(T,x) =
T ′−1

∑
i=T

δ
i

i

∑
k=0

(
i
k

)
pk(1− p)i−k bT (1− k/T ′)−bT (1− (k +1)/T ′)

bT ′(1)
−

T−1

∑
i=0

δ
i

i

∑
k=0

(
i
k

)
pk(1− p)i−k f (k) =

T ′−1

∑
i=T

δ
i

i

∑
k=0

(
i
k

)
pk(1− p)i−k bT (1− k/T )−bT (1− (k +1)/T )

bT (1)
−

T−1

∑
i=0

δ
ic(i)

According to Step 2, there exists some i0 such that we can rewrite the previous difference

as

g(T ′,x)−g(T,x) =−
i0−1

∑
i=0

xidi +
T ′−1

∑
i=i0

xidi,

where di ≥ 0 for all i. Assume that g(T ′,δ)−g(T,δ) > 0. Then,

i0−1

∑
i=0

iδi−1di =
i0−1

∑
i=0

i
δ

δ
idi≤

i0−1
δ

i0−1

∑
i=0

δ
idi≤

i0−1
δ

T ′−1

∑
i=i0

δ
idi =

T ′−1

∑
i=T

(i0−1)δi−1di≤
T ′−1

∑
i=i0

iδi−1di.
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This implies that if g(T ′,δ)−g(T,δ) > 0, then g′(T ′,δ)−g′(T,δ)≥ 0. We conclude that if

g(T ′,δ)−g(T,δ) > 0, then g(T ′,δ′)−g(T,δ′) > 0 for δ′ > δ. This shows that the objective

satisfies the single crossing property. Thus, we apply Theorem 4 from [51] to conclude

the proof.

Proof of Corollary 1: We will first show a stronger result: if b′(1−y)−yb′′(1−y) < 0 for

some y ∈ [0,1] implies that b′(1− z)− zb′′(1− z) < 0 for z > y, then T ∗w (δ) is increasing in

δ. Then, we will show that this is the case if log(b′(s)) is concave.

Let

g(x)≡ b(1) ·h′T ′,T (x) =
1
T

b′(1− x/T )− 1
T ′

b′(1− x/T ′).

Clearly, g(0) > 0. It suffices to show that if g(x) < 0 then g(x′) < 0 for x′ > x in order to

apply Proposition 7.

g(x) =
1
T

b′(1− x/T )− 1
T ′

b′(1− x/T ′)

=
∫ 1/T

1/T ′

∂

∂y
[yb′(1− yx)]dy

=
∫ 1/T

1/T ′
[b′(1− yx)− yxb′′(1− yx)]dy

=
1
x

∫ x/T

x/T ′
[b′(1− z)− zb′′(1− z)]dz

If b′(1− y)− yb′′(1− y) > 0 for all y ∈ [0,1] then g(x) > 0 for all x ∈ [0,T ]. Otherwise

there exists z0 ∈ (0,1] such that b′(1− z0)− z0b′′(1− z0) = 0 and b′(1− z)− zb′′(1− z) > 0

for z < z0; b′(1− z)− zb′′(1− z) < 0 for z > z0.

If g(x) < 0, then

∫ z0

x/T ′
[b′(1− z)− zb′′(1− z)]dz <

∫ x/T

z0

|b′(1− z)− zb′′(1− z)|dz.

Let x′ > x. Then x′/T ′ > x/T ′ and x′/T > x/T . If x′/T ′ > z0, then g(x′) < 0. If x′/T ′ < z0,

then ∫ z0

x/T ′
[b′(1− z)− zb′′(1− z)]dz >

∫ z0

x′/T ′
[b′(1− z)− zb′′(1− z)]dz
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and ∫ x/T

z0

|b′(1− z)− zb′′(1− z)|dz <
∫ x′/T

z0

|b′(1− z)− zb′′(1− z)|dz.

We conclude that∫ z0

x′/T ′
[b′(1− z)− zb′′(1− z)]dz <

∫ x′/T

z0

|b′(1− z)− zb′′(1− z)|dz

which implies that g(x′) < 0.

We have shown the result for the case that b′(1−y)−yb′′(1−y) < 0 implies that b′(1−
z)− zb′′(1− z) < 0 for z > y. A sufficient condition for this is that (1− x)b′′(x)/b′(x) is

decreasing. The latter holds if b′ is logarithmically concave.

Proof of Lemma 7:

We first show that if b is logarithmically concave, then b′(1) < ∞. Suppose not, and let

f (x) = log(b(x)). Then f is concave and f ′(x)→∞ as x→ 1. However, this is not possible

since if f is concave, then f ′ is decreasing on [0,1].

We next show that if b′(1) < ∞, then at the optimal solution only a finite number of

weights are positive. Consider the vector~u∗(δ), which is the solution of (2.17)-(2.19). The

optimality conditions are:

b′(1−u∗i ) =
λ−µi

δi ; u∗i ·µi = 0, for all i,

where λ and µi are the Lagrange multipliers of constraint (2.18) and (2.19) respectively.

Suppose u∗i > 0 for all i. Then b′(1−u∗i ) = λ/δi for some λ > 0. But b′(1−u∗i ) < b′(1) < ∞

for all i, while λ/δi→∞ as i→∞, which is a contradiction. Thus it must be that u∗i > 0 for

only a finite number of i’s, i.e., N∗(δ) < ∞.

Proof of Proposition 8: We first consider~u∗, i.e., the solution of (2.17)-(2.19). Let λ be the

Lagrange multiplier of (2.18). The optimality conditions imply that for i = 0, ...,N∗(δ)−1,

u∗i (δ) = 1−b′−1(λ/δi). Since b is strictly convex, both b′ and b′−1 are strictly increasing.

Thus the optimal weights are strictly decreasing for i = 0, ...,N∗(δ)−1. For~v∗, we observe

that the optimal weights are strictly decreasing for i = 0, ...,N∗(δ∗(q))−1 (according to the

proof of Lemma 7). This proves (i).
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Substituting the formula for u∗i (δ) in (2.18),

N∗(δ)−1

∑
i=0

b′−1(λ/δ
i) = N∗(δ)−1. (2.26)

In order to find the optimal weights, it suffices to find λ,N∗(δ) such that equation (2.26) is

satisfied and
λ

δN∗(δ)−1
< b′(1)≤ λ

δN∗(δ) , (2.27)

so that u∗N∗−1(δ) > 0 and u∗N∗(δ) = 0.

Suppose δ1 < δ2. Let N1 and N2 be the corresponding optimal numbers of strictly

positive weights, and λ1 and λ2 be the corresponding Lagrange multipliers. By (2.26),

N1−1

∑
i=0

b′−1(λ1/δ
i
1) = N1−1;

N2−1

∑
i=0

b′−1(λ2/δ
i
2) = N2−1.

We will show that N1 ≤ N2. Suppose not. Then, N1 > N2, and subtracting the latter from

the former equation,

N1−1

∑
i=N2

b′−1(λ1/δ
i
1)+

N2−1

∑
i=0

(
b′−1(λ1/δ

i
1)−b′−1(λ2/δ

i
2)
)

= N1−N2.

Since b′−1(λ1/δi
1) < 1 for i ∈ {N2, ...,N1− 1}, it follows that ∑

N1−1
i=N2

b′−1(λ1/δi
1) < N1−

N2. Thus the previous equality can only hold if b′−1(λ1/δi
1) > b′−1(λ2/δi

2) for some i ∈
{0,1, ...,N2− 1}. Since b is strictly convex, this implies that λ1/δi

1 > λ2/δi
2 for some

i ∈ {0,1, ...,N2− 1}. We observe that if this is the case for i, it is also the case for i +

1 (since 1/δ1 > 1/δ2). We conclude that it must hold for i = N2− 1, i.e., λ1/δ
N2−1
1 >

λ2/δ
N2−1
2 . Thus b′−1(λ1/δ

N2
1 ) > b′−1(λ2/δ

N2
2 ), which is a contradiction, since N1 > N2

implies b′−1(λ1/δ
N2
1 ) < 1 and b′−1(λ2/δ

N2
2 ) ≥ 1 (by (2.27)). Thus, if δ1 < δ2, it must be

N1 ≤ N2. This proves that N∗(δ) is increasing in δ.

To show that M∗(q) is decreasing in q, we observe that δ∗(q) (defined in the proof of
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Lemma 7) is decreasing in q, and that M∗(q)≡ N∗(δ∗(q)). This concludes the proof of (ii).

Proof of Lemma 8: The Bellman equation for the discounted infinite horizon expected

payoff of the seller is then given by:

V (~r) = ∑
v∈Ω

pv max
va≥v,va∈Ω

{vab~w(s(~r))+δ ·V (1− (va− v),~r)} .

Similar to the analysis in Section 2.3.1, it is optimal for the seller to always be truthful if

and only if

(va− v) ·b~w(s(~r))≤

(
∑

v′∈Ω

pv′ · v′
)

∞

∑
i=0

δ
i+1 · (b~w(si(1,~r))−b(si(1− (va− v),~r))) (2.28)

for all rating vectors~r and all va,v ∈Ω with va > v.

We observe that (2.28) depends only on the difference va− v and not on the specific

values va or v. Moreover, if b~w is convex, since (b~w(si(1,~r))− b~w(si(1− d,~r)))/d =

(b~w(si(1,~r))− b~w(si(1,~r)−wid))/d is decreasing in d, we conclude that if (2.28) is sat-

isfied for va,v, then it is also satisfied for v′a,v
′ with v′a− v′ ≤ va− v. This establishes the

lemma.
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Chapter 3

Market Mechanisms
for Peer-to-Peer Systems

In peer-to-peer systems, users share files or resources with each other. By sharing, a peer

incurs a cost (because uploading a file consumes network resources), but no direct benefit.

Thus, if there is no mechanism that stimulates sharing, a peer has a strong incentive to free

ride, i.e., use the resources of other peers without contributing his own. Such behavior is

observed in existing peer-to-peer systems; for instance, early data showed that nearly 70

percent of peers of Gnutella were sharing no files, and nearly 50 percent of all responses

were returned by the top 1 percent of sharing hosts [1]. A more recent study shows that

85 percent of Gnutella peers share no files [38]. Even worse, according to [1], there were

peers in Gnutella who were free riding on the system despite sharing files: the files that

they were sharing were unpopular, and hence not widely uploaded.

Incentive mechanisms that penalize free riders or reward peers that share have been

proposed. In [15] peers enjoy different levels of service according to how much they share

their resources, while in [28] free riders are excluded from the system with some proba-

bility. In [24], a distributed rating scheme for tackling the free-rider problem is suggested.

More general reputation mechanisms, such as those proposed in [33], can be used to obtain

a system-wide reputation for each peer. Using this information, each peer will give priority

to peers with high reputation.

An alternate approach is to design a system where resource sharing is required to be
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able to use the resources of other peers. This is the case in BitTorrent [19], where peers

download pieces of the file and at the same time upload the pieces they already have.

Analogously, in [3] peers directly trade resources between themselves.

Another option is to use monetary incentives to solve the problem of free riding. In

this case, peers must pay to download files from other peers. The payments may either be

in monetary terms (e.g., [32]), or in an internal non-monetary currency. In the latter case,

the budget of a peer decreases every time he downloads a file, and increases every time he

uploads a file. Such models are considered in [34], [39] and [70]. Friedman et al. study

system performance as a function of the total amount of internal currency available [29] .

In our model, we consider an internal currency and associate a price with each file.

Peers decide which files they are willing to upload, and the total upload rate they are willing

to serve. In return, the system uses the current prices to provide a menu to the peers of files

available for download. The upload rate of a peer generates a “budget” that can be spent

to download available files. By maintaining different prices for different files, we avoid

situations where peers free-ride the system because the files they are sharing are unpopular.

In particular, unpopular files will be assigned low prices.

We consider the utility of a peer as a function of the rates at which he is downloading

and uploading. It is reasonable to assume that the utility is increasing in the download rates.

In particular, when the download rates are higher, the peer gets the file sooner and is able to

download more files in a fixed interval of time. Moreover, if there is some probability that

the download will not complete successfully, this probability decreases as the download

rate increases.

With this formulation we can also avoid cheap pseudonyms [30], which are a drawback

in most approaches for solving free-riding. Peers cannot benefit by leaving the system

and joining with a new identity, since peer performance is determined only by the files

uploaded. This naturally introduces a “transaction cost” into the system that prevents peers

from taking advantage of multiple identities. Of course, one shortcoming here is that peers

who join the system with little content of interest to others may be unable to download

anything. One solution is to require such peers to upload a file that is not desired by anyone.

The price of this file can be set to be less than the price of any other file. In this way, new

peers do not get anything for free, and thus existing peers do not have any incentive to
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rejoin the system with a different name.

In Section 3.1 we describe the model in more detail. In Section 3.2, we show the

existence of a competitive equilibrium: a vector of prices at which demand of each file is

equal to the corresponding supply. It is well known that such a vector is Pareto efficient. We

derive conditions that guarantee uniqueness of the competitive equilibrium (up to scaling).

In Section 3.3, we study the tâtonnement price adjustment process [9], and show that under

some assumptions the rate of convergence around the equilibrium is linear in the number

of peers. This means that in a large system, the prices will rapidly converge.

A key aspect of our approach consists of a proposal to clear the market even out of

equilibrium. In Section 3.4, we propose an allocation mechanism to allocate rates when

demand is not equal to supply. We study the Nash equilibria when peers anticipate how

their actions affect the resulting allocation, and show that in large peer-to-peer systems,

fully strategic behavior by the peers will not ultimately cause large deviations from com-

petitive equilibrium behavior.

Section 3.5 incorporates a complex network structure in the model. We compare vari-

ous pricing schemes and show that pricing per peer and pricing per file are equivalent in a

setting with a trivial network structure, i.e., when all the constraints in the network are im-

posed by the upload capacities of peers. Moreover, we show that pricing per peer is strictly

better when the network structure is not trivial. In Section 3.6 we provide an overview of

how we envision market mechanisms to be used in practice, and discuss user incentives.

3.1 Model

In this section we introduce our basic mathematical model, and connect it with the standard

model of an exchange economy in microeconomics. We consider a peer-to-peer system

with a set of peers U who share a set of files F . Peer i has a subset of the files Si ⊂ F , and is

interested in downloading files in Ti ⊂ F\Si. Let xi j be the rate at which peer i downloads

file j ∈ Ti, and let~xi = (xi j : j ∈ Ti) be the vector of download rates of peer i. Let yi j be the

rate at which peer i is uploading file j ∈ Si. The total upload rate of peer i is yi = ∑ j∈Si yi j.

We assume that peer i is indifferent between any two upload vectors (yi j : j ∈ Si) and

(y′i j : j ∈ Si) with ∑ j∈Si yi j = ∑ j∈Si y′i j; in other words, his utility only depends on the vector
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of download rates~xi and the total upload rate yi. We make the following assumption.

Assumption 3 The preference relation of a peer on the set of feasible rate vectors is repre-

sented by a continuous utility function vi : ℜ
|Ti|+1
+ →ℜ, which is strictly increasing in each

download rate xi j, j ∈ Ti; and strictly decreasing in the upload rate yi.

(ℜ+ denotes the interval [0,∞).)

We introduce strictly positive prices in the system and consider a particular peer i. Each

peer is assumed to have a constraint on the available upload rate; let Bi denote this upper

bound for peer i. A rate vector is feasible for a peer as long as the upload rate is at most

equal to the peer’s upload capacity. We assume that peers do not face any constraint on

their download rate; this is consistent with most end peer connections today, where upload

capacity is far exceeded by download capacity.1 Given a vector of prices ~p� 0 (i.e. p j > 0

for j ∈ F), peer i can find the upload rate yi and vector of download rates~xi that maximize

his utility by solving the following optimization problem:

Multilateral Peer Optimization:

maximize vi(~xi,yi) (3.1)

subject to ∑
j∈Ti

xi j · p j ≤ (max
j∈Si

p j) · yi; (3.2)

yi ≤ Bi; (3.3)

yi ≥ 0; xi j ≥ 0, for all j ∈ Ti. (3.4)

We refer to this exchange as multilateral, because it allows peers to trade multilaterally.

In Chapter 4 we compare a system that allows multilateral exchange with a system that

restricts exchange to being bilateral.

By assumption, the utility function of a peer only depends on his upload rate and not

on which files he is uploading. Thus peer i will only choose to upload files that have the

highest price among all files in Si. The constraint (3.2) guarantees that the expenses of

a peer are at most equal to his revenue from uploading. The constraint (3.3) guarantees

1While in practice a constraint on download rate exists, we remove it for the purposes of analysis since in
practice the binding constraint on peer behavior is likely to be the upload rate constraint.
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that a peer does not upload at a higher rate than his upload capacity Bi. Finally, all rates

must be non-negative (constraint (3.4)). For any price vector ~p� 0, the feasible region of

the Multilateral Peer Optimization problem is compact and by Assumption 3 the objective

function is continuous; thus an optimal solution exists for any price vector ~p� 0. The

following lemma captures an important feature of this optimal solution; the proof follows

immediately using strict monotonicity of the utility function vi.

Lemma 9 If Assumption 3 is satisfied, the budget constraint will bind in the Multilateral

Peer Optimization for any price vector ~p� 0.

To simplify our analysis, we also make the following assumption.

Assumption 4 For every peer i ∈ U, the corresponding Multilateral Peer Optimization

problem has a unique solution (~xi,yi) for any price vector ~p� 0.

For instance, Assumption 4 is satisfied if each utility function is strictly concave, since

the feasible region of the optimization problem of each peer is convex. Let xi j(~p) and yi(~p)

be the optimal values of xi j and yi respectively when the price vector is ~p� 0.

We now define exchange economy [50] and relate it to our model. In an exchange

economy there is a finite number of agents and a finite number of commodities. Each

agent is endowed with a bundle of commodities, and has a preference relation on the set

of commodity vectors. Given a price vector, each agent finds a vector of commodities to

exchange that maximizes his utility. In particular, if ~p is the vector of prices and agent i

has endowment ~wi, he sells it at the market and obtains wealth ~p ·~wi. Then the agent buys

goods for his consumption at the same price (he may buy back some of the goods he sold).

A straightforward reformulation reveals that our model shares much in common with

a standard exchange economy. Consider the constraints of the peer optimization problem

(3.1)-(3.4). The constraint yi ≥ 0 is implied by the other constraints as long as all prices are

non-negative. The remaining constraints can equivalently be written as:
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∑
j∈Ti

xi j · p j +(max
j∈Si

p j) · (Bi− yi)≤ (max
j∈Si

p j) ·Bi;

Bi− yi ≥ 0;

xi j ≥ 0, for all j ∈ Ti.

This appears much like the optimization that an agent performs in an exchange econ-

omy: it is as if agent i has Bi units of his own “good”, priced at max j∈Si p j. He can trade

this for other goods on the open market at prices ~p. With this interpretation, Bi− yi is the

amount of his own good that he chooses to keep. However, notice that this is not a standard

exchange economy, as the upload rate is not a true commodity; rather, the commodities are

the rates of specific files that are uploaded. Since Bi imposes a joint constraint on the upload

rates of these files, our model is a generalization of the standard exchange economy. In the

following two sections, we adapt some results about exchange economies to our model.

3.2 Competitive Equilibrium

In this section we define competitive equilibrium. In Section 3.2.1, we then proceed to

show that there always exists at least one for the model described in Section 3.1. In Section

3.2.2, we give conditions that guarantee uniqueness.

We start by defining the aggregate excess demand vector.

Definition 2 Given a vector of prices ~p� 0, a vector (z j, j ∈ F) is an aggregate excess

demand vector if there exist yi j, i ∈U, j ∈ F, such that:

1. z j = ∑i∈U : j∈Ti xi j(~p)−∑i∈U yi j, for j ∈ F.

2. ∑ j∈F yi j = yi(~p), for i ∈U.

3. yi j ≥ 0, for i ∈U and j ∈ F.

4. yi j = 0, if j 6∈ argmaxk∈Si pk.

We denote the set of all excess demand vectors given ~p by~z(~p).
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If |Si| = 1 for all i ∈U (i.e., each peer has exactly one file available for upload), then

for all i ∈U , j ∈ F , the required value yi j is uniquely defined for any price vector ~p: in

particular, the only way to satisfy Conditions 2, 3 and 4 is to set yi j = yi(~p) if Si = { j} and

yi j(~p) = 0 otherwise. Thus, when |Si| = 1 for all i ∈U the excess demand is a function

of ~p. On the other hand, if there are peers uploading multiple files, the excess demand

is a correspondence. In particular, suppose there is some peer i with |Si| ≥ 2 and choose

j,k ∈ Si with j 6= k. Then, for a price vector ~p with pk = p j = maxl∈Si pl , there are multiple

ways to choose (yil, l ∈ Si) that satisfy Conditions 2, 3 and 4, and thus there are multiple

excess demand vectors. Our definition of aggregate excess demand vector ensures that we

capture all possible means of dividing the upload rate of peer i among available files.

Definition 3 The rate allocation (~x∗i , i ∈U) and (y∗i , i ∈U) and the price vector ~p∗ � 0

constitute a competitive equilibrium if the following conditions are satisfied:

1. Utility maximization: For each peer i, (~x∗i ,y
∗
i ) solves the corresponding Multilateral

Peer Optimization problem for ~p = ~p∗, i.e. x∗i j = xi j(~p∗) and y∗i = yi(~p∗).

2. Market Clearing: ~0 ∈~z(~p∗); i.e., the total upload rate yi can be split among the

highest price files in Si, so that for each file the aggregate excess demand is zero.

Note that because of Assumption 3, at competitive equilibrium all prices are strictly

positive; otherwise peers would want to download all free files at unboundedly large rates.

For this reason, we can restrict competitive equilibria to strictly positive price vectors with-

out loss of generality.

Our goal is to show that a competitive equilibrium exists. We emphasize that competi-

tive equilibria are desirable because they are Pareto efficient; this is the content of the first

fundamental theorem of welfare economics [50]. However, we do not expect equilibria to

exist without any restrictions on the sets Si and Ti of files being uploaded and downloaded,

respectively, by peer i. For example, suppose there is a file that some peers want to down-

load, but no peer has available for upload. Then in general, such a file will have positive

demand, while supply will always be zero. Thus the excess demand for such a file will be

positive unless its price is sufficiently high. Setting a sufficiently high price is equivalent to

considering a system without that file.
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To avoid such pathological situations, we introduce a natural diversity assumption. We

define the user graph as the directed graph G = (V,E) with V =U , and E = {(i, j) : Si∪Tj 6=
/0}. In other words, G is a graph where nodes correspond to peers. There is a directed edge

from peer i to peer j if i has a file that j desires.

Assumption 5 The user graph consists only of strongly connected components.

If Assumption 5 is not satisfied, then an equilibrium may not exist. We will therefore

assume that Assumption 5 holds.

3.2.1 Existence of Competitive Equilibrium

We will adapt standard arguments from microeconomics to establish existence of a com-

petitive equilibrium. We begin with the following basic definitions.

Let f be a correspondence defined on a subset A ⊂ ℜN . The correspondence f is

homogeneous of degree zero if for every t > 0, we have f (tx1, ...., txN) = f (x1, ....,xN).

The correspondence f is convex valued if f (x) is convex for every x ∈ A. Given the closed

set Y ⊂ ℜK , a correspondence f : A→ Y has a closed graph if for any two sequences

xm→ x ∈ A and ym→ y, with xm ∈ A and ym ∈ f (xm) for every m, we have y ∈ f (x). Given

the closed set Y ⊂ ℜK , the correspondence f : A→ Y is upper hemicontinuous if it has a

closed graph and the images of compact sets are bounded.

The following proposition shows properties of the aggregate excess demand correspon-

dence that are used to prove existence of a competitive equilibrium. The proof is an ex-

tension of an argument typically used to prove existence of competitive equilibrium in

exchange economies. The key difficulty is in addressing the fact that peers may simultane-

ously upload multiple files; as discussed in Section 3.1, this feature means our basic model

is not a standard exchange economy.

Proposition 9 If Assumptions 3, 4 and 5 hold, then the aggregate excess demand corre-

spondence~z(·) defined on (0,∞)F satisfies the following properties:

1. For every ~p� 0 and~z ∈~z(~p), ~p ·~z = 0.

2. ~z(·) is convex-valued.

77



3. ~z(·) is homogeneous of degree 0.

4. ~z(·) is upper hemicontinuous.

5. There is an s > 0 such that z j > −s for any~z ∈~z(~p), for every file j ∈ F and every

price vector ~p� 0.

6. If ~pm→ ~p 6=~0,~zm ∈~z(~pm) and p j = 0 for some j, then max{zm
j : j ∈ F}→ ∞.

Now the existence of a competitive equilibrium follows from standard results in mi-

croeconomics; see, e.g., [50], Exercise 17.C.2 .

Theorem 1 If Assumptions 3, 4 and 5 hold, then there exists a competitive equilibrium.

Corollary 2 If the utility function of each peer is strictly concave, and Assumptions 3 and

5 are satisfied, then there exists a competitive equilibrium.

In Section 3.4, we assume that each peer has a separable utility function, and experi-

ences a cost of uploading that is linear in the upload rate. In this case, the utility function is

not strictly concave. The following corollary of Theorem 1 shows existence of a competi-

tive equilibrium for that case.

Corollary 3 If the utility function of peer i is vi(~xi,yi) = ui(~xi)− yi, where ui(~xi) is con-

tinuous, strictly concave, and strictly increasing in each xi j, and Assumption 5 is satisfied,

then there exists a competitive equilibrium.

3.2.2 Uniqueness of Competitive Equilibrium

We now study uniqueness of the competitive equilibrium. Note that, as is standard, we

discuss uniqueness up to scaling of the price vector: since ~z is homogeneous of degree

zero, if ~p∗ is a competitive equilibrium price vector, then so is t~p∗. We first define the gross

substitutes property.

Definition 4 The function~z(·) has the gross substitutes property if whenever ~p′� 0 and

~p� 0 are such that for some l, p′l > pl and pk = p′k for k 6= l, we have zk(~p′) > zk(~p) for

k 6= l.
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If the aggregate excess demand is a function that satisfies the gross substitutes property,

then there is at most one competitive equilibrium up to scaling of the price vector [50]. In

our model, the aggregate excess demand is a function if and only if each peer is uploading

exactly one file, i.e., |Si|= 1 for all i ∈U . When some peers i have |Si|> 1, the aggregate

excess demand is a correspondence, so the preceding result does not apply. In order to

adapt that result, we use the following definition.

Definition 5 The Multilateral Peer Optimization of peer i satisfies the gross substitutes

property if whenever ~p′� 0 and ~p� 0 are such that for some l, p′l > pl and p′k = pk for

k 6= l, the following conditions hold:

1. For l ∈ Ti, xi j(~p′) > xi j(~p) for j 6= l, j ∈ Ti and yi(~p′)≤ yi(~p).

2. If l ∈ Si and p′l > maxk∈Si pk, then xi j(~p′) > xi j(~p) for j ∈ Ti.

We interpret this definition as follows. When the price of a file that is relevant to peer

i increases, peer i demands more of all other files he is downloading, and supplies less

of the file he is uploading. As one example, it is straightforward to verify that peer i’s

optimization problem satisfies gross substitutes if Ti = { j} and vi(xi j,y) = xα
i j/α−y, where

0 < α < 1.

Under a slightly stronger diversity assumption, we can establish the following propo-

sition. The key step in the proof is to show that despite the fact that peers may upload

multiple files, the monotonicity of excess demand implied by the usual gross substitutes

condition continues to hold.

Proposition 10 If the optimization problem of each peer satisfies the gross substitutes

property, and ∀ j,k ∈ F there exists i ∈ U such that j,k ∈ Ti, then there is at most one

competitive equilibrium up to scaling of the price vector.

3.3 Tâtonnement Process

In this section we restrict our attention to the case where every peer is uploading a single file

(i.e., |Si|= 1 for all i), and consider convergence of prices to a competitive equilibrium price
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vector. We describe a price adjustment mechanism, and show that under some assumptions

the rate of convergence of this process will be linear in the number of peers. This means

that in a large system, the prices will rapidly converge to equilibrium.

When every peer is uploading a single file, the aggregate excess demand is a function.

A reasonable way to adjust the prices in order to reach a competitive equilibrium is to

increase the prices of the files whose excess demand is positive, and decrease the prices of

the files whose excess demand is negative. This motivates the tâtonnement process [50],

where the price adjustment rate is equal (or in general proportional) to excess demand:

d p j

dt
= z j(~p). (3.5)

The following theorem is a restatement of Proposition 17.H.1 [50] for our model.

Theorem 2 If |Si|= 1 for all i ∈U, the gross substitutes property holds for the aggregate

excess demand function, and Assumptions 3, 4 and 5 are satisfied, then the relative prices

of any solution trajectory of (3.5) converge to the unique equilibrium (up to scaling of the

price vector).

We next show a result about the rate of convergence of the tâtonnement process. Sup-

pose that a unique competitive equilibrium exists, up to scaling of the price vector. Without

loss of generality, we fix a file f0 ∈ F , and fix p f0(t) = 1 for all times t. This determines the

relative values of all other prices at the unique competitive equilibrium; furthermore, the

standard tâtonnement dynamics described above will converge to the unique competitive

equilibrium price vector where p f0 = 1. The following theorem shows that under some as-

sumptions about the structure of the system, the rate of convergence near this equilibrium

is linear in N.

Theorem 3 Suppose that |Si|= 1 for all i ∈U, the gross substitutes property holds for the

aggregate excess demand function, and Assumptions 3, 4 and 5 are satisfied. Suppose also

that U = U1∪ ...∪UK with Uk∩Ul = /0 whenever k 6= l, and:

1. Si = Sk, Ti = Tk, vi(·) = vk(·) and Bi = Bk, ∀i ∈Uk.

2. |Uk|= rkN with rk ≥ 0, for k = 1, ...,K.
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Consider the tâtonnement dynamics with p f0(t) = 1 for all t. If the tâtonnement process

converges to some price vector ~p∗ and xi j(~p), yi(~p), are differentiable at ~p∗, the rate of

convergence near the equilibrium price vector is linear in N.

The preceding result assumes that peers can be partitioned into identical sets; in this

case, the tâtonnement dynamics scale linearly with the number of peers. We believe the

preceding result can be extended to more general assumptions about the peer population;

the key requirement is that as the system becomes large, the excess demand level should

increase proportionally for any given price level ~p� 0. From a system design point of

view, this type of a result suggests that a large peer-to-peer system operating as an exchange

economy will have fast convergence in a neighborhood of the equilibrium point.

3.4 Proportional Allocation

Although the tâtonnement process provides a price adjustment mechanism that (under rea-

sonable assumptions) ensures that a competitive equilibrium is reached, it has a serious

shortcoming from a system design standpoint: the tâtonnement process does not specify

how agents should engage in trade before equilibrium is reached. Thus, in addition to

adjusting the price vector according to the tâtonnement process (3.5), our system design

should specify a mechanism for allocating rates out of equilibrium.

Mechanisms for exchange out of equilibrium have been proposed for an exchange econ-

omy in the economics literature [35], but do not directly apply to our model. These mech-

anisms work by performing part of the exchange, then updating the endowment of each

peer. However, in a peer-to-peer system, the endowment of a peer at any given time is

determined by the file with the maximum price, and the amount he owns is his upload

capacity. Therefore, the amount remains the same even after a peer uploads the file once.

We consider an alternate system design, which is similar to the approach given in [63]

(which builds on [65]): we will ask peers to report the total upload rate they are willing

to allow, and the proportions of their budget they wish to spend on downloading various

files. For analytical simplicity, we consider the case where each peer uploads a single file,

i.e., |Si| = 1 for all i. Let f (i) denote the file peer i is uploading. Suppose that each peer i
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optimizes with respect to the current prices ~p� 0, and reports his optimal upload rate to

the system, yi(~p). If peer i is interested in downloading multiple files, i.e., |Ti|> 1, then he

also reports what proportion πi j(~p) of his budget he wants to spend on each file in j ∈ Ti.

In terms of~xi(~p) and yi(~p), if yi(~p) > 0, we have:

πi j(~p) =
p jxi j(~p)

p f (i)yi(~p)
. (3.6)

However, unless the current price corresponds to a competitive equilibrium, it will not

be possible to give to every peer the download rates he desires. Informally, we will use

the proportions πi j to allocate rates based on the proportion of the budget each agent i

intended to spend on downloading the files in Ti; this is called the proportional allocation

mechanism.

In order to formally motivate the proportional allocation mechanism, we first consider

the outcome at a competitive equilibrium. From Definition 3 we know that the rates (x∗i j, i∈
U, j ∈ Ti), (y∗i , i ∈ U) and the price vector ~p∗ constitute a competitive equilibrium if the

following conditions are satisfied.

1. Each peer optimizes, i.e., x∗i j = xi j(~p∗), y∗i = yi(~p∗) for all i ∈U , for all j ∈ Ti.

2. The market clears, i.e., ∑i: j∈Ti x∗i j = ∑i: f (i)= j y∗i for all j ∈ F .

Since we know that it is not possible to satisfy both conditions out of equilibrium, we will

relax one of these conditions. If Condition 2 is not satisfied for some file j, then either the

total upload rate of the file is strictly less than its total download rate, which is infeasible,

or the total upload rate is higher than the total download rate, which means that resources

are being wasted. Thus, it is preferable to satisfy Condition 2, and relax Condition 1.

In particular, given prices ~p, suppose peer i reports his desired upload rate yi(~p) and

what proportion of his budget he wants to spend on each j ∈ Ti, πi j; we do not assume

anything about~π, other than πi j ≥ 0 and ∑ j∈Ti πi j = 1. Because ~p may not be a competitive

equilibrium price vector, in general it is not possible to choose download rates at the current

prices that ensure each peer i spends exactly the desired proportion πi j on file j. Instead, we

will use~π and ~y(~p) to compute a download rate allocation ~̂xi to each peer i, together with

a new price vector ~̂p such that each peer i earns a budget of p̂ f (i)yi(~p), and spends exactly
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a proportion πi j on file j; i.e., (3.6) is satisfied for all i and j ∈ Ti with yi(~p) > 0. This is a

relaxation of Condition 1 above: of course the resulting allocation may not be optimal for

each peer given the prices p̂; however, the following budget constraint will hold:

∑
j∈Ti

p̂ jx̂i j = p̂ f (i)yi(~p). (3.7)

This ensures every agent has maximally spent their available budget under the new prices

~̂p; this is a requirement of optimality, cf. Lemma 9.

The existence of such prices ~̂p and download rates ~̂x is summarized in the following

proposition.

Proposition 11 Suppose |Si|= 1 for all i ∈U. Suppose each peer i reports an upload rate

yi, and a vector~πi describing the proportion πi j of his eventual budget to be spent on file j.

Then there exists a pair ~̂p and ~̂x = (~̂xi, i ∈U) such that:

1. For each peer i and j ∈ Ti, if πi j p̂ f (i)yi = 0, then x̂i j = 0.

2. For each peer i and j ∈ Ti, if πi j p̂ f (i)yi > 0, then p̂ jx̂i j = πi j p̂ f (i)yi for all j ∈ Ti.

3. The market clears where possible; i.e., ∑i: j∈Ti x̂i j = ∑i: f (i)= j yi for all j ∈ F with

p̂ j > 0.

Further, the vectors ~̂xi are uniquely determined.

The first condition in the preceding proposition ensures that when either a peer i is not

interested in downloading a file j (πi j = 0); his upload rate is zero (yi = 0); or the eventual

price of the file he is uploading is zero ( p̂ f (i) = 0), then the download rate x̂i j is zero. In

all other cases, the download rates x̂i j are uniquely determined by this procedure. Further,

this allocation ensures that all peers split their budget in accordance with their desired

proportions.

In practice, such a mechanism suggests a natural means to adapting prices as well as

allocations. In particular, the following corollary ensures that if the upload rates and re-

quested proportions arose from a competitive equilibrium, then the allocation mechanism

given in Proposition 11 will yield the competitive equilibrium allocation.
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Corollary 4 Suppose ~p∗� 0 is a competitive equilibrium, and~y∗=~y(p∗) and~π∗=~π(~p∗).

Let ~̂p and ~̂x the corresponding prices and download rates, respectively, of Proposition 11.

Then ~̂x =~x(~p∗).

Thus the proportional allocation mechanism is a generalization of the competitive equi-

librium allocation, to ensure the market clears even out of equilibrium. However, if peers

anticipate that the market will be cleared using the proportional allocation mechanism, they

may not report their true optimal upload rates yi(~p) or desired proportions πi j(~p); they may

have an incentive to try to “game” the system. In this case they will anticipate that prices

and rates are chosen using the proportional allocation mechanism, and choose their dec-

larations strategically. In the remainder of this section, we consider a special case of this

game, and prove a competitive limit theorem: in the large system limit, it is as if each peer

optimizes as a price taker.

3.4.1 Two Files, Two Peer Types

We consider a system consisting of two files, and two types of peers. Peers of type 1 have

file 1 and want file 2, while peers of type 2 have file 2 and want file 1. We assume that

there are at least two peers of each type. We will use the subscript ki to denote peer i of

type k. The upload rate constraint for peer i of type k is Bki. By xki and yki we denote the

upload and download rates, respectively, of peer i of type k. Throughout the remainder of

the section, we make the following assumption about the utility functions.

Assumption 6 The utility of peer i of type k when he is downloading at rate xki≥ 0 and up-

loading at rate yki ≥ 0 is uki(xki)−yki, where uki(xki) is continuously differentiable, strictly

concave, and strictly increasing.2

In the next section, we characterize competitive equilibria for this system. In Section

3.4.1, we study Nash equilibria of a game where peers have utilities that satisfy Assump-

tion 6, and anticipate that prices and allocations are chosen according to the proportional

allocation mechanism. We establish a competitive limit theorem: in the large system limit,
2This model can be extended so that different peers have different linear costs for uploading: when the

utility of peer i of type k is ûki(xki)− cki · yki where ûki(xki) is continuously differentiable, strictly concave,
and strictly increasing, the results of this section hold for uki(xki) = ûki(xki)/cki.
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it is as if each peer optimizes as a price taker. In Section 3.4.2, we specialize further to

a case where all peers of the same type share the same utility function. This allows us to

establish uniqueness of the Nash equilibrium as well, and gives a more precise character-

ization of the Nash equilibrium rates. Finally, in Section 3.4.3, we study the efficiency of

the rate allocation obtained at a Nash equilibrium.

Competitive Equilibrium

We denote by p1 the price of file 1, i.e., the file that type 1 peers have, and by p2 the price

of file 2, i.e., the file that type 1 peers want. Since only relative prices matter, without loss

of generality we normalize p2 = 1. Peer i of type 1 solves the following problem:

maximize u1i(x1i)− y1i

subject to x1i ≤ p1y1i;

x1i ≥ 0; y1i ≤ B1i.

Since the budget constraint will be binding, this problem is equivalent to:

max
0≤y1i≤B1i

u1i(p1y1i)− y1i.

The optimization problem for a type 2 peer is symmetrically defined with p1 replaced by

1/p1. Given price p1, the optimality conditions for a peer i of type 1 are:

p1u′1i(0)≤ 1, if y1i = 0; (3.8)

p1u′1i(p1y1i) = 1, if 0 < y1i < B1i; (3.9)

p1u′1i(p1B1i)≥ 1, if y1i = B1i. (3.10)

The optimality conditions for a peer of type 2 are symmetrically defined, with p1 replaced

by 1/p1. The conditions above give the optimal upload rates y1i(p1) and y2i(p1). The

optimal download rates are x1i(p1) = p1y1i(p1) and x2i(p1) = (1/p1)y2i(p1). At a compet-

itive equilibrium, the market must clear: the total upload rate of type 1 peers must equal

to the total download rate of type 2 peers (and vice versa). So, the price vector (p1,1) is a
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competitive equilibrium if:

∑
i

x1i(p1) = ∑
i

y2i(p1), and

∑
i

y1i(p1) = ∑
i

x2i(p1).

Note that given the relationship between xki and yki, each of these conditions implies the

other.

We know from Corollary 3 that a competitive equilibrium always exists. The following

proposition characterizes the competitive equilibria.

Proposition 12 If supi u′1i(0) · supi u′2i(0) ≤ 1, then at any competitive equilibrium y1i =

y2i = 0 for all i. On the other hand, if supi u′1i(0) · supi u′2i(0) > 1, then at any competitive

equilibrium there exist i, j such that y1i > 0 and y2 j > 0.

Nash Equilibrium

We use the proportional allocation mechanism to clear the market out of equilibrium. The

results in Proposition 11 are simplified in this case, because there are only two files (|F |= 2)

and each peer is downloading a single file. Thus peers only report upload rates; it is clear

that they will spend their entire budget on the single file they wish to download. Let yki

be the upload rate that peer i of type k reports and Yk = ∑i yki. If Y1 > 0 and Y2 > 0, it is

straightforward to check that the proportional allocation mechanism will use the following

price to clear the market:

p̂1 =
Y2

Y1
. (3.11)

If either Y1 = 0 or Y2 = 0, then all agents receive zero download rate. When peers anticipate

that the price to clear the market will be set in this way, they play a game, where the strategy

is the declared upload rate. The strategy space of peer i of type 1 is [0,B1i]. The payoff of

peer i of type 1 is:

Π1i(y1i) =

{
u1i(y1iY2/Y1)− y1i, if Y1 > 0;

u1i(0), if Y1 = 0.
(3.12)
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If Y1− y1i = ∑ j 6=i y1 j > 0, the preceding payoff is continuous and differentiable on [0,B1i].

A symmetric expression holds for peers of type 2.

We first observe that y1i = y2i = 0 for all i is a Nash equilibrium. In particular, if Y2 = 0,

the optimal upload rate for any type 1 peer is zero, and symmetrically, if Y1 = 0, the optimal

upload rate of any type 2 peer is zero. However, such a Nash equilibrium is degenerate;

it exploits the fact that the system exhibits a strong complementarity between peers. Such

a situation will be trivially avoided if a small amount of upload rate of each type of file is

always available.

Now suppose that Y2 > 0 and Y1− y1i = 0. Then for any y1i > 0, the utility of peer i is

u1i(Y2)−y1i, while if y1i = 0 his utility is u1i(0); in this case his utility is discontinuous, and

no best response exists for peer i. Thus there does not exist an equilibrium where Y1−y1i =

0 and Y2 > 0. A symmetric argument shows that there does not exist an equilibrium where,

for some peer i of type 2, Y2− y2i = 0 and Y1 > 0. Thus in searching for nonzero Nash

equilibria, we can assume that Y1− y1i > 0 and Y2− y2i > 0 for all peers i of types 1 and 2,

respectively.

When Y1− y1i > 0 and Y2 > 0, the optimality conditions for peer i of type 1 become:

u′1i(0)≤ Y1

Y2
, if y1i = 0; (3.13)

u′1i

(
y1i

Y2

Y1

)(
1− y1i

Y1

)
=

Y1

Y2
, if 0 < y1i < B1i; (3.14)

u′1i

(
B1i

Y2

Y1

)(
1− B1i

Y1

)
≥ Y1

Y2
, if y1i = B1i. (3.15)

Symmetric optimality conditions hold for a peer i of type 2, when Y2− y2i > 0 and Y1 > 0.

Let N1 and N2 be the number of type 1 and type 2 peers respectively. The following

theorem shows that under reasonable conditions, a non-zero Nash equilibrium exists. This

result is not straightforward, as the payoff function is typically discontinuous at ~y = 0, so

a direct fixed-point argument does not suffice. We instead use a perturbation approach: we

introduce two “virtual” peers who upload at a rate ε for each file. In this regime a Nash

equilibrium always exists; and by considering the limit as ε approaches zero we are able to

establish existence of a Nash equilibrium for the original game.
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Theorem 4 If Assumption 6 is satisfied, u′1i(0) > N1/(N1 − 1) for all i, and u′2i(0) >

N2/(N2−1) for all i, then there exists a Nash equilibrium (~y1,~y2) at which not all rates are

equal to zero.

We now develop a competitive limit, where the number of peers of each type becomes

large. Suppose that N1,N2 → ∞, and consider a sequence of Nash equilibria ~yN indexed

by N = N1 + N2; by taking subsequences if necessary, we can assume the Nash equilibria

converge, say to ~y. Let Y N
k = ∑i yN

ki. Suppose that yN
ki/Y N

k → 0 for all peers i of type k,

but that Y N
2 /Y N

1 → p1 ∈ (0,∞); we normalize p2 = 1. Under these assumptions, since the

optimality conditions (3.13)-(3.15) are continuous, they become identical to the optimality

conditions (3.8)-(3.10) for a competitive equilibrium. Thus informally, we expect that the

Nash equilibrium rates should approach competitive equilibrium rates.

Formally, recall that we define xki(p1) and yki(p1) as the optimal solutions for a price

taking peer (i.e., a peer solving (3.1)-(3.4)), given a price p1. We then have the following

theorem.

Theorem 5 Let N = N1 + N2 be the total number of peers. Suppose that as N → ∞, both

N1 → ∞ and N2 → ∞. Suppose that Assumption 6 holds for the utility function of each

peer, supi Bki < ∞, supi u′ki(0) < ∞, and infu′ki(0) > 1 for k = 1,2. Let~yN denote a nonzero

Nash equilibrium when N = N1 + N2 peers are in the system, and let pN
1 = Y N

2 /Y N
1 , where

Y N
k = ∑i yN

ki. Then:

1. 0 < infN pN
1 and supN pN

1 < ∞.

2. For all i and k, yN
ik/Y N

k → 0 as N→ ∞, while Y N
k → ∞ as N→ ∞.

3. Any limit point (p1,~y) of the sequence (pN
1 ,~yN) satisfies the competitive equilibrium

optimality conditions (3.8)-(3.10).

The preceding theorem shows that in the large system limit, it is as if each peer op-

timizes as a price taker. Observe that from the proof, in the limit we have infinite upload

rates for both types of files; thus we cannot directly interpret the limit point as a competitive

equilibrium. However, we can make the following precise statement: asymptotically, peers

choose upload rates that are nearly equal to their optimal upload rate if they were acting as
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price takers. One way to interpret such a theorem is that in large peer-to-peer systems, fully

strategic behavior by the peers will not ultimately cause large deviations from competitive

equilibrium behavior.

3.4.2 Homogeneous Utilities

In this section we consider a system where all peers have the same utility functions (i.e.,

u1i(·) = u2i(·) = u(·)) and the same rates (i.e., B1i = B2i = B). Moreover, we assume that

there is the same number of type 1 and type 2 peers, denoted N. This is a special case of

the model analyzed in the previous subsection.

Throughout this section, to avoid boundary conditions, we will make the following

additional simplifying assumption about the utility functions; the analysis can be extended

to study the case where the assumption does not hold, but without a significant change in

insight.

Assumption 7 The function u(·) satisfies u′(x)→ ∞ as x→ 0, and u′(x)→ 0 as x→ ∞.

Note that under this assumption, if u is strictly concave, then u′−1(x) is well defined for

x ∈ (0,∞). In the next two sections, we study competitive equilibria and Nash equilibria

of this model, respectively; our key result is that under the homogeneity assumption, the

system has a unique Nash equilibrium.

Competitive Equilibrium We show that under Assumptions 6 and 7, the price p1 = 1 is

always a competitive equilibrium of this economy. First suppose that u′(B) < 1. Since u′(·)
is continuous, there is a y ∈ (0,B) such that u′(y) = 1. Then, when p1 = 1, a peer of type 1

will choose to upload and download u′−1(1), and the same for all peers of type 2. Since the

total upload and download rates of a file are equal, this is a competitive equilibrium. On

the other hand, if u′(B) ≥ 1, then when p1 = 1, all peers will choose to upload B. In this

case the upload rate constraint binds, and we again have a competitive equilibrium.

In the special case we are studying here, uniqueness of the competitive equilibrium can

be guaranteed via a simple condition on the utility function u.
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Lemma 10 Suppose Assumptions 6 and 7 are satisfied, and u(·) is twice differentiable.

Then, the following are equivalent:

1. For all B > 0, the Multilateral Peer Optimization of each peer satisfies the gross

substitutes property.

2. pu′−1(p) is nonincreasing on (0,∞).

3. xu′(x) is nondecreasing.

In this case the competitive equilibrium is unique.

Nash Equilibrium The analysis of Nash equilibria is simplified when the system is ho-

mogeneous, due to the following lemma.

Lemma 11 If u(·) is a strictly concave function, then peers of the same type will have the

same upload rate at any Nash equilibrium.

For the remainder of this section, we suppose that Assumptions 6 and 7 hold. If u′(x)→
∞ as x→ 0, the optimality condition (3.13) will never apply. Let y1, y2 be the rates at which

peers of type 1 and type 2 upload, respectively, at a Nash equilibrium; and recall that N

denotes the number of peers of each type. If y1 > 0 and y2 > 0, the optimality conditions

(3.14) and (3.15) can be equivalently written:

u′(y2) =
N

N−1
y1

y2
, if 0 < y1 < B; (3.16)

u′(y2)≥
N

N−1
B
y2

, if y1 = B; (3.17)

Similarly, for peers of type 2 the following conditions hold.

u′(y1) =
N

N−1
y2

y1
, if 0 < y2 < B; (3.18)

u′(y1)≥
N

N−1
B
y1

, if y2 = B; (3.19)
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If u′(0) ≤ N/(N− 1), then y1 = y2 = 0 is the unique Nash equilibrium. To show this,

we first observe that if y1 = 0, then y2 = 0 (and vice versa), i.e., there can not be a Nash

equilibrium at which only peers of one type are uploading at strictly positive rates. Now

suppose there exists a Nash equilibrium at which y1 > 0 and y2 > 0. Then, assuming that

u(·) is strictly concave,

(
N

N−1

)2

≥ (u′(0))2 > u′(y1)u′(y2)≥
(

N
N−1

)2

,

a contradiction.

If u′(0) > N/(N−1), then there exists a Nash equilibrium with y1 > 0 and y2 > 0: for

example, y1 = y2 = min(u′−1(N/(N−1)),B). When the upload rates are positive we define

the Nash price as pNE = y2/y1. Thus pNE = 1 is a possible Nash price and we know that

p∗ = 1 is a competitive equilibrium price. In particular, if u′(0) > N/(N−1), there exists

a Nash equilibrium with the same price as the unique competitive equilibrium. Theorem 5

does not apply here, because of Assumption 7. However, by Lemma 11, yki/Yk = 1/N→ 0

as N→∞, and thus any limit point (p1,~y) of the sequence (pN
1 ,~yN) satisfies the competitive

equilibrium optimality conditions. Moreover, it can be shown that the rates of any sequence

of Nash equilibria converge to the rates of a competitive equilibrium.

The following proposition is our key result for the model with homogeneous peers:

we show that if gross substitutes holds, there exists a unique Nash equilibrium where the

upload rates are strictly positive. The proof uses the characterization of gross substitutes

shown in Lemma 10.

Proposition 13 Suppose that Assumptions 6 and 7 hold and u(·) is twice differentiable.

Then, if the Multilateral Peer Optimization of each peer satisfies the gross substitutes prop-

erty, there is a unique Nash equilibrium with strictly positive rates. At the equilibrium

y1 = y2 = u′−1(N/(N−1)).

The Nash equilibrium is not always unique, as the following example shows. Let u(x) =

−1/x, so that pu′−1(p) =
√

p is strictly increasing. The optimality conditions give y1 ·y2 =

(N − 1)/N, i.e., there are infinitely many Nash equilibria. In particular, the set of Nash

equilibria is {(y1,y2) : 0≤ y1 ≤ B,0≤ y2 ≤ B,y1y2 = (N−1)/N}. For this utility function
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there are also infinitely many competitive equilibria: since (1/p)u′−1(1/p) = u′−1(p) for

every p, any price is a competitive equilibrium.

3.4.3 Efficiency

We consider a Nash equilibrium of the game that results from the proportional allocation

mechanism at which not all rates are zero; i.e., Y1 > 0 and Y2 > 0. Notice that when type

1 peers choose their optimal upload rate, they take Y2 as given. Thus, we can interpret the

rates y1i reported by type 1 peers as a Nash equilibrium to the following auction game.

Suppose that the available upload rate of file 2 is fixed and equal to Y2. Type 1 peers submit

bids to acquire a share of the available file transfer rate for file 2; each peer has to pay his

bid, and is allocated a download rate proportional to his bid. In [41], it is shown for this

game that if Assumption 6 is satisfied, and for all i u1i(0)≥ 0, then:

∑
i∈U

u1i

(
y1i

Y2

Y1

)
≥ 3

4
max

∑i∈U x̄1i=Y2
∑
i∈U

u1i(x1i).

A symmetric result holds for type 2 peers. This result shows that given the available upload

rate of file 2, it is nearly efficiently shared among type 1 peers; and similarly for type 2

peers.

On the other hand, Nash equilibria need not be Pareto efficient. Suppose that Assump-

tion 6 holds, peers are homogeneous, and 1 < u′(0) ≤ N/(N−1), where N is the number

of peers in each type. Then at any competitive equilibrium, all upload and download rates

will be strictly positive, while at any Nash equilibrium all rates will be zero. Since each

peer has the option of uploading and downloading zero in the competitive equilibrium, this

shows that each peer is strictly worse off at the Nash equilibrium.

3.5 Comparing Pricing Schemes

In preceding sections we formulated a peer-to-peer system as an exchange economy and

studied multilateral exchange. Our previous analysis has two limitations. First, it considers

a setting where transfers are only constrained by peer upload capacity; however, often the

92



network structure is more complex. Second, it doesn’t provide a practical way to set prices.

In this section we address these limitations by discussing how we can incorporate a more

complex network structure in the model, as well as decentralized dynamics.

With a complex network structure, we envision that network links are also priced in

order to capture network constraints. Then, it may not suffice to have one price per file,

and at first it may seem necessary to maintain one price per file per peer. However, this

is not the case. In Section 3.5.1, we compare a range of pricing schemes for multilateral

exchange and conclude that simply maintaining a single price per peer suffices to achieve

the benefits of price-based multilateral exchange. This result means that a more complex

approach of variable pricing (at each peer) for different files or different chunks of files

is, in fact, neither necessary nor beneficial. Intuitively, even with a single price per peer,

variable prices for files still arise across the network since different peers supply different

files. In Section 3.5.2, we consider how explicit prices, pricing per peer, and currency

benefit system dynamics.

3.5.1 Equilibria

This section compares three pricing schemes for multilateral exchange: (1) one price per

file (denoted PF); (2) one price per peer (denoted PP); and (3) one price per file per peer

(denoted PFP). We compare the schemes in terms of equilibrium existence. First, we show

that all three are equivalent when transfers are only constrained by peer upload capacity.

However, we then demonstrate that PF may be strictly worse than PP if the network topol-

ogy is non-trivial. Finally, we show that PP and PFP yield equivalent equilibria, even when

the network topology is non-trivial. Since explicitly pricing every file of every peer is much

more complicated than only maintaining a single price per peer, our analysis suggests PP

is the most desirable scheme.

In Section 3.2 we introduced the PF pricing scheme and studied some of its properties

in preceding sections. Here, we introduce the other two pricing schemes: PP and PFP. To

formulate the optimization problems of peers it is convenient to introduce the following

notation: let ri j f be the rate at which peer i sends file f to peer j. We also reformulate the
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PF pricing scheme with this notation. We now give the peer optimization problem.

maximize vi(~xi,yi)

subject to xi f = ∑
j

r ji f ,∀ f ∈ Ti

yi = ∑
j, f

ri j f

rk j f = 0, if f 6∈ Fk

yi ≤ Bi

Budget Constraint

~r ≥ 0.

The first four constraints (giving download rates, upload rate, ensuring peers only up-

load files they possess, and meeting the bandwidth constraint) are identical for all pricing

schemes. The budget constraint ensures that the capital peer i spends for downloading does

not exceed the capital the peer accrues by uploading. Given prices (pi, i ∈ N), (p f , f ∈ F)

and (pi f , i∈N, f ∈F) for the PP, PF and PFP pricing schemes respectively, the correspond-

ing budget constraints are shown in the following table.

Pricing Scheme Budget Constraint
PF ∑ j, f p f r ji f ≤ ∑ j, f p f ri j f

PP ∑ j, f p jr ji f ≤ pi ∑ j, f ri j f

PFP ∑ j, f p j f r ji f ≤ ∑ j, f pi f ri j f

Analogously to Definition 3, a competitive equilibrium is a combination of a rate allo-

cation vector and a price vector such that all peers have solved their corresponding opti-

mization problems. In this case, the prices have exactly aligned supply and demand: for

any i, j, f , the transfer rate ri j f is simultaneously an optimal choice for both the uploader

i and downloader j. We next give the equilibrium definition for the PP pricing scheme.

(Similarly, an equilibrium can be defined for the two other pricing schemes.)

Definition 6 The rate allocation~r∗ = (r∗i j f , i, j ∈ N, f ∈ F) and the peer prices (p∗i , i ∈ N)

with p∗i > 0 for all i∈N constitute a PP competitive equilibrium if for each peer j,~r∗ solves
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the Peer Optimization problem given prices (p∗i , i ∈ N).

We first observe that if transfers are only constrained by the upload capacity of peers,

then the PF and PP schemes are equivalent in terms of equilibria, i.e., an equilibrium for one

scheme exists if and only if there exists an equilibrium with the same rate allocation for the

other pricing scheme. In particular, given PF equilibrium prices (p∗f , f ∈F), peer i will only

be uploading files in argmax f∈Fi{p∗f }. Setting p∗i = max f∈Fi{p∗f }, we get an equilibrium

for the PP scheme, since the optimization problem of each peer does not change. Similarly,

if (p∗i , i ∈ F) are PP equilibrium prices, then p∗f = mini: f∈Fi{p∗i }, f ∈ F are PF equilibrium

prices which yield the same rate allocation.

Given a non-trivial network topology, however, links other than peer access links may

be congested. These links need to be priced as well to ensure efficient network usage.

Again abusing notation, we denote the price of link ` by p`. For now we assume that we

can price every link in the network; we relax this assumption in Section 3.6. When peer i

is downloading from peer j, i pays j, but also all links that i’s traffic traverses.

Network links are priced in order to make peers internalize their effect on the network,

and not for profit. Thus, it is desirable to rebate any payments related to network costs

to peers. We will assume that whatever is paid to traverse links in the network is rebated

equally to all peers; however, our results also hold for other rebating schemes.

When the network topology is non-trivial we can modify the budget constraints to in-

clude the payment to the network on the left hand side and the rebate from the network on

the right hand side. A competitive equilibrium now is a combination of a rate allocation

vector and a price vector (which includes prices for links) such that all peers have solved

their corresponding optimization problems and the total traffic that traverses each link does

not exceed its capacity.

The following example shows that when the network is non-trivial, equilibria may fail

to exist under the PF scheme, even though they exist for the PP and PFP schemes.

Example 6 There are four peers and two files, with file allocation and demand as shown

in Figure 3.1. The network has two clusters, consisting of peers {1,2} and {3,4}, with a

bidirectional link ` of capacity 1 connecting them. Peers {1,3} have file f and want file g;

peers {2,4} have file g and want file f . The peers’ upload capacities are B1 = B4 = 8 and
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Figure 3.1: Example with a PP equilibrium, but no PF equilibrium (see Example 6). Sys-
tem with peers {1,2,3,4} and files { f ,g}. Peers are located in two clusters; transfers are
constrained by bandwidth constraints of peers and the inter-cluster link.

B2 = B3 = 2.

This system has no equilibrium under the PF scheme. If p` = 0, peers demand x1 =

(p f /pg)B1, x2 = (pg/p f )B2, x3 = (p f /pg)B3 and x4 = (pg/p f )B4 when optimizing. The

market clears only if x1 + x3 = B2 + B4, which implies p f /pg = 1. But then x1 = 8, which

is not feasible, since the maximum total rate at which peer 1 can download is 3. If p` > 0

and there is a single price per file, then peers only download locally and, from the market

clearing condition, we get p f /pg = 4 in one cluster and p f /pg = 1/4 in the other, which

is a contradiction.

On the other hand, under the PP scheme, there is an equilibrium with prices (p1, p2, p3, p4, p`)=

(1,3,3,1,2) and rates (x1,x2,x3,x4) = (3,7,7,3). Peers 1 and 4 download at rate 2 locally

and at rate 1 remotely from each other. The revenue collected from the link ` is rebated

equally to all peers, which allows peer 2 to download more than (p1/p2)B2.

The preceding example shows that for general network topologies, the existence of a

competitive equilibrium for the PP scheme does not imply the existence of a competitive

equilibrium for the PF scheme. The reason is that a file may be uploaded at different prices

at different parts of the network.

PFP is the most general pricing scheme. The following result shows that PP is equiva-

lent to PFP in terms of equilibria. The proof is similar to the proof of equivalence between

PP and PF in the trivial network setting. It shows that given equilibrium prices for one

pricing scheme we can construct prices for the other pricing scheme that yield the same

equilibrium allocation.

Proposition 14 For any network topology, there exists a competitive equilibrium for the

PP scheme if and only if there exists a competitive equilibrium for the PFP scheme.

96



We conclude that one price per peer is sufficient to identify heterogeneity in the system.

Intuitively, the upload capacity of a peer’s access link is the local resource that becomes

congested, and in market design it is typically the case that one price is required for each

congestible resource; hence one price per peer suffices for competitive equilibrium. The

argument holds not only for different files, but also for different chunks of the same file. In

light of Example 6, a price for each peer is the minimal amount of information needed.

The PP scheme provides many practical benefits as well. It greatly reduces the num-

ber of prices that need to be maintained, compared to PFP pricing. Further, it simplifies

price discovery and leads to a natural service discipline for uploading files, as discussed in

Section 3.5.2.

3.5.2 Dynamics

The preceding section considers equilibria, i.e., a static setting. However, since it is hard to

know a system’s equilibrium prices or allocation in advance, we need to consider several

issues related to dynamics: how downloaders and uploaders are matched (peer discovery),

how out-of-equilibrium prices are updated (price discovery), and which requests uploaders

satisfy (service discipline). In this section we discuss the role of explicit per-peer pricing

in aiding dynamics; we also briefly discuss the advantages of explicit currency.

A significant advantage of explicit per-peer prices is that they enable fast peer discovery.

This short discovery time significantly improves on that needed by systems with implicit

prices, e.g., such as BitTorrent’s rate-based exchange ratios, which have long discovery

times. These implicitly-priced systems need to perform a brute-force search across their

peers; this has been found in practice to sometimes take tens of minutes [13], and, at least

for high-bandwidth peers, requires an asymptotically-linear search to find similar recipro-

cation rates.

For price discovery, a simple mechanism is to update the prices of peers and links

according to the corresponding excess demand.3 In particular, a price should increase if

demand exceeds supply, and decrease if demand trails. But how to define supply and

demand for a peer? If the PP scheme is employed, a peer’s observed demand is the sum of

3This is a decentralized version of the tâtonnement process discussed in Section 3.3.
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all received rate requests, and his supply is equal to the upload capacity of his access link

(within a fixed time period). If the PFP scheme is used, excess demand is more complex,

since it needs to be calculated for each file separately, and a peer’s supply for a file depends

on the prices (it is optimal for each peer to only upload his most expensive file). Thus the

PP scheme leads to simpler price dynamics. The benefits of the PP pricing scheme are even

more apparent for unpopular files for which requests are relatively rare.

PP pricing leads to a natural service discipline for uploading files, well-aligned with a

peer’s incentives: serve requests sequentially and without preemption. The service disci-

pline for PFP pricing is less clear, however: serving requests only for the highest-priced

file may not fully utilize a peer’s available resources, while serving requests sequentially is

not profit maximizing.

We note that the PF pricing scheme has a further disadvantage in terms of price dynam-

ics. If all peers in the system change the same price for a file, is not possible to update this

file price in a decentralized fashion. A centralized method, such as that the tâtonnement

process (Section 3.3), is required.

Allowing peers to store and exchange currency over time also has significant benefits

for a system in a dynamic setting. First, peers can engage in trade before equilibrium

prices are reached. Second, peers can reach a rate allocation by trading in a decentralized

fashion, without requiring a central authority to clear the market by matching uploaders

and downloaders.

3.6 Implications for System Design

In this section we discuss some system design issues at a high level, and argue that users

are incentivized to contribute valuable content and use network resources efficiently.

In the previous sections we argued that explicit prices and currency facilitate multi-

lateral exchange and showed that one price per peer suffices to achieve the benefits of

multilateral exchange. In [5] we discuss a system design (PACE) that enables multilateral

exchange through currency and the per-peer pricing scheme. The high level picture is the

following. Given prices of peers and network links, a peer requests download rates from

other peers in the network. For downloading, a peer pays the uploading peer and the links
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its traffic traverses. Payments to links are rebated equally to all peers. A peer serves re-

quests sequentially without preemption, and updates its price according to the mismatch

between requests received and available capacity.

Network links are priced in order to make peers internalize their effect on the net-

work. However, associating a price with every link in the network is probably infeasible in

practice, given a lack of network topology and routing information, inaccurate bandwidth

capacity estimations, and computational complexity. Alternatively, we can separately price

most of the bottlenecks that lead to supply constraints. For instance, to a first approxima-

tion, we can view the entire network as composed of local clusters, connected together by

the wide-area core. In many cases we can assume that most bottlenecks – especially those

due to transient congestion – are at access links, where we can accurately estimate capacity

and adapt prices accordingly. Rare bottlenecks in the core are captured via slowly-changing

network prices. Different network prices may be associated with different pairs of clusters.

One typical complaint against explicit pricing and currency is that the process of setting

prices and bidding for goods becomes a usability hurdle. Indeed, this hurdle is seen by the

designers of systems such as MojoNation as their major reason for failing to be widely

adopted. However, pricing mechanisms, rather than being directly exposed to end-users,

can serve as algorithmic devices to ensure efficient exchange: We can expose a very simple

interface to users and have users’ software optimally compute their buy and sell behavior.

We expect that even strategic users cannot gain any significant benefit from operating in a

manner other than that specified by our algorithms.

Finally, incorporating currency into a system introduces its own complications, since

peer exchanges and credit balances need to be secured. [5] demonstrates how these issues

can be handled.

User Incentives

In this section we study the incentives provided to users in our multilateral exchange model.

First, we note that our system encourages efficient use of resources in a large peer-to-peer

system. If the system is large, users cannot accurately anticipate how their actions affect

prices (e.g., Section 3.4), and users have difficulty in predicting the evolution of demand,
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supply, and prices.

Second, users are given incentives to contribute. In particular, users are implicitly in-

centivized both to contribute a high percentage of their upload capacities and to share high-

value content, since high-value files will typically increase a user’s price. Moreover, with

currency stored over time, users are incentivized to contribute even if they are not currently

downloading. We also note that a user is paid for delivered rates, so a user does not profit

by advertising a higher upload capacity than the one he has.

Third, network prices align user incentives with efficient network usage. If network

links are priced correctly, we expect network prices to reflect congestion. Then users inter-

nalize their effect on the network, since they have to pay for all network links they use. For

instance, among peers with the same price, a user prefers to download from the peer with

the smallest total network cost, which we expect to correspond to the least congested route.

On the other hand, sellers do not benefit from network-cost-related payments, and so the

system does not create a perverse incentive for sellers to prefer remote transfers.

Finally, one potential concern in a market-based system is the phenomenon of market

power: Users may try to manipulate prices higher than the laws of supply and demand

dictate. This effect is mitigated significantly in a market with many sellers, where market

manipulation cannot significantly increase profit [50]. To illustrate this, suppose k peers

have a file desired by other users in the system. Let d(p) be the demand for the file at price

p, and B j be the bandwidth of peer j. The equilibrium price p∗ satisfies d(p∗) = ∑
k
j=1 B j.

Peer i would benefit from increasing his price to p > p∗ only if

Bi

d(p)
≥ −d(p)−d(p∗)

p− p∗
· p

d(p)
.

The right-hand side represents the demand elasticity, i.e., the percentage change in quantity

demanded, divided by the percentage change in price. Thus, user i will not be able to exert

market power as long as enough sellers compete to upload the file relative to the elasticity

of demand.

Market power may still be an issue if only a few users have a file, yet any system can

suffer if such users choose to dictate terms to the remainder. In our setting, such users

are often the “seeders” of files and want to see their content disseminated. Many peers in

existing peer-to-peer systems exhibit such altruistic behavior.
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More generally, sellers create other uploaders in the very act of uploading; thus, market

power is at best a transient phenomenon, since other sellers quickly emerge as competitors.

Further, the number of competitors grows exponentially in time: if a file chunk is always

transferred from one user to another in one time period, then after t time periods, O(2t)-

times more users will have it.

3.7 Proofs for Chapter 3

Proof of Proposition 9: Suppose that the budget constraint does not bind. Then there is

an optimal solution (~xi,yi) with ∑ j∈Ti xi j p j < (max j∈Si p j) · yi. And since xi j ≥ 0 for all j,

we will have yi > 0. However, we can choose a small ε such that the solution (~x′i,y
′
i) =

(~xi,yi− ε) is feasible and vi(~xi,yi) < vi(~x′i,y
′
i) because of Assumption 3. This contradicts

the assumption that (~xi,yi) is optimal.

Proof of Proposition 9: If Assumption 5 holds, then either the user graph is strongly

connected, or the system can be decomposed to subsystems for which the user graphs are

strongly connected. Therefore, without loss of generality, in this proof we assume that the

user graph is strongly connected.

By Lemma 9, for any user the budget constraint will bind at the optimal solution. In

particular, given any choice of (yi j, i ∈U, j ∈ F) that satisfies the conditions of Definition

2, we have for each i:

∑
j∈Ti

p jxi j(~p)− ∑
j∈Si

p jyi j(~p) = 0.

By summing over all users, we obtain Property 1.

Fix a price vector ~p� 0. The set of vectors (yi j, i ∈U, j ∈ Si) that satisfy Conditions

2, 3 and 4 of Definition 2 is convex. Thus the aggregate excess demand~z(·) is a convex

valued correspondence (Property 2).

Consider a price vector ~p� 0, and fix a constant t > 0. It is clear that the feasible

region (3.2)-(3.4) remains unchanged if we replace the price vector ~p by t~p; we conclude

that~xi(~p) =~xi(t~p), and yi(~p) = yi(t~p); i.e.,~xi and yi are homogeneous of degree zero. Thus

by Definition 2, the aggregate excess demand is also homogeneous of degree zero (Property

3).
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We now show that the aggregate excess demand correspondence has a closed graph.

We start by showing that~xi(·) and yi(·) are continuous functions. By Assumption 3 v(·) is

a continuous function. From the Theorem of the Maximum [10] it follows that xi j(~p) and

yi(~p) are continuous functions.

Consider the sequences ~pm→ ~p� 0 and ~wm→ ~w such that ~wm ∈~z(~pm). Since ~wm ∈
~z(~pm), there exist ym

i j, i ∈ U , j ∈ F , that satisfy Conditions 1, 2, 3 and 4 of Definition 2

for the price vector ~pm and the aggregate excess demand vector ~wm. We will show that ~w

satisfies these conditions when the price vector is ~p, and thus ~w ∈~z(~p).

Fix ε > 0. Since yi(·) is continuous, there exists M such that yi(~pm) < yi(~p)+ ε, for

all m ≥M, or equivalently ∑ j∈Ti ym
i j < yi(~p)+ ε, for all m ≥M. Moreover, ym

i j ≥ 0, so for

m≥M, ym
i j lies in the compact set [0,yi(~p)+ ε]. Thus for all i ∈U and j ∈ F , the sequence

ym
i j has at least one limit point ȳi j.

We will show that ȳi j satisfies Conditions 1-4 of Definition 2 with price vector ~p and

excess demand vector ~w. Since ~wm→ ~w and xi j(·) are continuous, we have Condition 1 of

Definition 2:

w j = ∑
i∈U : j∈Ti

xi j(~p)−∑
i∈U

ȳi j.

We know that ∑ j∈F ym
i j = yi(~pm), so by continuity of yi we have ∑ j∈F ȳi j = yi(~p) (Condition

2). Since ym
i j ≥ 0 for all m, we have ȳi j ≥ 0 (Condition 3). Finally, suppose that j /∈

argmaxk∈Si pk. Then there exists M′ such that j /∈ argmaxk∈Si pm
k for all m ≥ M′. Thus

ym
i j = 0 for all m ≥ M′, which implies that ȳi j = 0 (Condition 4). Thus we conclude ȳi j

satisfies all the conditions of Definition 2 with price vector ~p and excess demand vector ~w,

so ~w ∈~z(~p). This establishes Property 3 of the proposition.

For any price vector ~p� 0, the feasible region of every User Optimization problem

is compact, so we can find an upper bound for the excess demand of any good. Thus for

any compact set B ⊂ (0,∞)F ,~z(B) is bounded. This completes the proof that~z(·) is upper

hemicontinuous (Property 4).

The upload rate of any user i is upper bounded by his upload rate constraint Bi, so the

total supply is upper bounded and the excess demand is bounded from below (Property 5).

If ~pm → ~p 6= 0 and p j = 0, then pk > 0 for some k. Because of Assumption 5, there

is a sequence of users u1,u2, ...,ul ∈U and a sequence of files f1, ..., fl+1 such that f1 = j,
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fl+1 = k and user ui has file fi and wants to download file fi+1, so that his utility is strictly

increasing in the rate at which he downloads file fi+1 (Assumption 3). Thus, there is a user

i who has a file j ∈ Si to upload whose price approaches a strictly positive limit, and who

wants a file f ∈ Ti whose price approaches zero. The budget of user i approaches a strictly

positive limit as ~pm→ ~p and the amount of f he can afford goes to infinity. On the other

hand, the total possible supply is bounded above by the sum of the upload rate constraints

Bn of the users n that have f ∈ Sn. Thus max{zm
j : j ∈ F}→ ∞, establishing Property 6.

Proof of Corollary 3: Because of the assumptions on ui(~xi), Assumption 3 is satisfied. By

Lemma 9, the budget constraint will bind; thus given ~p� 0, yi is a linear function of the

download rates of user i. By substituting in the objective function (3.1), we obtain a func-

tion of ~xi that is strictly concave. We conclude the optimization problem of each user has

a strictly concave objective and a convex feasible region, and thus a unique solution—i.e.,

Assumption 4 is satisfied. All the assumption of Theorem 1 are satisfied, so a competitive

equilibrium exists.

Proof of Proposition 10: It suffices to show that whenever ~p� 0 and ~p′� 0 are two price

vectors that are not collinear, any corresponding aggregate excess demand vectors can not

be equal, i.e.~z(~p)∩~z(~p′) = /0. Since z is homogeneous of degree zero, we can assume that

p′k ≥ pk for all k, and pl = p′l for some l. Let S = { j : p j = pl}.

Consider altering the price vector ~p to obtain the price vector ~p′, by increasing (or

keeping unaltered) the price of every file k /∈ S, one file at a time. As we increase pk for

some k /∈ S, for every file j ∈ S (including l), there is a user i who wants both j and k;

i.e., j,k ∈ Ti. The optimization problem of that user satisfies the gross substitutes property,

so the total demand (i.e., ∑i:k∈Ti xik) for each file k ∈ S does not decrease in any step, and

if there is a file k /∈ S with pk < p′k, the total demand for file k will strictly increase in at

least one step. Thus, the total demand ∑k∈S ∑i:k∈Ti xik for files in S increases (or remains

the same, if pk = p′k for all k /∈ S), while by a similar argument the total supply for files in

S decreases (or remains the same).

We now consider j ∈ S such that p′j > p j; if no such file exists, then there must be some

file k /∈ S with pk < p′k, so for every ~w ∈~z(~p) and every ~w′ ∈~z(~p′), ∑ j∈S w j < ∑ j∈S w′j.

Thus suppose that p′j > p j for some j ∈ S; we increase the price of every such file j from

p j to p′j, one at a time. By gross substitutes, the total demand for each file in S−{ j} will
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strictly increase. On the other hand, each user that was previously uploading either j or

some other file in S, will now only upload j, while each user that was only uploading files

in S−{ j} will upload those files at most as much as he was uploading before (again by

gross substitutes). Thus the total excess demand for files in S−{ j}, i.e., ∑k∈S−{ j} zk(·),
will strictly increase. We repeat this procedure for every file j ∈ S with p′j > p j. Let

S′ = { j ∈ S : p′j = p j}; S′ is nonempty since l ∈ S′. Then, for every ~w ∈~z(~p) and every

~w′ ∈~z(~p′), ∑ j∈S′w j < ∑ j∈S′w′j, so~z(~p)∩~z(~p′) = /0.

Proof of Theorem 3: We refer to {1, ...,K} as the set of types. Let Dk be the subset of

types that download file k and Uk be the subset of types that upload file k. Then we can

write the tâtonnement process as ~̇p = N~f (~p), where fk(~p) = ∑i∈Dk
rixik(~p)−∑i∈Uk

riyi(~p).

By linearizing around the equilibrium ~p∗, we see that the error ~w(t) = ~p(t)−~p∗ satisfies,

~̇w(t) = ND~f (~p∗) ·~w(t).

This is a system of first order differential equations which has solutions of the form ~w =

~w0eλ·t , where (ND~f (~p∗)−λI)~w0 = 0. The rate of convergence is given by the minimum

of |Reλ| over all eigenvalues λ of ND~f (~p∗). The real part of each eigenvalue of D f (p∗) is

negative (because we are assuming convergence) and does not depend on N, so the rate of

convergence is linear in N.

Proof of Proposition 11: If we multiply through the third condition by p̂ j, and substitute

from the second condition, we obtain:

∑
i: j∈Ti

πi j p̂ f (i)yi = p̂ j ∑
i: f (i)= j

yi. (3.20)

Consider a continuous time Markov chain on the state space F , where the transition rate

from state (file) j to state (file) k is Q jk = ∑i: f (i)= j πikyi. (Note that πik = 0 if k 6∈ Ti.) Let

Q j j =−∑k 6= j Q jk. Then (3.20) can be rewritten as:

∑
k∈F

Qk j p̂k = p̂ j ∑
k∈F

Q jk.

Note that these are the balance equations for the continuous time chain, and so at least one
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nonnegative solution ~̂p exists. Further, if the communicating classes of ~Q are C1 ∪ ·· · ∪
CK = F , then ~̂p is unique up to scaling by a positive constant on each communicating class

Cl .

If πi j p̂ f (i)yi = 0, then we define x̂i j = 0 (Condition 1). Note that if p̂ f (i) = 0, then

f (i) is transient; thus f (i) will have zero mass in any stationary distribution, and thus x̂i j

is uniquely determined in this case. On the other hand, suppose πi j p̂ f (i)yi > 0 for some i

and j. Let k = f (i); then Qk j > 0, and p̂k > 0. This, together with the balance equations,

implies that p̂ j > 0. We conclude that there exists a positive value of x̂i j such that Condition

2 in the proposition is satisfied. Further, since ~̂p is uniquely defined up to scaling on each

communicating class, x̂i j is uniquely determined. This completes the proof.

Proof of Corollary 4: It suffices to note that ~p∗ and ~x(~p∗) satisfy Conditions 1-3 of

Proposition 11. Since ~̂x is uniquely determined, it must be the case that~x(~p∗) = ~̂x.

Proof of Proposition 12: We first show that if supi u′1i(0) · supi u′2i(0) ≤ 1, there does

not exist a competitive equilibrium where some upload rate is strictly positive. If such an

equilibrium exists, then at least one user from each type must be uploading at a strictly

positive rate. Suppose such an equilibrium exists and let (p1,1) be the corresponding price

vector. Then, there exist users i and j such that:

u′1i(0) >
1
p1

, and u′2 j(0) > p1.

By multiplying the two inequalities, we see that the assumption supi u′1i(0) · supi u′2i(0)≤ 1

is contradicted.

Now we assume that supi u′1i(0) ·supi u′2i(0) > 1. Suppose that there exists a competitive

equilibrium where yki = 0 for all k and i. Let (p1,1) be the corresponding price vector.

Then, for all i,

u′1i(0)≤ 1
p1

, and u′2i(0)≤ p1.

If we take the supremum in both inequalities and multiply the result, we see that the as-

sumption supi u′1i(0) · supi u′2i(0) > 1 is contradicted.

Proof of Theorem 4: We use a perturbation approach. Assume there is a “virtual” type 1

user that always uploads ε of file 1, and a “virtual” type 2 user that always uploads ε of file

2. Given strategies~yk and~y2 of type k users, note that Yk = ε+∑i yki. Thus, for any ε > 0,
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the utility function of each user i of type k is continuous in the strategies of all users, and

concave in yki. Moreover, the strategy space of each user is compact and convex. Thus,

according to Theorem 1 of [62] there exists a Nash equilibrium.

We first show that when ε > 0, at any Nash equilibrium not all upload rates can be zero.

Suppose that at some Nash equilibrium y1i = 0 for all i. Then, Y1/Y2 = ε/(ε + ∑i y2i) ≤ 1

and (3.13) gives a contradiction. The symmetric argument for type 2 users shows that

y2l > 0 for some l. Thus, at any Nash equilibrium there exist i, l such that y1i > 0 and

y2l > 0.

Let {εn} be a strictly positive sequence such that εn → 0. For each n, let yn
1i, yn

2i be

Nash equilibrium rates given εn, and let Y n
1 = εn +∑i yn

1i and Y n
2 = εn +∑i yn

2i. Then for all

i and k, yn
ki/Y n

k lies in the compact interval [0,1] and thus has a limit point. Let nm be a

subsequence such that as m→ ∞, for all i we have ynm
1i /Y nm

1 → αi, and ynm
2i /Y nm

2 → βi. Note

that there exist a user i of type 1 and user j of type 2 such that αi ≤ 1/N1, and β j ≤ 1/N2.

Taking subsequences again if necessary, we also assume that for each user i of type k,

ynm
ki converges as m→∞ (as this sequence take values in the compact strategy space of user

i). Suppose that Y nm
1 → 0 and Y nm

2 → 0. Then:

u′1i

(
ynm

1i
Y nm

1
Y nm

2

)
·
(

1−
ynm

1i
Y nm

1

)
→ u′1i(0) · (1−αi) > 1;

u′2 j

(
ynm

2 j

Y nm
2

Y nm
1

)
·

(
1−

ynm
2 j

Y nm
2

)
→ u′2 j(0) · (1−βi) > 1.

These conditions together with the optimality conditions (3.13)-(3.15) imply that there ex-

ists k such that Y k
1 /Y k

2 > 1 and Y k
2 /Y k

1 > 1, which is a contradiction.

Now suppose that as m→∞, Y nm
1 → 0 but Y nm

2 → c > 0. Then from the optimality con-

ditions (3.13)-(3.15), there exists M such that ynm
1i > 0 for all i and all m≥M. Furthermore,

there must exist a user i such that ynm
1i /Y nm

1 → αi ≤ 1/N1. Thus we have:

Y nm
1

Y nm
2

= u′1i

(
ynm

1i
Y nm

1
Y nm

2

)
·
(

1−
ynm

1i
Y nm

1

)
≥ u′1i

(
1

N1
Y nm

2

)(
N1−1

N1

)
.

The right hand side is strictly positive as m→ ∞, while the left hand side approaches zero.

We conclude that we must have Y nm
1 → c1 > 0 and Y nm

2 → c2 > 0.
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Suppose that as m→ ∞, ynm
ki → yki for each user i of type k. We will show that the

resulting rates constitute a Nash equilibrium of the original game. If not, then there exists

some user with a profitable deviation. Without loss of generality, let this be user i of type 1.

Because u1i is continuous, and Yk = ∑ j yk j > 0 for k = 1,2, it is straightforward to check that

for sufficiently large m user i will have a profitable deviation as well. This contradicts the

assumption that~ym
1 and~ym

2 are a Nash equilibrium given εnm; as a result, no such profitable

deviation can exist. We conclude that ~y1 and ~y2 constitute a nonzero Nash equilibrium, as

required.

Proof of Theorem 5: It suffices to show that Y N
k → ∞ as N→ ∞, for k = 1,2. In this case,

the second property of the theorem holds simply because each yik is bounded above by the

upload rate constraint. Further, the optimality conditions (3.13)-(3.15) will imply both the

first and third properties of the theorem: the first property follows because pN
1 cannot go to

zero nor become unbounded if some users have positive rate; and the third property follows

because the Nash optimality conditions are continuous as long as Y1 > 0 and Y2 > 0.

Suppose that Y N
1 remains bounded as N→∞; in this case, taking subsequences if neces-

sary, we can assume that Y N
1 → c1 < ∞ as N→∞. Suppose also that supN Y N

2 = ∞; then for

at least one type 2 user i the analogous optimality conditions (3.14) or (3.15) hold. Taking

subsequences if necessary, we have as N→ ∞, Y N
2 /Y N

1 → ∞ and Y N
1 /Y N

2 → 0, which con-

tradicts either (3.14) or (3.15) for type 2 user i and the assumption supi u′1i(0) < ∞. Thus

Y N
2 remains bounded as N→∞, so taking subsequences again if necessary, we assume that

Y N
2 → c2 < ∞ as N→ ∞.

Without loss of generality, we can assume that c1/c2 ≤ 1; otherwise we apply the sub-

sequent argument to type 2 users. Again taking subsequences if necessary, we assume yN
ki

converges to yki for all i and k; this is straightforward, as the strategy space of each user is

compact. Now since Y N
1 remains bounded for large N, there exists at least one user i of type

1 who has y1i = 0. For such a user, taking limits in (3.13)-(3.14), we conclude we must

have:

u′1i(0)≤ c1

c2
≤ 1.

This contradicts our assumption that infi u′1i(0) > 1. Thus we conclude that in fact Y N
k →∞
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as N→ ∞, for k = 1,2, as required; this establishes the theorem.

Proof of Lemma 10: Let D(p) = u′−1(p). As above, we normalize p2 = 1. We first show

the equivalence of Properties 1 and 2. Consider a type 1 user i; the argument for type 2

users is symmetric. For a given price p1 > 0, his budget constraint is x1i ≤ p1 · y1i and will

bind at any optimal solution (Lemma 9). Thus his objective function is u(x1i)−x1i/p1. The

nonnegativity constraint in (3.4) cannot bind, given Assumption 7. The optimal solution is

given by x1i(p1) = min{D(1/p1), p1B}, so that y1i(p1) = min{(1/p1)D(1/p1),B}.

Since u is strictly concave, D(·) is strictly decreasing. Thus Condition 2 in Definition 5

is satisfied; that is, x1i(p1) strictly increases if p1 strictly increases. Furthermore, if Property

2 in the statement of the lemma holds, then y1i(p1) is nondecreasing in p1, so Condition 1

of Definition 5 is also satisfied. Conversely, fix p′ > p > 0, and choose B > pD(p). Then if

gross substitutes holds, we have y1i(1/p)≥ y1i(1/p′), so pD(p)≥ p′D(p′). Thus Property

1 and Property 2 are equivalent above.

Equivalence of the last two Properties follows by standard relationships between the

derivatives of u′ and u′−1.

Proof of Lemma 11: Suppose there is a Nash equilibrium at which y1i < y1k for some

i 6= k. This means that 0≤ y1i < B and 0 < y1k ≤ B. Then, if Y1− y1k > 0,

u′
(

y1i

Y1
Y2

)
≤ 1

Y1− y1i

Y 2
1

Y2

<
1

Y1− y1k

Y 2
1

Y2

≤ u′
(

y1k

Y1
Y2

)
,

where the first inequality follows from (3.13) and (3.14), and the last inequality follows

from (3.14) and (3.15). Since y1kY1/Y2 > y1iY1/Y2, this contradicts the assumption that u(·)
is strictly concave.

Now suppose that Y1−y1k = 0. Then, y1 j = 0 for all j 6= k, while y1k is strictly positive.

If Y2 = 0 the best response for any type 1 user is to upload zero, so if y1k > 0 we must have

Y2 > 0. But no such equilibrium exists: user k will always want to decrease his upload

108



rate. This shows that there cannot be an equilibrium at which 0 = y1i < y1k. A symmetric

argument holds for users of type 2.

Proof of Proposition 13: By Theorem 4, we know a Nash equilibrium exists. We show

there exists at most one Nash equilibrium. Let (y1,y2) be Nash equilibrium upload rates,

and first suppose that the upload rate constraint does not bind. Let y2/y1 = a. By substitut-

ing in (3.16) and (3.18), we obtain:

u′(ay1) =
N

(N−1)a
; u′(y1) =

N
N−1

a.

We only consider values of a ∈ (N/(N − 1)(1/u′(0)),Nu′(0)/(N − 1)), since only such

values may yield strictly positive rates. The second equation gives y1 = u′−1(Na/(N−1))

and by substituting in the first equation, we conclude:

u′
(

au′−1
(

Na
N−1

))
=

N
(N−1)a

.

Clearly, a = 1 is a solution, which corresponds to y1 = y2 = u′−1(N/(N − 1)). Since

N/((N − 1)a) is strictly decreasing in a, if u′(au′−1(Na/(N − 1))) is nondecreasing in

a, then a = 1 will be the unique solution. By Assumption 6, u′(·) is a strictly decreasing

function, and from Lemma 10, xu′−1(x) is nonincreasing on (0,∞). Thus, there exists at

most one Nash equilibrium with strictly positive rates at which the rate constraints do not

bind.

From Lemma 10, we know that if the Optimization Problem of a user satisfies the gross

substitutes property, then xu′(x) is nondecreasing. We now show that if xu′(x) is non-

decreasing and the rate constraint binds for one type of user, then the rate constraint will

also bind for the other type of user. Suppose that y1 = B and y2 < B. Then, using (3.17)

and (3.18), we have:

N
N−1

B≤ y2u′(y2)≤ Bu′(B) =
N

N−1
y2 <

N
N−1

B,

which is a contradiction.

It remains to show that if y1 = y2 = B is a Nash equilibrium, then u′−1(N/(N−1))≥ B.
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Indeed, if y1 = y2 = B is a Nash equilibrium, then from (3.17) and (3.19), u′(B)≥ N/(N−
1). But then, from Assumption 6, B≤ u′−1(N/(N−1)).

Proof of Proposition 14: First suppose that there exists a competitive equilibrium for

the PP scheme with equilibrium prices (p∗i , i ∈ N) for peers and the (p∗`) for links in the

network. Then, the peer price vector (p∗i f , i ∈ N, f ∈ Fi) with p∗i f = p∗i ∀ f ∈Fi and the

link price vector (p∗`) constitute a competitive equilibrium price vector for the PFP scheme.

This holds because it gives rise to the same demand and supply as (p∗i , i ∈ N) and (p∗`).

Now suppose that there exists a competitive equilibrium for the PFP scheme with prices

(p∗i f , i ∈ N, f ∈ Fi) and (p∗`). For each peer i, set p∗i = max f∈Fi . Peer i only “supplies” his

most expensive files at equilibrium. Hence, the prices (p∗i ) and (p∗`) yield the same demand

and supply as (p∗i f ) and (p∗`) for each peer.
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Chapter 4

Bilateral and Multilateral Exchange

4.1 Introduction

This chapter provides a formal comparison of peer-to-peer system designs with bilateral

barter, such as BitTorrent, and multilateral exchange of content enabled by a price mecha-

nism to match supply and demand. Multilateral exchange in the context of a peer-to-peer

system was studied in Chapter 3.

BitTorrent is a popular peer-to-peer protocol, which accounts for a large percentage

of all Internet traffic. According to the BitTorrent protocol, each peer splits its available

upload rate among peers from which it gets the highest download rates. As a result, the

total download rate of a peer is a nondecreasing function of his total upload rate, and peers

are incentivized to contribute. Therefore, the BitTorrent protocol incentivizes users in a

bilateral basis: an increase in the upload rate to one peer may increase the download rate

from that particular peer.

The difficulties of bilateral exchange (or barter) in an economy have been long known.

Several inconveniences arise in the absence of money, the most important being the improb-

ability of coincidence between persons wanting and possessing [40]. In modern economies,

the aforementioned difficulty is eliminated by the use of money. Money can enable mul-

tilateral exchange by serving as a medium of exchange and a common measure of value.

Even though modern societies take the use of money for granted, this is not the case in

peer-to-peer systems, partly because of the associated system design complexity.
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Peer-to-peer systems could potentially also use market-based multilateral exchange to

match user demand for content to available supply at other users in the system. This can

be done by using virtual currency and assigning a budget to each user that decreases when

downloading and increases when uploading. Monetary incentives in a virtual currency

have been previously proposed to incentivize uploading in peer-to-peer systems [34, 70,

66, 6]; however such designs are usually more complex than bilateral protocols and are

not widespread. Thus, there is a significant tradeoff: bilateral exchange without money

is simple; on the other hand multilateral exchange allows more users to trade. In this

paper, we provide a formal comparison of two peer-to-peer system designs: bilateral barter

systems, such as BitTorrent; and a market-based exchange of content enabled by a price

mechanism to match supply and demand.

We start in Section 4.2 with a fundamental abstraction of content exchange in systems

like BitTorrent: exchange ratios. The exchange ratio from one user to another gives the

download rate received per unit upload rate. Exchange ratios are a useful formal tool be-

cause they allow us to define and study the equilibria of bilateral exchange. In a bilateral

equilibrium each user optimizes with respect to exchange ratios. In Section 4.3 we also de-

fine competitive equilibria (corresponding to multilateral exchange), where users optimize

with respect to prices.

In Section 4.4 we compare bilateral and multilateral peer-to-peer systems through the

allocations that arise at equilibria. A competitive equilibrium allocation is always Pareto

efficient, while bilateral equilibria may be inefficient. Our main result in this section is

that a bilateral equilibrium allocation is Pareto efficient if and only if it is a competitive

equilibrium allocation. This result provides formal justification of the efficiency benefits of

competitive equilibria. The proof exploits an interesting connection between equilibria and

Markov chains: an important step of the proof is to show that Pareto efficiency of a bilateral

equilibrium rate allocation implies reversibility of an appropriately defined Markov chain,

and that this chain has an invariant distribution that corresponds to a price vector of a

competitive equilibrium.

In Section 4.5 we perform a quantitative comparison of bilateral and multilateral ex-

change. As discussed in [40], “there may be many people wanting, and many possessing

those things wanted; but to allow of an act of barter, there must be a double coincidence,
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which will rarely happen.” We quantify how rarely this double coincidence of wants occurs

under different assumptions on the popularity of files in the system. We first perform an

asymptotic analysis assuming that file popularity follows a power law and study two ex-

treme regimes. We find that asymptotically all users are able to trade bilaterally when the

file popularity is very concentrated. On the other hand, multilateral exchange performs sig-

nificantly better than bilateral when the file popularity is not concentrated. We complement

our theoretical analysis by studying file popularity from a BitTorrent dataset. Although

bilateral equilibria may in general be inefficient, the gap between bilateral and multilateral

exchange can be narrowed significantly if each user shares a sufficient number of files (in

practice as small as ten).

Our work is related to the study of equilibria in economies where not all trades are al-

lowed. Kakade et. al. introduce a graph-theoretic generalization of classical Arrow-Debreu

economics, in which an undirected graph specifies which consumers or economies are per-

mitted to engage in direct trade [42]. However, the inefficiencies of bilateral exchange do

not arise in their model. Finally, the monetary economics literature has studied how money

reduces the double coincidence problem. The implementation of a competitive equilibrium

is a central theme in this literature. The superiority of monetary exchange has been stud-

ied [67], and dynamics of bilateral trading processes have been considered [55, 27]. The

transactions role of money is surveyed in [54].

4.2 Exchange Ratios in Bilateral Protocols

Many peer-to-peer protocols enable exchange on a bilateral basis between users: a user

i uploads to a user j if and only if user j uploads to user i in return. Of course, such

an exchange is only possible if each user has something the other wants. The foremost

examples of such a protocol are BitTorrent and its variants. While such protocols are

traditionally studied solely through the rates that users obtain, in this section we provide

an interpretation of these protocols through exchange ratios. As exchange ratios can be

interpreted in terms of prices, these ratios allow us to compare bilateral barter-based peer-

to-peer systems with multilateral price-based peer-to-peer systems.

Let ri j denote the rate sent from user i to user j at a given point in time in a bilateral
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peer-to-peer protocol. We define the exchange ratio between user i and user j as the ratio

γi j = r ji/ri j; this is the download rate received by i from j, per unit of rate uploaded to j.

By definition, γi j = 1/γ ji. Clearly, a rational user i would prefer to download from users

with which he has higher exchange ratios.

The exchange ratio has a natural interpretation in terms of prices: an equivalent story

emerges if we assume that users charge each other for content in a common monetary unit,

but that all transactions are settlement-free, i.e., no money ever changes hands. In this case,

if user i charged user j a price pi j per unit rate, the exchange of content between users i and

j must satisfy:
pi jri j = p jir ji

We refer to pi j as the bilateral price from i to j. Note that the preceding condition thus

shows the exchange ratio is equivalent to the ratio of bilateral prices: γi j = pi j/p ji (as long

as the prices and rates are nonzero).

What is the exchange ratio for BitTorrent? A user splits its upload capacity equally

among those users in its active set from which it gets the highest download rates. Let α be

the size of the active set. Suppose all rates rk j that user j receives from users k 6= i are fixed

and let Rα
j be the α-th highest rate that j receives. Let B j be the upload capacity of user j.

Then, r ji depends on ri j. In particular,

r ji =

{
B j/α if ri j > Rα

j

0 otherwise

Thus for BitTorrent, the exchange ratio is γi j = B j/(α · ri j) if user i is in the active set, and

zero otherwise. Note that the exchange ratios γi1, j and γi2, j may be different for two users

i1, i2 in j’s active set.

The exchange ratio γi j decreases with ri j as long as user i is in user j’s active set (in

which case r ji is constant). Hence, a strategic user i would prefer to choose ri j as small

as possible while remaining in j’s active set. This behavior is exactly the approach taken

by the BitTyrant [57] variation on BitTorrent. In fact, if all users follow this policy, then

ri j = Rα
j for all users i in j’s active set. Note that in this case, γi j = B j/(α ·Rα

i ). Thus, user

j has the same exchange ratio to all users i with which he bilaterally exchanges content.

The preceding discussion highlights the fact that the rates in a bilateral peer-to-peer
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Bilateral User Optimization: Multilateral User Optimization:
maximize vi(~xi,yi) maximize vi(~xi,yi)
subject to xi f = ∑ j r ji f ,∀ f subject to xi f = ∑ j r ji f∀ f

yi = ∑ j, f ri j f yi = ∑ j, f ri j f

~r ∈ X ~r ∈ X
∑ f r ji f ≤ γi j ∑ f ri j f∀ j ∑ j, f p jr ji f ≤ pi ∑ j, f ri j f

Figure 4.1: Optimization problems for price-based exchange. The two optimization prob-
lems differ only in the last constraint (budget constraint).

system can be interpreted via exchange ratios. Thus far we have assumed that transfer

rates are given, and exchange ratios are computed from these rates. In the next section, we

turn this relationship around: we explicitly consider an abstraction of bilateral peer-to-peer

systems where users react to given exchange ratios, and compare the resulting outcomes to

price-based multilateral exchange.

4.3 Bilateral and Competitive Equilibria

Motivated by the discussion in the preceding section, this section uses exchange ratios to

define bilateral equilibria. In Section 3.2 we defined competitive equilibrium where peers

optimize with respect to given prices. Similarly, at a bilateral equilibrium peers optimize

with respect to exchange ratios (instead of prices).

As in Chapter 3, in the formal model we consider, a set of users U shares a set of files F .

User i has a subset of the files Si ⊆ F , and is interested in downloading files in Ti ⊆ F−Si.

Throughout, we use ri j f to denote the rate at which user i uploads file f to user j. We

then let xi f = ∑ j r ji f be the rate at which user i downloads file f . We denote the vector of

download rates for user i by~xi = (xi f , f ∈ Ti). Let yi = ∑ j, f ri j f be the total upload rate of

user i. We measure the desirability of a download vector and an upload rate to user i by a

utility function Assumption 3.

Each user is assumed to have a constraint on the available upload rate; let Bi denote this

upper bound for user i. We assume that users do not face any constraint on their download

rate; this is consistent with most end user connections today, where upload capacity is far

exceeded by download capacity.
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Let

X =

{
~r :~r ≥ 0; rk j f = 0 if f 6∈ Sk; ∑

j, f
ri j f ≤ Bi ∀i ∈U

}
be the set of feasible rate vectors. In particular, this ensures that (1) all rates are non-

negative, (2) users only upload files they possess, and (3) each user does not violate his

bandwidth constraint.

We start by considering users’ behavior in bilateral schemes, given a vector of exchange

ratios (γi j, i, j ∈U). User i solves the bilateral optimization problem given in Figure 4.1.1

By contrast, in a multilateral price-based exchange, the system maintains one price per

user, and users optimize with respect to these prices.2 We denote the price of user i by pi.

Figure 4.1 also gives the user optimization problem in multilateral price-based exchange.

Note that the first three constraints (giving download and upload rates and ensuring that

the rate allocation is feasible) are identical to the bilateral user optimization. Only the last

constraint is different. While the bilateral exchange implicitly requires user i to download

only from those users to whom he uploads, no such constraint is imposed on multilateral

exchanges: user i accrues capital for uploading, and he can spend this capital however he

wishes for downloading.

For bilateral (resp., multilateral) exchange, an equilibrium is a combination of a rate

allocation vector and an exchange ratio vector (resp., price vector) such that all users have

solved their corresponding optimization problems. In this case, the exchange ratios (resp.,

prices) have exactly aligned supply and demand: for any i, j, f , the transfer rate ri j f is

simultaneously an optimal choice for both the uploader i and downloader j. In the next two

subsections we provide formal definitions of equilibria for both models.

4.3.1 Bilateral Equilibrium

Definition 7 The rate allocation ~r∗ ∈ X and the exchange ratios~γ∗ = (γ∗i j, i, j ∈U) with

γ∗i j · γ∗ji = 1 for all i, j, constitute a Bilateral Equilibrium (BE) if for each user i,~r∗ solves

1Note that we allow users to bilaterally exchange content over multiple files, even though this is not
typically supported by swarming systems like BitTorrent; in BitTorrent a single file is split into subpieces
called chunks, and users exchange chunks.

2This is equivalent to having one price per file in our setting [5].
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the Bilateral User Optimization problem given exchange ratios~γ∗.

Definition 7 requires that (1) all users have optimized with respect to the exchange ratios,

and (2) the market clears. Even though the market clearing condition is not explicitly stated,

it is implicitly required, since the same vector ~r∗ is an optimal solution of the bilateral

optimization problems of all users.

We do not expect a BE to exist in general. For example, this is trivially the case if no

pair of users has reciprocally desired files; i.e., if for every pair i, j either Si ∩Tj = /0 or

S j ∩ Ti = /0. To show existence we assume that every user can find every file he desires

through bilateral trade. This is formalized in Assumption 8.

Assumption 8 For every user i and every file f ∈ Ti there exists a user j such that f ∈ S j

and Tj∩Si 6= /0.

Proposition 15 If Assumptions 3 and 8 hold, then a BE exists.

4.3.2 Competitive Equilibrium

For completeness we also give the definition of CE. In particular, we rewrite Definition 3

using the notation of this section and one price per peer.

Definition 8 The rate allocation~r∗ and the user prices ~p = (p∗i , i ∈U) with p∗i > 0 for all

i∈U constitute a Competitive Equilibrium (CE) if for each user i,~r∗ solves the Multilateral

User Optimization problem given prices ~p.

Similarly to Definition 7, Definition 8 requires that (1) all users have optimized with

respect to prices, and (2) the market clears. Even though the market clearing condition

is not explicitly stated, it is implicitly required, since the same vector ~r is used in the

optimization problems of all users.

Proposition 16 If Assumptions 3 and 5 hold, then there exists a CE.
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4.4 Efficiency of Equilibria

This section rigorously analyzes the efficiency properties of bilateral and multilateral ex-

change. We assume users explicitly react to exchange ratios or prices, and we compare the

schemes through their resulting equilibria.

A CE allocation is always Pareto efficient, i.e., there is no way to increase the utility of

some user without decreasing the utility of some other user; this is the content of the first

fundamental theorem of welfare economics [50]. For completeness, we include the result

here.

Theorem 6 If the rate allocation~r∗ and the user prices (p∗i , i∈U) with p∗i > 0 for all i∈U

constitute a CE, then the allocation~r∗ is Pareto efficient.

A BE, on the other hand, may not be Pareto efficient, as the following example shows.

Example 7 Consider a system with n users and n files, for n > 2. Each user i has file fi

and wants files fi+1 and fi−1. The utility of user i is vi(xi, fi−1 ,xi, fi+1 ,yi) = xi, fi−1 +4xi, fi+1 +

ln(2− yi), i.e., user i wants the files of both user i + 1 and user i−1, but derives a higher

utility from the file of user i+1.

We first consider a symmetric BE with exchange ratios γ∗i,i+1 = 2 and γ∗i,i−1 = 1/2. The

equilibrium rates are r∗i−1,i = 1 and r∗i+1,i = 1/2, and the download rates are x∗i, fi−1
= 1

and x∗i, fi+1
= 1/2. The utility of each user i is 3− ln(2) ≈ 2.3. On the other hand, prices

p∗i = 1 for all i, and rates r∗i+1,i = 1.75, r∗i−1,i = 0 constitute a CE. The utility of each

user is 7− ln(4) ≈ 5.61, i.e., significantly larger than the utility of a user at the BE. This

demonstrates that the BE allocation is not Pareto efficient.

The previous examples show that BE may not be Pareto efficient. We next provide an

example of a BE rate allocation that is Pareto efficient.

Example 8 Consider a system with n users and n files, for n > 2. Each user i has file fi

and wants files fi+1 and fi−1. The utility of user i is vi(xi, fi−1,xi, fi+1 ,yi) = xi, fi−1 + xi, fi+1 +

ln(2− yi).

We consider a symmetric BE with exchange ratios γ∗i,i+1 = 1 and γ∗i,i−1 = 1. The equilib-

rium rates are r∗i−1,i = 1/2 and r∗i+1,i = 1/2. The BE rate allocation is Pareto efficient. In
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particular, it corresponds to a CE: prices p∗i = 1 for all i, and rates r∗i+1,i = 1/2, r∗i−1,i = 1/2

constitute a CE.

BE may be inefficient, while CE always have Pareto efficient allocations (Theorem 6).

In Example 8 the BE rate allocation is Pareto efficient and corresponds to a CE. Our main

result is that a BE allocation is a CE allocation if and only if it is Pareto efficient. In

particular, if a BE allocation is Pareto efficient, then there exist “supporting prices”, i.e.,

prices such that the BE rate allocation is optimal for the multilateral optimization problem

of each user. Informally, Pareto efficiency represents the “gap” between BE and CE.

Proposition 17 Assume that for every user i and any fixed ~xi, vi(~xi,yi)→−∞ as yi→ Bi.

Let (~r∗,~γ∗) be a BE. The rate allocation~r∗ is Pareto efficient if and only if there exists a

price vector ~p such that~r∗ and ~p constitute a CE.

Proposition 17 assumes that vi(~xi,yi)→−∞ as yi→ Bi for every user i and every fixed

~xi. This assumption is needed so that upload capacity constraints do not bind at the BE.

This is a reasonable assumption for a peer-to-peer setting, since we do not expect users

to use all their upload capacity. We note that if the upload capacity constraint binds for

some users, then there may exist Pareto efficient BE that do not correspond to CE, simply

because users have already “maxed out” their available upload capacity.

We provide an overview of the proof of Proposition 17, which demonstrates an interest-

ing connection between equilibria and Markov chains; the details of the proof are provided

in the appendix. From a BE rate allocation~r∗ we construct a transition rate matrix ~Q such

that Qi j = ∑ f r∗i j f if i 6= j; and Qii =−∑ j, f r∗i j f . We first observe that~π~Q = 0 implies that

the multilateral budget constraint is satisfied with price vector~π; therefore for any invariant

distribution ~π,~r∗ is feasible for the multilateral optimization problem of every user when

prices are equal to~π. We then show that there exists an invariant distribution of ~Q (say ~p)

such that ~r∗ is an optimal solution of the multilateral optimization problem of each user

when the prices are equal to ~p. We conclude that~r∗ and ~p constitute a CE.

A key step of the proof is to show that Pareto efficiency of~r∗ implies reversibility of
~Q. Let~π be an invariant distribution of ~Q. ~Q is reversible if and only if γ∗i j = πi/π j for all

pairs of users i and j that trade at the BE. This means that if ~Q is reversible, then~r∗ solves

the multilateral optimization problem of each user given prices ~π if the user is restricted
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to trade with peers it trades at the BE. The matrix corresponding to the BE allocation of

Example 7 is not reversible, which implies that the BE allocation is not Pareto efficient. On

the other hand, the matrix corresponding to the BE allocation of Example 8 is reversible,

and the BE allocation is Pareto efficient and corresponds to a CE allocation.

4.5 Quantitative Comparison

Bilateral exchange may be particularly restrictive because a pair of users can exchange

only if each has a file that the other wants. On the other hand, allowing multilateral ex-

change significantly increases the number of possible exchanges, and potentially increases

the number of users that can trade, but is also associated with increased complexity. In this

section we compare bilateral and multilateral exchange through the corresponding percent-

ages of users that can trade. Though distinct from Pareto efficiency, this metric provides

quantitative insight into the comparison of the two types of exchange. We characterize

regimes where bilateral exchange performs very well with respect to this metric, and for

which — as a result — it may not be worth the effort to use multilateral exchange.

We first perform an asymptotic analysis assuming that file popularity follows a power

law. We find that asymptotically all users are able to trade bilaterally when the file popular-

ity is very concentrated. We complement our theoretical analysis by studying file popularity

from a BitTorrent dataset. We find that a very large percentage of users is able to trade bi-

laterally if each user is sharing a sufficiently large number of files; e.g., over 96% of users

can trade if each user has 10 files (for the number of users in the dataset).

We start by formally defining the quantities we compare. For a given peer-to-peer

system, we define the system profile to consist of the specification of which files each user

possesses and desires, i.e., P = {Ti,Si, i ∈U}. For simplicity, we consider settings where

each user is interested in downloading one file, i.e., |Ti|= 1 for all i ∈U . This assumption

significantly simplifies the analysis, since we do not need to consider how a user’s utility

function depends on different files. We thus abstract from specific utility functions and

focus on how much bilateral exchange restricts trade.

We say that user i can trade bilaterally under P if there exists some user j such that

Si∩Tj 6= /0 and S j ∩Ti 6= /0, i.e., if i and j have reciprocally desired files. Given a system
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profile P , let ρBE(P ) be the percentage of users that cannot trade bilaterally. We note that

ρBE(P ) is equal to the percentage of users that need to be removed from the system so

that a BE exists for P (if Assumption 3 holds). The condition ρBE(P ) = 0 is equivalent to

Assumption 5 when each user possesses one file, as we assume in this section.

Similarly, we say that user i can trade multilaterally under P if there exist users k1,k2, ...,kn

such that Sk j ∩Tk j+1 6= /0 for j = 1, ...,n; Si ∩Tk1 6= /0 and Skn ∩Ti 6= /0. In words, user i is

able to trade multilaterally if and only if there exists a cycle of users starting (and ending)

at i such that each user possesses a file that is desired by the next user in the cycle. Clearly,

if user i can trade bilaterally under P , then he can also trade multilaterally under P . Let

ρME(P ) be the percentage of users that cannot trade multilaterally. We note that ρME(P ) is

equal to the percentage of users that need to be removed from the system so that a CE exists

for P (if Assumption 3 holds). The condition ρME(P ) = 0 is weaker than Assumption 5;

however, it is sufficient for CE existence when each user possesses one file, as we assume

in this section.

We assume that the system profile P is chosen according to some distribution that de-

pends on the popularity of different files. We are interested in comparing the expected

values of ρBE(P ) and ρME(P ). In Section 4.5.1 we consider a large system and perform

an asymptotic analysis. In Section 4.5.2 we use a BitTorrent dataset to derive file popu-

larity distributions, and then compare the expected values of ρBE(P ) and ρME(P ) through

simulations.

4.5.1 Asymptotic Analysis

In this section we theoretically study bilateral and multilateral exchange in large systems.

We compare the two types of exchange through the expected percentages of users that

cannot trade. We focus on large systems, and consider the asymptotic regime as the number

of files and users in the system becomes large.

We assume the files that users possess and desire are drawn from a Zipf file popularity

distribution independently and identically for each user. Our motivation to study this dis-

tribution comes from the fact that Zipf’s law has been observed in many settings, and has

been suggested as a good model for file popularity (e.g., [17]). Zipf’s law states that the
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popularity of the r-th largest occurrence is inversely proportional to its rank. We adjust this

definition to our setting.

Definition 9 File popularity has a Zipf distribution with parameter s if the r-th most pop-

ular file has probability proportional to r−s.

For example, if Si and Ti are singletons, a user desires the i-th most popular file and pos-

sesses the j-th most popular file with probability (i · j)−s/(∑k′ 6=k(k′ · k)−s).

Note that s = 0 corresponds to the uniform distribution. On the other hand, as s in-

creases the distribution becomes more concentrated.

We are interested in the expected percentage of users that cannot trade. This is a

function of the number of users N, the number of files K and the Zipf exponent s. Let

ρBE(K,N,s) and ρME(K,N,s) be the expected percentages of users that cannot trade bi-

laterally and multilaterally. In particular, ρBE(K,N,s) (resp., ρME(K,N,s)) is the expected

value of ρBE(P ) (resp., ρME(P )) over system profiles.

We consider a sequence of peer-to-peer systems indexed by N. The Nth system has N

users and K(N) files, where K(N) is a nondecreasing function of N. The function K(N)

represents how the number of files scales with the number of users. We study an asymptotic

regime where N→ ∞.

Since the number of users that cannot trade bilaterally is always greater than or equal to

the number of users that cannot trade multilaterally, we have ρBE(K,N,s)−ρME(K,N,s)≥
0. The following propositions imply that in a large system ρBE(K,N,s)−ρME(K,N,s) may

be significant when s = 0, but is always negligible when s > 1.

Proposition 18 Assume s = 0, i.e., files are chosen uniformly. Moreover, |Si| = σ and

|Ti|= 1 for all i ∈U.

1. If K(N)≥ σ
√

N for large N, then there exists N such that ρBE(K(N),N,0)≥ 1/e for

N ≥ N.

2. If there exists ε > 0 such that K(N)≤σN1/2−ε for large N, then ρBE(K(N),N,0)→ 0

as N→ ∞.

3. If there exists ε > 0 such that K(N)≤ σN1−ε for large N, then ρME(K(N),N,0)→ 0

as N→ ∞.
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The case K(N) ∈ [σ
√

N,σN1−ε] is of particular interest. According to Proposition 18 in

this case ρBE(K(N),N,0)≥ 1/e≈ 0.37 for large N, while ρME(K(N),N,0)→ 0 as N→∞.

In words, when the system is large more than one third of the users cannot trade bilaterally,

while almost all users can trade multilaterally. We conclude that if σN1−ε ≥ K(N)≥ σ
√

N

and files are chosen uniformly, then multilateral exchange performs significantly better than

bilateral exchange in terms of the number of users that can trade.

Proposition 19 If s > 1, then ρBE(K(N),N,s)→ 0 as N→∞ for any nondecreasing K(N).

Since ρME(K(N),N,s)≤ ρBE(K(N),N,s), we conclude that if files are chosen according to

a Zipf distribution with s > 1 then both ρBE(K(N),N,s)→ 0 and ρME(K(N),N,s)→ 0 as

N→ ∞. We note that this result does not depend on the number of files that users possess.

When s > 1, bilateral exchange performs very well asymptotically even if each user only

possesses one file.

This is an interesting result: even though bilateral exchange significantly restricts trade

compared to multilateral exchange, in expectation almost all users can trade under both

types of exchange when the system is large and file popularity follows a Zipf distribution

with exponent s > 1. The intuition behind this result is that when s is large, the popularity

distribution is more concentrated, i.e., the most popular files are chosen with relatively

high probability. As a result, for any user i both Ti and Si probably consist of one of the

most popular files, and it is more likely that there exists a user j, such that i and j have

reciprocally desired files.

4.5.2 Data Analysis

In this section we quantitatively compare bilateral and multilateral exchange using a Bit-

Torrent dataset collected by Piatek et. al. from the University of Washington [58].3 We find

that a significant percentage of users cannot trade bilaterally when each user is sharing one

file; however, the percentage becomes negligible as peers share more files.

The dataset consists of 1,364,734 downloads, 679,523 users and 7,323 files. We use the

number of downloads of each file in the dataset to estimate the probability that a given file is

3We are grateful to Piatek et. al. for providing the dataset.
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Figure 4.2: Percentages of users (from simulations) that cannot trade bilaterally and multi-
laterally when users desire and possess one file, i.e., |Ti|= |Si|= 1 for all i. The horizontal
axis shows the number of users in the system.

selected. We then use the estimated probabilities to generate system profiles and compute

the percentages of users that cannot trade bilaterally and multilaterally. We assume that

there are 7,323 files with the given distribution, and vary the number of users in the system.

We first assume that each user possesses and desires exactly one file, i.e., |Ti|= |Si|= 1

for every i ∈U . Figure 4.2 shows the percentages of users that cannot trade bilaterally and

multilaterally from simulations for various numbers of users in the system.4 We observe

that the percentage of users that cannot trade bilaterally is significantly larger than the

percentage of users that cannot trade multilaterally. Moreover, the latter is close to 0,

indicating that most users are able to trade multilaterally. Finally, as the number of users

increases, the percentages of users that can trade increase for both bilateral and multilateral

exchange. For instance, when there are 200,000 users in the system, about 93% cannot trade

bilaterally while only 0.7% cannot trade multilaterally. When the number of users increases

to 1,000,000, about 75% cannot trade bilaterally and 0.06% cannot trade multilaterally.

We next assume each user desires one file and possesses multiple files. As the number

of files that each user has increases, the number of possible trades increases, and as a result

the percentage of users that can trade bilaterally increases. In Figure 4.3 we show the

4The algorithm we use to compute ρBE is exact: for every user i we check whether there is some user j
such that i and j have reciprocally desired files. Computing the exact value of ρME for a large system seems
computationally intractable. Therefore, we use an approximation algorithm to compute ρME : we recursively
remove users that possess files not desired by others or desire files not possessed by others. Simulations for
small numbers of users suggest that this algorithm provides a very good approximation for ρME .
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Figure 4.3: Percentages of users (from simulations) that cannot trade bilaterally when each
user desires one file (|Ti|= 1) and possesses multiple files. The legend shows |Si| for each
line. The horizontal axis shows the number of users in the system. In the left figure all users
possess the same number of files (|Si| ∈ {1,2,5,10,20}). In the right figure the number of
files that a user possesses (|Si|) is drawn from the dataset distribution (denoted by “d”). We
also include the cases |Si|= 1 and |Si|= 2 for all users in the right figure.

percentages of users that cannot trade bilaterally when each user desires one file (|Ti|= 1)

and possesses multiple files (from simulations).

For the first figure in Figure 4.3 we assume that all users possess the same number of

files, i.e., |Si| = |S j| for all i, j ∈U . The figure shows the percentages of users that cannot

trade multilaterally for various values of |Si|. The case |Si|= 1 has already been considered

in Figure 4.2. In Figure 4.3 we also consider |Si| ∈ {2,5,10,20}. We observe a significant

decrease in the percentage of users that cannot trade when |Si| increases from 1 to 20. We

can illustrate this by considering the minimum required number of users in the system so

that at most 10% are not able to trade: at least 1,000,000 users are required when each user

has 5 files; at least 200,000 users are needed in the system when each possesses ten files; at

least 50,000 users are needed when each user possesses 20 files. We observe that there is a

significant decrease in the required number of users. Moreover, when each user possesses

20 files, the percentage of users that cannot trade bilaterally is very small when there are

more than 200,000 users in the system: 2.3% cannot trade with 200,000 users; only 0.28%

cannot trade with 1,000,000 users.

Our simulations up to now have assumed that all users in the system possess the same

number of files, i.e., |Si| = |S j| for all i, j. We next assume that the number of files that

users possess vary across different users. We are interested in whether the percentage of
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users that can trade bilaterally increase as the variance of the distribution of |Si| increases

(assuming that the mean remains the same). At first it may seem plausible that users with

very large |Si| would be able to accommodate a lot of trades and as a result ρBE should

increase as the |Si|’s become more dispersed. However, this is not the case as we discuss

next.

We infer the distribution of |Si| from the dataset.5 The mean value of |Si| in the dataset

is 2.0084. Therefore, we are interested in whether ρBE increases compared to the case that

|Si|= 2 for all i. The second figure in Figure 4.3 shows the percentage of users that cannot

trade bilaterally when the number of files that users possess (|Si|) follows the distribution

from the dataset. For comparison, we also show the percentages that cannot trade when |Si|
is equal to 1 or 2 for all users. We observe that when |Si| is drawn from the distribution, the

percentages are between the case |Si| = 1 and |Si| = 2 — even though the expected value

of |Si| is slightly greater than two. In particular, about 81% of users cannot trade bilaterally

when |Si| is drawn from the distribution, while 77% cannot trade when |Si|= 2 for all users.

The percentage of users with large |Si| that cannot trade bilaterally significantly decreases:

26% of users with |Si|> 10 cannot trade bilaterally. However, only 2% of the users belong

in this category; 67 % of all users have |Si|= 1 and 88% of them cannot trade bilaterally.

To further examine the conjecture that a more dispersed distribution of |Si| further re-

stricts bilateral trade, we run simulations assuming that |Si| = 1 with probability 0.5 and

|Si|= 3 with probability 0.5, so that the mean value of |Si| is equal to 2. This distribution is

less dispersed than the distribution we obtain from the data, but more dispersed than when

|Si| = 2 for all users. Indeed, the percentage of users than cannot trade bilaterally when

there are 200,000 users is 78%, which is greater than the percentage of users that cannot

trade when |S2|= 1 for all users (77%), but smaller than the percentage of users than cannot

trade under the data distribution (80%).

4.6 Proofs

Proof of Proposition 15: We first define the concept of restricted BE and show that such an

equilibrium always exists. We then use the exchange ratios of the restricted BE to construct

5We assume that the number of files that a user possesses is equal to the number of files he downloads.
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a BE according to Definition 7.

The rate allocation~r∗ and the exchange ratios~γ∗ constitute a restricted BE if

1. γ∗i j = 0 if Si∩Tj = /0 or S j∩Ti = /0;

γ∗i j · γ∗i j = 1 otherwise.

2. For each user i, ~r∗ solves the Bilateral User Optimization problem given exchange

ratios~γ∗.

At a restricted BE all exchange ratios between peers that cannot trade bilaterally are set to

zero. We show that a restricted BE exists under Assumption 3.

Let E = {(i, j) : Ti∩S j 6= /0,Tj ∩Si 6= /0} be the set of tuples of users with reciprocally

desired files. According to Definition 7 γi j > 0 if and only if (i, j)∈ E at a BE. We consider

a price pi j for every tuple (i, j) ∈ E. This is the price that user j pays to download from

user i (see Section 4.2). For this proof, let ~p = (pi j,(i, j)∈ E). The exchange ratio between

i and j is γi j = pi j/p ji. In particular, without loss of generality we assume that the budget

constraint in the bilateral user optimization of user i is replaced by

p ji ∑
f

r ji f = pi j ∑
f

ri j f .

We ignore pairs of users that are not in E (since by definition such users cannot trade

bilaterally) and show that it is possible to have some ~p� 0 such that the market clears.

For the purposes of this proof, let ~ri(~p) be the optimal solution for the bilateral opti-

mization problem of user i when the exchange ratios are equal to γi j = pi j/p ji. If~r and ~p

constitute a BE, then~r ∈~ri(~p) for all i ∈U . We note that each ri
i j f is in general a corre-

spondence. We define excess demand for each (i, j) ∈ E as

zi j(~p) = ∑
f

r j
i j f (~p)−∑

f
ri

i j f (~p).

We first show that the excess demand~z has the following properties:

(i) For every ~p and~z ∈~z(~p), ~p ·~z(~p) = 0.

(ii) ~z(·) is convex-valued
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(iii) ~z(·) is homogeneous of degree 0

(iv) ~z(·) is upper-hemicontinuous

(v) There is s > R such that zi j >−s for any~z ∈~z(~p) and ~p.

(vi) If ~pn→ ~p 6= 0,~zn ∈~z(~pn) and pi j = 0, p ji > 0 for some (i, j) ∈ E, then

max{zn
i j : (i, j) ∈ E}→ ∞.

By Assumption 3, the budget constraint of each user binds. The budget constraint of user i

is

p ji ∑
f

ri
ji f (~p) = pi j ∑

f
ri

i j f (~p).

By summing over all users, we obtain Property (i).

Fix a price vector ~p� 0. By Assumption 3 v(·) is strictly concave; therefore ri
i j f (~p)

and r j
i j f (~p) are convex-valued. Thus the aggregate excess demand~z(·) is a convex valued

correspondence (Property (ii)).

Consider a price vector ~p� 0, and fix a constant t > 0. It is clear that the feasible region

of the bilateral user optimization problem remains unchanged if we replace the price vector

~p by t~p. Thus the aggregate excess demand is homogeneous of degree zero (Property (iii)).

By Assumption 3 v(·) is a continuous function. From the Theorem of the Maximum

[10] it follows that ri
i j f (~p) and ri

ji f (~p) are upper hemicontinuous correspondences. The

aggregate excess demand for (i, j) ∈ E is a linear combination of the rates r j
i j f (~p) and

ri
i j f (~p), and therefore is also upper hemicontinuous (Property (iv)).

The upload rate of any user i is upper bounded by his upload rate constraint Bi, so the

total supply is upper bounded and the excess demand is bounded from below (Property

(v)).

Suppose that ~pn→ ~p 6= 0, and pi j = 0, p ji > 0 for some (i, j) ∈ E. Let f ∈ Ti∩ Si+1.

As ~pm→ ~p and the amount of f that user i can afford goes to infinity. On the other hand,

the total possible supply is bounded above by the upload rate constraint of user j. Thus

max{zm
i j : (i, j) ∈ E}→ ∞, establishing Property (vi).
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Using properties (i)-(vi) we show that there exists a BE. Let

∆ = {~p ∈ R|E|+ : pi j + p ji = 1,(i, j) ∈ E}

∆
n = {~p ∈ ∆ : pi j ≥ 1/n,(i, j) ∈ E}

We observe that ∆n is compact. Then (from property (iv)) for each n, there exists~rn > 0

such that~z(~p)⊂ [−~rn,~rn]|E|. For each n, define ~f n : ∆n× [−~rn,~rn]|E|→ ∆n× [−~rn,~rn]|E| by

~f n(~p,~z) = {~q ∈ ∆
n :~z ·~q≥~z ·~q′,∀~q′ ∈ ∆

n}×~z(~p).

For each n, the correspondence ~f n is convex-valued and upper-hemicontinuous. We can

now apply Kakutani’s theorem to conclude that for each n, ~f n(·) has a fixed point, which

we denote by (~pn,~zn).

The sequence ~pn in ∆ has a subsequence that converges, because ∆ is compact. By (v)

and the fact that~zn is bounded, the limit must be in the interior of ∆. Therefore, by taking

a subsequence if necessary, we can assume that ~pn→ ~p∗ and~zn→~z∗, where ~p∗ is in the

interior of ∆. The limit ~p∗ is a BE price vector.

We have shown that a restricted BE exists under Assumption 3. We know show how

to construct a BE (according to Definition 7) when Assumption 8 holds. Suppose ~̃r and
~̃γ constitute a restricted BE. Let ~r∗ = ~̃r. For pairs of users i, j such that Si ∩ Tj 6= /0 and

S j ∩ Ti 6= /0, set γ∗i j = γ̃i j. Having set exchange ratios for all pairs of users that can trade

bilaterally, we now consider users that cannot trade bilaterally. If Si∩Tj = /0 and S j∩Ti = /0,

set γ∗i j = γ∗ji = 1. If Si∩Tj 6= /0 and S j∩Ti = /0, set

γ
∗
i j = ε+ max

k:Sk∩Ti 6= /0,Si∩Tk 6= /0

{γ∗k j},

and γ∗ji = 1/γi j. If Assumption 8 holds, then~r∗ solves the bilateral optimization problem

of every user with respect to exchange ratios~γ∗. In particular, user i can find every file

in Ti through bilateral trade at the same exchange ratios as in the restricted BE. Exchange

ratios with users that i cannot trade with bilaterally are set so that they do not affect i’s

optimization problem.
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Proof of Proposition 16: If Assumption 5 holds, then either the user graph is strongly

connected, or the system can be decomposed to subsystems for which the user graphs are

strongly connected. Therefore, without loss of generality, in this proof we assume that the

user graph is strongly connected.

For the purposes of this proof, let~ri(~p) be the optimal solution of the multilateral opti-

mization problem of user i when the price vector is ~p = (pi, i ∈U). If~r and ~p constitute a

CE, then~r ∈~ri(~p) for all i ∈U .

We define excess demand for the upload rate of each user i ∈U as

zi(~p) = ∑
f , j

r j
i j f (~p)−∑

f , j
ri

i j f (~p).

We show that the aggregate excess demand correspondence~z(·) defined on (0,∞)|U | satis-

fies the following properties:

1. For every ~p� 0 and~z ∈~z(~p), ~p ·~z = 0.

2. ~z(·) is convex-valued.

3. ~z(·) is homogeneous of degree 0.

4. ~z(·) is upper hemicontinuous.

5. There is an s > 0 such that z j > −s for any~z ∈~z(~p), for every file j ∈ F and every

price vector ~p� 0.

6. If ~pm→ ~p 6=~0,~zm ∈~z(~pm) and p j = 0 for some j, then max{zm
j : j ∈ F}→ ∞.

Then the existence of a CE follows from standard results in microeconomics; see, e.g.,

[50], Exercise 17.C.2.

By Assumption 3, the budget constraint of each user binds. The budget constraint of

user i is

∑
j, f

p jri
ji f (~p) = pi ∑

j, f
ri

i j f (~p).

By summing over all users, we obtain Property 1.
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Fix a price vector ~p� 0. By Assumption 3 v(·) is strictly concave; therefore ri
i j f (~p)

and r j
i j f (~p) are convex-valued. Thus the aggregate excess demand~z(·) is a convex valued

correspondence (Property 2).

Consider a price vector ~p� 0, and fix a constant t > 0. It is clear that the feasible

region of the multilateral user optimization problem remains unchanged if we replace the

price vector ~p by t~p. Thus the aggregate excess demand is also homogeneous of degree

zero (Property 3).

We now show that the aggregate excess demand correspondence is upper hemicontinu-

ous. By Assumption 3 v(·) is a continuous function. From the Theorem of the Maximum

[10] it follows that ri
i j f (~p) and ri

ji f (~p) are upper hemicontinuous correspondences. The

aggregate excess demand for user i is a linear combination of the rates r j
i j f (~p) and ri

i j f (~p),

and therefore is also upper hemicontinuous (Property 4).

The upload rate of any user i is upper bounded by his upload rate constraint Bi, so the

total supply is upper bounded and the excess demand is bounded from below (Property 5).

If ~pm → ~p 6= 0 and p j = 0, then pk > 0 for some k. Because of Assumption 5, there

is a sequence of users 1,2, ...,n ∈U such that Ti ∩ Si+1 6= /0. Thus, there is a user i such

that pi approaches a strictly positive limit and pi+1 approaches zero. Let f ∈ Ti∩Si+1. The

budget of user i approaches a strictly positive limit as ~pm→ ~p and the amount of f he can

afford goes to infinity. On the other hand, the total possible supply is bounded above by the

upload rate constraints of user i + 1. Thus max{zm
j : j ∈ F} → ∞, establishing Property 6.

Proof of Theorem 6: Suppose that ~r ∈ X is a Pareto improvement. Then some user i

strictly prefers~r to~r∗. Since~r is not an optimal solution for user i under ~p, it must be that

∑
j, f

p jr ji f > pi ∑
j, f

ri j f .

All users k 6= i are at least as well off under~r as under~r∗. This implies that

∑
j, f

p jr jk f ≥ pk ∑
j, f

rk j f ,

because the utilities are increasing in the total rates of files that users are interested in. In
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particular, consider a user k who gets exactly the same utility under~r and~r∗: if ∑ j, f pkr jk f <

pk ∑ j, f rk j f , then there is a rate allocation that satisfies k’s budget constraint and k strictly

prefers to~r, which would implies that~r∗ is not optimal.

Summing over all users,

∑
k

∑
j, f

p jr jk f > ∑
k

pk ∑
j, f

rk j f ,

which is a contradiction. We conclude that a CE allocation is Pareto efficient.

Proof of Proposition 17: Define r∗i j ≡∑ f r∗i j f (the total rate that user i sends to user j). We

define the matrix ~Q such that Qi j = r∗i j if i 6= j; and Qii =−∑ j r∗i j. By construction, ~Q is a

transition rate matrix with no transient subclasses, since r∗i j > 0 implies that r∗ji > 0 (by the

definition of BE). In what follows we consider the communicating classes of ~Q: if r∗i j > 0,

then users i and j are in the same communicating class. For the purposes of this proof, let

Ni(~r∗) be the set of peers with which i trades under~r∗, i.e., Ni(~r∗) = { j ∈U : r∗ji > 0}.

As noted above, we first observe that~π~Q =~0 implies that the multilateral budget con-

straint is satisfied; therefore for any invariant distribution~π,~r∗ is feasible for the multilateral

optimization problem of every user when prices are equal to~π. We show that for some in-

variant distribution of ~Q (say ~p),~r∗ and ~p constitute a CE. In particular, we show that for

each user i,~r∗ solves the multilateral optimization problem under ~p.

This is done in three steps. First, we show that if~r∗ is Pareto efficient, then ~Q corre-

sponds to a reversible Markov chain. This implies that if ~π is a strictly positive invariant

distribution of ~Q, then γ∗i j = πi/π j whenever r∗i j > 0, and as a result~r∗ solves the multilateral

optimization problem of user i given prices~π if user i is restricted only with users in Ni(~r∗)

(Step 1). We then show that if user i is restricted to trade with users in the same communi-

cating class under prices~π, then~r∗ is an optimal solution of the multilateral optimization

problem (Step 2). Step 2 completes the proof if ~Q consists of one communicating class.

Finally, we show that if there are multiple communicating classes, there exists an invariant

distribution ~p (where the invariant distribution of each communicating class is scaled ap-

propriately) such that~r∗ is an optimal solution of the multilateral optimization problem of

each user (Step 3).

We show each of these steps by demonstrating that otherwise there exists a rate vector
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~r that Pareto improves~r∗. Suppose~r∗ solves the bilateral optimization problem of user i

under~γ∗. Let (x∗i f , f ∈ Ti) and yi be the corresponding download and upload rates for user

i. Consider a rate allocation~r where (xi f , f ∈ Ti) and yi are the corresponding download

and upload rates for user i. Assuming that xi f − x∗i f and yi− y∗i are sufficiently small, we

can use Taylor’s approximation to conclude that user i is strictly better off under~r if

(xi f − x∗i f )
∂vi(~x∗i ,y

∗
i )

∂xi f
> (yi− y∗i )

∂vi(~x∗i ,y
∗
i )

∂yi
. (4.1)

Suppose that r∗ji f > 0 for some j, which implies that x∗i f > 0. The optimality conditions for

the bilateral optimization problem of user i give that

∂vi(x∗ig,g ∈ Ti)
∂xi f

=
1

γ∗i j

∂vi(~x∗i ,y
∗
i )

∂yi
.

Combining this with (4.1), we see that user strictly prefers~r to~r∗ if

xi f − x∗i f

yi− y∗i
> γ
∗
i j. (4.2)

Step 1: Let ~π be a strictly positive invariant distribution of ~Q, i.e., ~π� 0 and ~π · ~Q =~0.

Then, for every user i, ∑k(πk/πi)r∗ki = ∑k r∗ik. On the other hand, the budget constraint of

the bilateral optimization problem of user i implies that γ∗kir
∗
ki = r∗ik. Summing over k and

substituting, we conclude that

∑
k

γ
∗
kir
∗
ki = ∑

k

pk

pi
r∗ki. (4.3)

If ~Q is reversible, then the detailed balance equations hold for every i, j ∈U , i.e., πir∗i j =

π jr∗ji. We note that the detailed balance equations trivially hold if r∗i j = 0, because then also

r∗ji = 0. We show that Pareto efficiency of~r∗ implies reversibility of ~Q.

Assume that ~Q is not reversible. Then πir∗i j < π jr∗ji for some i, j with r∗i j > 0. Moreover,

since~γ∗ and~r∗ constitute a BE, we have γ∗ji = r∗i j/r∗ji whenever r∗ji > 0. Thus, if ~Q is not

reversible, then π j/πi > γ∗ji for some i, j with r∗i j > 0. Without loss of generality, we relabel

i to be j + 1. Then, by (4.3), there exists some user k such that π j+1/πk > γ∗j+1,k and

r∗j+1,k > 0. We relabel k to be user j + 2, and then π j+1/π j+2 > γ∗j+1, j+2. Applying this
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reasoning inductively, we can find a sequence of users 1,2, ...,K,K +1 such that 1≡ K +1

and πk/πk+1 > γ∗k,k+1 for all k.

We show how the utility of each user in S = {1,2, ...,K} can increase while the rate

allocation to users outside S remains the same. In particular, we increase r∗k,k−1 and y∗k by

ak for all k ∈ S, as illustrated in the first part of Figure 4.4 (for K = 3). We note that users’

upload capacity constraints do not bind at the BE, a consequence of the assumption that

vi(~xi,yi)→∞ as yi→ Bi. Therefore, it is feasible to slightly increase the upload rates of all

users. Applying (4.2), user k is better off if

ak+1

ak
> γ
∗
k,k+1.

Since πk/πk+1 > γ∗k,k+1, it follows ∏k γ∗k,k+1 < 1. Then, it is possible to make all users in

the set better off by choosing δ and ε small enough, and setting a1 = δ; ak+1 = γk,k+1·ak +ε,

for all k ∈ S.

We conclude that if ~r∗ is the rate allocation of a BE and is Pareto efficient, then ~Q

is reversible, and γ∗i j = πi/π j whenever r∗i j > 0. This means that~r∗ solves the multilateral

optimization problem of user i given prices~π if he is restricted to trade with peers in Ni(~r∗).

The remainder of the proof shows that for some invariant distribution ~p,~r∗ is optimal for

the multilateral optimization problem of every user under ~p.

Step 2: Let~π be a strictly positive invariant distribution of ~Q, and consider the multilateral

user optimization problems when prices are given by~π. We already showed in Step 1 that

~r∗ is feasible. Suppose that~r∗ is not optimal for the multilateral optimization problem of

some user i. Then by Step 1 there must exist a user j such that r∗j,i = 0 with which i wants

to exchange under~π.

In this step we consider the case that i and j are in the same communicating class. Then,

there exists a sequence of users between i and j such that each two consecutive users trade

at the BE. Without loss of generality we relabel user i by K, user j by 1, and the users

in the sequence by 2,3, ...,K− 1. Then, r∗j, j−1 > 0 for j = 2,3, ...,K. We show that there

is a Pareto improvement, where the utilities of all users in the set S = {1,2, ...,K} strictly

increase, while utilities of users outside S remain the same.

Let a j be the amount by which we increase rate r j, j−1. We assume that all users in
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Figure 4.4: Pareto improvements when the BE allocation does not correspond to a CE
allocation for Steps 1, 2, and 3 of the proof of Proposition 17 respectively. A pair of
users that trade at the BE is connected with a solid line. Dotted arrows show the rates that
increase for the Pareto improvement: user i increases his upload rate and the rate he sends
to user i−1 by ai. In the third figure (Step 3) there are two communicating classes — each
class is included in a dashed box.

the set increase this rate by increasing their upload rates. In particular, user j increases his

upload rate by a j, and gets a j+1 more from user j + 1. This is illustrated for K = 3 in the

second part of Figure 4.4. Applying (4.2), user j 6= K is better off if a j+1/a j > γ∗j, j+1 ≡
π j/π j+1 (the last part follows from the reversibility of ~Q). To conclude this step, we show

that user K is better off is a1/aK > πK/π1. Then, as in Step 1, it is possible to find ai for

i ∈ S, such that all users in S are better off.

Now consider user K. Let f ∈ TK be a file that user K wants to get from user 1 under

prices~π. There are two cases to consider, depending on whether user K downloads file f

at the BE.

• r∗jK f > 0 for some j. Then, by (4.2), we conclude that user K is better off if a1/aK >

γK j. Moreover, since K prefers to get f from 1 under~π it must be that πK/π1 > γK j.

Thus, it suffices that a1/aK > πK/π1.

• ∑ j r∗jK f = 0, i.e., K does not download file f at rate allocation~r∗. Under~π, user K is

strictly better off downloading a positive amount of f from user 1. This implies that

∂vi(x∗ig,g ∈ Ti)
∂xi f

>
π1

πK

∂vi(~x∗i ,y
∗
i )

∂yi
.
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Combining this with (4.1) we conclude that user K is better off if a1/aK > πK/π1.

In either case, user K is better off if a1/aK > πK/π1. This shows that at any optimal solution

of the multilateral optimization problem for user i under~π, r ji f = 0 if r∗ji f = 0 and i, j are

in the same communicating class.

Step 3: We now extend the result of Step 2 across communicating classes. Let ~πc be

the invariant distribution for communicating class c. We show that there exist coefficients

ρc such that ~r∗ is optimal for the multilateral optimization problem of each user under

~p≡ ∑c ρc~πc.

We start by deriving the conditions that the coefficients ρc need to satisfy. Consider two

communicating classes c and c′. If (∪i∈cTi)∩ (∪ j∈c′S j) 6= /0, then some users from class c

are interested in files that are possessed by users in class c′. To ensure that~r∗ is optimal for

the multilateral optimization problems of these users, the ratio ρc′/ρc should be sufficiently

large. We denote this lower bound by ξc′,c.

Suppose that there do not exist coefficients ρc such that~r∗ is an optimal solution of the

multilateral optimization problem of each peer. Then, there exists a directed cycle of classes

such that (1) (∪i∈cTi)∩ (∪ j∈c′S j) 6= /0 for each two consecutive classes in the cycle, and (2)

the product of ξc′,c along the cycle is strictly greater than 1. This implies the existence of

a vector~ρ such that ρc′/ρc < ξc′,c for every pair of consecutive classes along the directed

cycle. In particular, when prices are ~p≡∑c ρc~πc, for each pair of consecutive classes along

the cycle c and c′, there is a user nc in class c that wants to trade with user mc′ from class c′.

We construct a set S that includes users nc,mc as well as the users between them, i.e., users

ic1, ..., icl such that nc ≡ ic1, mc ≡ icl and r∗ic j,ic, j+1
> 0. We relabel users in S by {1,2, ...,K}

such that if i and i+1 are in different communicating classes (say c and c′) then i = nc and

i+1 = mc′ , i.e., user i wants to trade with user i+1.

We demonstrate a Pareto improvement where user i ∈ S increases his upload rate and

the rate he sends to user i− 1 by ai. In Figure 4.4 we illustrate an example with two

communicating classes. We demonstrate that it is possible to reallocate rates in a way

that strictly increases the utilities of all users in S and does not change the utilities of users

outside S. From (4.2) we see that a user j 6= nc can be made better off if a j+1/a j > p j/p j+1.

A user j ≡ nc for some i can be made better off if a j+1/a j > p j/p j+1 (this can be shown

by applying the same argument we used for user K in Step 2). As in Steps 1 and 2, since
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the product of all left hand sides is equal to 1 while the product of all right hand sides is

strictly less than 1, it is possible to find a vector ~a that satisfies all these inequalities.

Proof of Proposition 18: If s = 0, files are chosen uniformly. If there are K files in the

system, the probability that a given user has files { f1, ..., fσ} and wants file g is equal to

1/(
(K

σ

)
(K−σ)) for any set of distinct files { f1, ..., fσ,g}. A given user i can trade bilaterally

with user j with probability

σ
(K−2

σ−1

)(K
σ

)
(K−σ)

=
σ2

K(K−1)

Thus a user cannot trade bilaterally with probability

ρBE(K,N,0) =
(

1− σ2

K(K−1)

)N−1

.

We observe that ρBE(K,N,0) is increasing in K. If K(N) = σ
√

N, then ρBE(K(N),N,0)→
1/e as N→∞. Thus, if K(N)≥σ

√
N, then ρBE(K(N),N,0)≥ 1/e for large N. On the other

hand, if there exists ε > 0 such that K(N)≤ σN1/2−ε for large N, then ρBE(K(N),N,0)→ 0

as N→ ∞.

We now consider multilateral exchange. We do not have a closed form formula to

compute ρME(K,N,0). Instead, we reduce this to a random graph problem, and we use the

results from [20], which studies the size of a strongly connected component of a random

digraph. We consider the user graph that was defined in Section 4.3. Recall that this is the

directed graph G = (V,E) with V =U , and E = {(i, j) : Si∩Tj 6= /0}. If this graph is strongly

connected, then all users participate in the multilateral exchange. When users choose file

uniformly, there is a directed edge from user i to user j with probability σ/K; this is the

probability that user i has the file user j wants. On the other hand, there are N nodes in this

graph. Applying the results of [20], the size of the strongly connected component is ≈ K if

and only if ≡ (1−σ/K)N → 0. This is the case if N1−ε ≥ σK for some small ε > 0.

Proof of Proposition 19:

The expected percentage of users that cannot trade bilaterally when there are K files
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and N users is

ρBE(K,N,s)= ∑
i6= j:i, j∈{1,...,K(N)}

(i j)−s

∑i 6= j:i, j∈{1,...,K(N)}(i j)−s

(
1− (i j)−s

∑i 6= j:i, j∈{1,...,K(N)}(i j)−s

)N−1

.

Let AN ≡ ρBE(K(N),N,s). We are interested in the limit of AN as N→ ∞.

We observe that

1− (i j)−s

∑i6= j:i, j∈{1,...,K(N)}(i j)−s < 1,

and thus each term in the sum approaches 0 as N→ ∞.

We first assume that K(N) 6→ ∞ as N → ∞. Then AN is the sum of a finite number of

terms, each of which→ 0 as N→ ∞. Thus, AN → 0 as N→ ∞.

Now assume that K(N)→ ∞ as N→ ∞ and let

σ(s)≡ ∑
i 6= j:i, j∈{1,2,...}

(i j)−s.

Since s > 1, σ(s) is finite.

AN ≤
1

∑i6= j:i, j∈{1,...,K(N)}(i j)−s ∑
i6= j:i, j∈{1,...,K(N)}

(i j)−s
(

1− (i j)−s

σ(s)

)N−1

Since
1

∑i6= j:i, j∈{1,...,K(N)}(i j)−s →
1

σ(s)
< ∞,

it suffices to show that

BN ≡ ∑
i6= j:i, j∈{1,...,K(N)}

(i j)−s
(

1− (i j)−s

σ(s)

)N−1

→ 0 as N→ ∞.

In particular, it suffices to show that for every ε > 0 there exists N such that BN ≤ ε for all

N < N. We observe that for any N1,

BN < ∑
i 6= j:i· j≤N1

(
1− (i j)−s

σ(s)

)N−1

+ ∑
i6= j:i· j>N1

(i j)−s.
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For ε > 0, we choose N1(ε) such that

∑
i 6= j:i· j>N1

(i j)−s < ε/2.

We choose N such that

|{(i, j) : i · j ≤ N1}| ·
(

1−
N−s

1
σ(s)

)N−1

< ε/2.

Then BN < ε for all N ≥ N.
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Chapter 5

Conclusions

This thesis studies mechanisms that provide incentives for efficient outcomes in large scale

online systems. We consider two classes of incentive mechanisms. Aggregation mecha-

nisms provide aggregate information on the past behavior of a user to other users in the

system. When there is such a mechanism in place, a user should expect that bad behavior

now affects his future interactions within the system, and may be incentivized to act in a

way that is beneficial for the system. Market mechanisms can be used to incentivize contri-

bution to the system by using prices to identify value, and associating a budget with each

user; the budget increases when the user contributes to the system and decreases when he

uses system resources. By requiring that users have non-negative budgets, users can only

use the system in return for high value contributions.

We conclude by briefly discussing the choices made in this thesis with respect to three

central modeling issues: the objective, the design space, and dynamics. We mention other

reasonable choices and open problems.

5.1 Objective

Throughout this thesis the objective is to design an incentive mechanism that achieves

Pareto efficiency. An allocation is Pareto efficient if there does not exist a reallocation of

commodities at which some individual is better off and no individual is worse off. This is

a natural objective; however, there are other objectives which are reasonable to consider in
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certain cases.

In the context of an electronic marketplace, efficient trade is closely related to truthful

description of the item by the seller. In particular, the outcome is efficient if the item is

allocated to the individual that values it most, and since only the seller observes the item

before it is sold, it is important that he describes it accurately. This motivates looking for

aggregation mechanisms that incentivize sellers to always describe their items truthfully.

Since it is not always possible to incentivize the seller to be truthful (e.g., if he does not

value future payments), we take the following design approach in Chapter 2: find an aggre-

gation mechanism that maximizes the range of parameters for which it is optimal for the

seller to always describe his items truthfully to potential buyers. Alternatively, one could

relax the requirement that the seller always describes his items truthfully, and instead try to

maximize the number of periods or the proportion of time that he is truthful, or minimize

the maximum amount by which the seller exaggerates the description of the item.

Even though maximizing truthfulness seems like a natural goal, it may not be optimal

for the electronic marketplace in terms of maximizing profits. Sellers pay the marketplace

for posting an item for sale (listing fee) and for selling the item (closing fee). Naturally,

the marketplace would like to maximize its revenue from these fees. In the long run it

seems plausible that a marketplace will want to have a reputation mechanism that achieves

efficient trade, because that increases buyers’ trust in the market and potentially also the

volume of trades. However, in the short run, the marketplace may be better off suppressing

some bad information (e.g., by making it less accessible) in order to increase buyers’ trust

and the number of trades in the near future. In particular, the owner of the marketplace

faces the following tradeoff: suppressing bad information increases the volume of trades in

the near future, but decreases profits in the long run since buyers may eventually lose their

trust in the market. It is an open question to understand how well incentivizing truthfulness

is aligned with maximizing profits for the marketplace.

In the peer-to-peer system context, this thesis considers Pareto efficient rate allocations.

We model the system as a market associating prices with peers in order to identify value

and reward users who are uploading the most valuable content. This is a novel aspect of our

approach, since prior work only tries to make users contribute without considering what is

the most valuable contribution. We note however, that other objectives related to system
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performance may also be reasonable, such as maximizing utilization of upload capacities of

peers, or minimizing the completion time of some percentile. Even though these objectives

do not directly incorporate users’ utilities, they are simple and do incorporate the fact that

users prefer faster downloads.

5.2 Design Space

A user’s behavior may influence his future interaction within the system in two ways. First,

certain privileges may apply because of the system design. Second, if the past behavior of

users is aggregated into scores, users with high scores may have an advantage when inter-

acting with other users in the system. The system designer can obviously affect the former

(by design). Moreover, it can affect the latter by appropriately designing an aggregation

mechanism that maps information on the users’ past behavior into scores. This thesis stud-

ies these two dimensions of the system designer’s choices separately; the former in the

context of peer-to-peer systems, and the latter in the context of electronic marketplaces.

The design space becomes richer when we consider both dimensions simultaneously. This

approach would be more relevant for electronic marketplaces, as we discuss below.

In Chapter 3, we show how to view a peer-to-peer system as an exchange economy. In

this context the system design specifies that peers need to satisfy a budget constraint, which

ensures that peers upload valuable content in return for downloading. This is specified by

the system, and is not decided by other peers. It could be the case that if peers were shown

some kind of scores of others in the system, they would prioritize peers that contributed

more to the system. However, this is not a very strong incentive since the motivation is

fairness, but not direct benefit.

According to empirical studies, buyers in electronic marketplaces are willing to pay

more in order to interact with sellers with higher scores. The reason is that buyers believe

they will directly benefit by this, since a seller with a high score is probably more reliable.

In Chapter 2, we study how the marketplace can incentivize sellers to be truthful by appro-

priately aggregating ratings into scores. The incentivization of sellers can be strengthened

by providing privileges to sellers with high scores on the system’s behalf. For instance,

sellers with high scores may enjoy privileges, such as being able to sell items in certain

142



categories or list multiple items at the same time, or being recommended to buyers. On the

other hand, sellers with low scores may be banned from the marketplace.

An open design issue in the area of e-commerce is the optimal level of intervention

by the owner of the marketplace. This thesis assumes that the electronic marketplace only

provides the platform through which buyers and sellers can trade electronically and uses a

reputation mechanism to promote trust. In particular, a key assumption is that the owner

of the marketplace designs the aggregation mechanism, but does not otherwise intervene

in the interactions of its users. However, the marketplace could try to enhance trust by

providing guarantees to potential buyers: if the buyer receives an item that is materially

different than what the seller described, then the buyer is covered by the marketplace up to

some amount. For instance, this is done by the A-to-z Guarantee program at the Amazon

Marketplace and the Paypal Buyer Protection at eBay. Many interesting questions arise in

the setting. What guarantees should the marketplace provide? How should the guarantees

depend on the seller’s score? Is it better if a neutral, third party provides the guarantees

instead of the marketplace? How do incentives change when guarantees are provided?

5.3 Dynamics

Chapter 2 studies aggregation mechanisms for electronic marketplaces in a static setting:

the payment function, that captures the aggregate behavior of buyers, is assumed to be fixed

over time. Moreover, a key assumption in our analysis is that the payment is a function

of the seller’s score and the aggregation mechanism, but does not depend on the seller’s

strategy. Our approach is to study the seller’s best response with respect to the payment

function. We take this non-equilibrium approach, because we believe that the large and

dynamic set of participants in the major online markets makes the rationality, knowledge,

and coordination required for equilibrium improbable. However, the payment function may

change over time (e.g., because buyers partially learn). It would be interesting to study the

dynamics of his process in order to understand the implications for the design problem. Do

buyers learn the sellers’ strategies? Why and how does the payment function change over

time? How does the seller learn the new payment function? How quickly does the seller

adjust his strategy to changes of the payment? How can the marketplace learn the payment
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function efficiently?

Dynamics are particularly important when there is a change in the aggregation mech-

anism. When a change occurs, we expect that there is an adjustment period in which the

payment function evolves rapidly. This is something that the designer could take into ac-

count when considering whether to change the mechanism. Changing the mechanism too

frequently is probably not good for the marketplace, because of cognitive difficulties on the

buyers side. Moreover, frequent changes may indicate that the designer is not able to find

a good mechanism and as a result buyers may lose their trust in the market. On the other

hand, sellers may consider certain mechanisms as more fair and may not be satisfied if an

“unfair” mechanism is used. For instance, when eBay added the Detailed Seller Ratings

in 2007, many sellers thought that it would hurt them. This is something that the mecha-

nism designer needs to consider, because unsatisfied sellers may stop participating in the

marketplace.

In the peer-to-peer setting, this thesis focuses on the analysis and comparison of equilib-

ria, but also considers dynamics. In Section 3.3 we study the tâtonnement price adjustment

process, and analyze the rate of convergence. In Section 3.5.2 we discuss peer discovery

and price discovery. However, our theoretical analysis is predominantly static: we consider

a timescale where peers’ preferences do not change, and a fixed population of peers. To

better capture reality, we need to consider that a peer’s preferences change over time. For

instance, when a peer completes a file download, he is no longer interested in that file.

Moreover, new files may arrive in the system, and new peers may join. Finally, some peers

may leave the system either temporarily of permanently.

The management of the money supply in a peer-to-peer economy becomes an impor-

tant issue when we consider dynamics. In our equilibrium analysis prices are clearing the

market. However, in practice currency would be needed to facilitate trade (as discussed in

Section 3.5). As users join and leave, and the network size changes, the system must ensure

that an appropriate amount of currency remains. While the adaptation of prices according

to excess demand makes the system somewhat robust to moderate inflation and deflation,

excessive inflation may cause price convergence to take too long, while excessive deflation

can lead to insufficient liquidity. The money supply can be managed through rebate policies

or by decreasing the value of all peers’ old currency, either proportionally or progressively,
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and giving an additional direct rebate at a regular rate.

The peer-to-peer system economy of Chapter 3, as well as any digital economy, has the

following very interesting property: in a closed system prices eventually become zero. In

particular, once a file is downloaded by all peers interested in having it, there is no more

demand for the file (while there is supply) and the equilibrium price is zero. In this setting,

minimizing the completion time of all peers is equivalent to minimizing the period for

which the equilibrium price is strictly positive. An open question is whether simple price

update rules perform well with respect to the latter objective.
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