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Abstract—We formulate a peer-to-peer filesharing system as  Another option is to use monetary incentives to solve
an exchange economy: a price is associated with each filethe problem of free riding. In this case, users must pay to
and users exchange files only when they can afford it. This yoynjoad files from other peers. The payments may either be
formulation solves the free-riding problem, since uploading files . . .
is a necessary condition for being able to download. However, in monetary terms (e.g., [9]), or in an internal non-monetary
we do not explicitly introduce a currency; users must upload Currency. In the latter case, the budget of a user decreases every
files in order to earn a budget for downloading. We discuss time he downloads a file, and increases every time he uploads
existence, uniqueness, and dynamic stability of the competitive 3 file. Such models are considered in [10], [11] and [12].
equilibrium, which is always guaranteed to be Pareto efficient. peacent work of Friedman et al. studies system performance as
In addition, a novel aspect of our approach is an allocation . . .
mechanism for clearing the marketout of equilibrium. We analyze a function of the total amount of internal currency available
this mechanism when users can anticipate how their actions affect [13] .
the allocation mechanism (price anticipating behavior). For this In our model, we consider an internal currency and associate
regime we characterize the Nash equilibria that will occur, and g price with each file. Users decide which files they are willing
show that as the number of users increases, the Nash equilibrium , h10ad, and the total upload rate they are willing to serve.
rates become approximately Pareto efficient. g .

In return, the system uses the current prices to provide a menu
|. INTRODUCTION to the users of files available for download. The upload rate

In peer-to-peer systems, users share files or resources Wil user generates a “budget” that can be spent to download
each other. By sharing, a user incurs a ¢bstause uploading available files. By maintaining different prices for different
a file consumes network resourcesut no direct benefit. files, we avoid situations where users free-ride the system
Thus, if there is no mechanism that stimulates sharing, a usecause the files they are sharing are unpopular. In particular,
has a strong incentive to free ride, i.e., use the resourcesuspopular files will be assigned low prices.
other peers without contributing his own. Such behavior is We consider the utility of a user as a function of the rates
observed in existing peer-to-peer systems; for instance, eaatywhich he is downloading and uploading. It is reasonable to
data showed that nearly 70 percent of users of Gnutella w@gsume that the utility is increasing in the download rates. In
sharing no files, and nearly 50 percent of all responses weasticular, when the download rates are higher, the user gets
returned by the top 1 percent of sharing hosts [1]. A motbe file sooner and is able to download more files in a fixed
recent study shows that 85 percent of Gnutella users shareimterval of time. Moreover, if there is some probability that
files [2]. Even worse, according to [1], there were users the download will not complete successfully, this probability
Gnutella who were free riding on the systetespitesharing decreases as the download rate increases.
files: the files that they were sharing were unpopular, andAn important element of our model is that currency is
hence not widely uploaded. not explicitly tracked; this makes our system lightweight

Incentive mechanisms that penalize free riders or rewaadd easily implemented. With this formulation we can also
users that share have been proposed. In [3] users enjopid cheap pseudonyms [14], which are a drawback in most
different levels of service according to how much they shaspproaches for solving free-riding. Users cannot benefit by
their resources, while in [4] free riders are excluded froteaving the system and joining with a new identity, since user
the system with some probability. In [5], a distributed ratingerformance is determined only by the files uploaded. This
scheme for tackling the free-rider problem is suggested. Manaturally introduces a “transaction cost” into the system that
general reputation mechanisms, such as those proposed infjgdvents users from taking advantage of multiple identities.
can be used to obtain a system-wide reputation for each u$ef.course, one shortcoming here is that users who join the
Using this information, each user will give priority to usersystem with little content of interest to others may be unable
with high reputation. to download anythingOne solution is to require such users

An alternate approach is to design a system where resoutcaipload a file that is not desired by anyone. The price of
sharing isrequired to be able to use the resources of othehis file can be set to be less than the price of any other file.
users. This is the case in BitTorrent [7], where users downlo&dthis way, new users do not get anything for free, and thus
pieces of the file and at the same time upload the pieces theysting users do not have any incentive to rejoin the system
already have. Analogously, in [8] users directly trade resourcegth a different name.
between themselves. In Section Il we describe the model in more detail. In



Section 1ll, we show the existence of a competitive equef download ratese; that maximize his utility by solving the
librium: a vector of prices at which demand of each file ifollowing optimization problem:

equal to the corresponding supply. It is well known that such
a vector is Pareto efficient. We derive conditions that guarante

uniqueness of the competitive equilibrium (up to scaling).EiJser Optimization:

In Section IV, we study theatonnement price adjustment maximize  v; (i, yi) 1)
process [15], and show thahder some assumptiotise rate subject to Z zi;-p; < (maxp;) -y (2)
of convergence around the equilibrium is linear in the number JET JE€S;

of users. This means that in a large system, the prices will yi < Bj; ()

rapidly converge.

A key aspect of our paper consists of a proposal to clear
the market even out of equilibrium. In Section V, we propose By assumption, the utility function of a user only depends
an allocation mechanism to allocate rates when demandophis upload rate and not on which files he is uploading. Thus
not equal to supply. We study the Nash equilibria when usetgeri will only choose to upload files that have the highest
anticipate how their actions affect the resulting allocation, affice among all files inS;. The constraint (2) guarantees
show thatin large peer-to-peer systems, fully strategic behathat the expenses of a user are at most equal to his revenue
ior by the users will not ultimately cause large deviations froiom uploading. The constraint (3) guarantees that a user

competitive equilibrium behavioWe conclude in Section VI. does not upload at a higher rate than his upload capacity
B;. Finally, all rates must be non-negative (constraint (4)).

[I. MODEL For any price vectop > 0, the feasible region of the User

. . . . . imization problem i m n Assumption 1 th
In this section we introduce our basic mathematical modé?pt ation problem is compact and by Assumptio the

L objective function is continuous; thus an optimal solution
and connect it with the standard model of exchange econ- _; . .
: . . : exists for any price vectop > 0. The following lemma
omy in microeconomics. We consider a peer-to-peer system

with a set of useré’ who share a set of fileg. Useri has captures an important feature of this optimal solution.

a subset of the files; C F', and is interested in downloading

files in T; C F\S,. Let z;; be the rate at which user

downloads filej € T;, and letx; = (z;; : j € T;) be

the vector of download rates of userLet y;; be the rate

at which useri is uploading filej € S;. The total upload Proof: Suppose that the budget constraint does not bind.

rate of useri is y; = > cg, vi;. We assume that useris Then there is an optimal solutid;, y;) with 3=, xi;jp; <

indifferent between any two upload vectdrg; : j € S;) and (max;eg, p;) - ;- And sincez;; > 0 for all j, we will have

(ygj 1 j €5;) with ngsi Yij = ngsi y;j; in other words, y; > 0. However, we can choose a smalsuch that the solu-

his utility only depends on the vector of download ratgsand tion (X}, y.) = (x;, y;—¢) is feasible and; (x;, y;) < v; (X}, y})

the total upload ratey;. We make the following assumption. because of Assumption 1. This contradicts the assumption that
(X;,y;) is optimal. [ |

Assumption 1 The preference relation of a user on the set T0 Simplify our analysis, we also make the following

of feasible rate vectors is represented by a continuous utiliggSumption.

function v; : &e‘f‘l“ — R, which is strictly increasing in . _ )

each download rate;;;, j € T;; and strictly decreasing in the ASSUmption 2 For every user € U, the corresponding User

upload ratey;. Optimization problem has a unique soluti¢s;,y;) for any

price vectorp > 0.

y; > 0; x;; >0, for all j € T;(4)

Lemma 1 If Assumption 1 is satisfied, the budget constraint
will bind in the User Optimization Problem for any price
vectorp > 0.

(Throughout the papef?, denotes the intervdD, oo).)
We introduce strictly positive prices in the system an]du

consider a particular user Each user is assumed to hav%ptimization problem of each user is convex. Lef(p) and

a constraint on the gvaﬂable uploaql rate;_&t denote this :(p) be the optimal values af;; andy; respectively when
upper bound for uset. A rate vector is feasible for a user a h

. ) price vector ig > 0.
long as the upload rate is at most equal to the user's upIog%Ve now define exchange economy [16] and relate it to our
capacity. We assume that users do not face any Cor‘Str"’Hﬂ)deI. In anexchange economtpere is a finite number of
on their download rate; this is consistent with most end usig/

For instance, Assumption 2 is satisfied if each utility
nction is strictly concave, since the feasible region of the

. tod h load ity is f ded ents and a finite number of commodities. Each agent is
connections today, where upload capacily IS far exceede dowed with a bundle of commodities, and has a preference
download capacity. Given a vector of pricep > 0 (i.e.

S 0foric F . find th load d i relation on the set of commodity vectors. Given a price vector,
p; > 0forj € F), useri can find the upload ratg; and vector each agent finds a vector of commodities to exchange that

Tt . . . _ maximizes his utility. In particular, ip is the vector of prices
While in practice a constraint on download rate exists, we remove it for the

purposes of analysis since in practice the binding constraint on user beha\%\d _agemz' has endowmentv;, he sells it at the market a”d
is likely to be the upload rate constraint. obtains wealthp - w;. Then the agent buys goods for his



consumption at the same price (he may buy back some (gf;,! € S;) that satisfy Conditions 2, 3 and 4, and thus
the goods he sold). there are multiple excess demand vectors. Our definition of
A straightforward reformulation reveals that our modehggregate excess demand vector ensures that we capture all
shares much in common with a standard exchange econopgyssible means of dividing the upload rate of useamong
Consider the constraints of the user optimization problem (Jvailable files.
(4). The constraing; > 0 is implied by the other constraints as
long as all prices are non-negative. The remaining constraifefinition 2 The rate allocation(x},: € U) and (yf,i €
can equivalently be written as: U) and the price vectop* > 0 constitute a competitive
equilibrium if the following conditions are satisfied:
o N (R N R 1) Utility maximizatiort For each useri, (xz},y;) solves
J_GZT TijPit (%%fpj) (Bi — ) < (?é%)fpj) Bi; the corresponding User Optimization problem for=
Bi—y; > 0; p, ez = xi;(p*) and yf = y;(p*).
= 2) Market Clearing 0 € z(p*); i.e., the total upload rate
y; can be split among the highest price files.Sp, so
This appears much like the optimization that an agent that for each file the aggregate excess demand is zero.
performs in an exchange economy: it as if agent: has
B; units of his own “good”, priced ainax;cgs, p;. He can

x5 >0, for all j € T;.

Note that because of Assumption 1, at competitive equi-
de this f h q h K _ librium all prices are strictly positive; otherwise users would
trade this for other goods on the open market at priges .t 1o download all free files at unboundedly large rates. For

W'thd thr:S |r;1terpLetat|on,Bi N Yi |sche amount of h'hs OV‘;}",‘ this reason, we can restrict competitive equilibria to strictly
good that he chooses to keep. However, notice that t 'SyGsitive price vectors without loss of generality.

not a standard exchange economy, as the upload rate is Ng4 . 454 s to show that a competitive equilibrium exisie

a true commodity; rather, the commodities are the rates gf,,p,qi7e that competitive equilibria are desirable because
specific files that are uploaded. Sind& imposes ajoint yhoy are Pareto efficientthis is the content of the first

constralntl_ on the ;Jp:]oad rat(;as dOf th(ra]se files, our model (15, jamental theorem of welfare economics [16]. However, we
a genera Ization 0 the standard exchange economy. In % not expect equilibria to exist without any restrictions on
following two sections, we adapt some results about excharm% setsS; and 7, of files being uploaded and downloaded,

economies to our model. respectively, by user. For example, suppose there is a file that
[1l. COMPETITIVE EQUILIBRIUM some users want to download, but no user has available for

In this section we define competitive equilibrium. In SectioHpI,(I)ad' Thlen |r.1”ge|neral,§,uch a ﬂll?hwmtzave pOSItI\(/je demgr;d,
llI-A, we then proceed to show that there always exists at Ieé’&” € Supply will always be z€ero. Thus the excess demand for

one for the model described in Section Il. In Section IlI-B, wi uith a file W]:rl.l pe EOS#'V;‘J”I?SS.”S price IIS stutff|C|entI¥jh|gh.
give conditions that guarantee uniqueness. etting a sufficiently high price is equivalent to considering a

We start by defining theggregate excess demand vector system vx_nthout that file. . o .
To avoid such pathological situations, we introduce a natural

—_—— : ; . diversity assumption. We define theser-file graphas the
Definition 1 Given a vector of pricep > 0, a vector(z;,j € ) :
F) is an aggregate excess demand vedfothere existy;;, d|r‘ec_ted ‘graph(_}’ = (V.E) ,W'th V = U,UF’ and B =
icU, jeF,such that: {,g) i e U e TiYU{(G,0) i € U,j € S;}. In other
1) 2= P - % foric F words, G is a bipartite graph where nodes correspondgers
2) ZZJ:_ inUJZT(;;”ggr i e UiGU Yig» J ' andfiles There is a directed edge from a user to each of the
= ” =Y; y . . . . .
3) yiij 0.foric U andje F. files he wants, and there is a directed edge from a file to every

if 5 user that has it.
4) yi; =0, if j & arg maxyes, Pr-

V\Ze )denote the set of all excess demand vectors gvesi  Assumption 3 The user-file graph is strongly connected.
z(p).
If Assumption 3 is not satisfied, then either the system can

If |S;| = 1 foralli € U (i.e., each user has exactly ongye decomposed to subsystems that satisfy the Assumption 3,

file available for upload), then for all € U, j € F, the o an equilibrium may not exist. We will therefore assume that
required valuey;; is uniquely defined for any price vectpt  Assumption 3 holds.

in particular, the only way to satisfy Conditions 2, 3 and 4 ) N o

is to sety;; = yi(p) if S; = {j} andy;;(p) = 0 otherwise. A. Existence of Competitive Equilibrium

Thus, when|S;| = 1 for all ¢ € U the excess demand is a We will adapt standard arguments from microeconomics
functionof p. On the other hand, if there are users uploadirtg establish existence of a competitive equilibrium. We begin
multiple files, the excess demand iscarrespondenceln with the following basic definitions.

particular, suppose there is some usewith |S;| > 2 and Let f be a correspondence defined on a subket RV.
choosej, k € S; with j # k. Then, for a price vectop with The correspondencé¢ is homogeneous of degree zéafdor

pr = p; = maxieg, pi, there are multiple ways to chooseeveryt > 0, we havef(tz1,.....,tex) = f(z1,....,xn). The
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correspondencé is convex valuedf f(x) is convex for every w™. We will show thatw satisfies these conditions when the

x € A. Given the closed se¥ C R, a correspondence price vector isp, and thusw € z(p).

f + A — Y has aclosed graphif for any two sequences Fix ¢ > 0. Sincey;(-) is continuous, there exist&/ such

2™ — x € Aandy™ — y, withz™ € Aandy™ € f(2™) for that y;(p™) < yi(p) + ¢, for all m > M, or equivalently

everym, we havey € f(z). Given the closed saf c R¥, the >jer Vi < yi(p) +e¢, for all m > M. Moreover,y;” > 0,

correspondencg : A — Y is upper hemicontinuous it has  so form > M, y; lies in the compact s€0, y;(p) +e¢|. Thus

a closed graph and the images of compact sets are boundfst.all i € U andj € F, the sequence;; has at least one

The following proposition shows properties of the aggregalignit point ;.

excess demand correspondence that are used to prove existen®é will show thaty;; satisfies Conditions 1-4 of Definition

of a competitive equilibrium. The proof is an extension of with price vectorp and excess demand vectar. Since

an argument typically used to prove existence of competitive”™ — w andx;;(-) are continuous, we have Condition 1 of

equilibrium in exchange economies. The key difficulty is ifefinition 1:

addressing the fact that users may simultaneously upload

multiple filges; as discussed in Sectign I, this featur?a/ mzans wi= Z zi(P) - Zy”

our basic model is not a standard exchange economy:. evget: iev
We know that}, . y/7 = yi(p™), so by continuity ofy;

Proposition 1 If Assumptions 1, 2 and 3 hold, then the aggré’® have2_;cr 4i; = vi(p) (Condition 2). Sinceyf} > 0

gate excess demand corresponden¢e defined on(0, co)¥ for all m, we havey;; > 0 (Condition 3)'_ Finally, suppose

J ¢ argmaxgeg, py for all m > M'. Thusy? = 0 for all

1) For everyp >0 andz € z(p), p- z = 0. m > M’, which implies thaty;; = 0 (Condition 4). Thus we

2) z(-) is convex-valued. concludey;; satisfies all the conditions of Definition 1 with

3) z(-) is homogeneous of degree 0. price vectorp and excess demand vectar, sow € z(p).

4) z(-) is upper hemicontinuous. This establishes Property 3 of the proposition.

5) There is ans > 0 such thatz; > —s for any z € z(p), For any price vectop > 0, the feasible region of every
for every filej € I and every price vectop > 0. yger Optimization problem is compact, so we can find an

6) If p™ — p #0, 2™ € z(p™) and p; = 0 for somej, nner hound for the excess demand of any good. Thus for any
thenmax{2" : j € F} — oc. compact seB C (0,00), z(B) is bounded. This completes

tpe proof thatz(-) is upper hemicontinuous (Property 4).

Proof: By Lemma 1, for any user the budget constrain - .
will bind at the optimal solution. In particular, given any The upload rate of any usefs upper bounded by his upload
choice of (y;,i € U, j € F) that satisfies the conditions c)frate constraintB;, so the total supply is upper bounded and

Definition 1. we have for each the excess demand is bounded from below (Property 5).
' If p — p # 0 andp; = 0, thenp, > 0 for some
e () () — k. Because of Assumption 3, there is a sequence of users
2 piwisp) = 3 piyis(p) =0 uy,ug,..,u; € U and a sequence of fileg, ..., fir1 such
that f1 = j, fis1 = k and useru; has file f; and wants
By summing over all users, we obtain Property 1. to download filef; ., so that his utility is strictly increasing
Fix a price vectomp > 0. The set of vectorgy;;,i € U, j € in the rate at which he downloads filg,; (Assumption 1).
S;) that satisfy Conditions 2, 3 and 4 of Definition 1 is convexThus, there is a userwho has a filej € S; to upload whose
Thus the aggregate excess demarid) is a convex valued price approaches a strictly positive limit, and who wants a
correspondence (Property 2). file f € T; whose price approaches zero. The budget of uiser
Consider a price vectgs > 0, and fix a constant > 0. It approaches a strictly positive limit * — p and the amount
is clear that the feasible region (2)-(4) remains unchangedoff f he can afford goes to infinity. On the other hand, the total
we replace the price vectgrby tp; we conclude thak;(p) = possible supply is bounded above by the sum of the upload
x;(tp), andy;(p) = y;(tp); i.e., x; andy; are homogeneous rate constraintsB,, of the usersn that havef € S,. Thus
of degree zero. Thus by Definition 1, the aggregate excasax{z]" : j € I'} — oo, establishing Property 6. [ ]
demand is also homogeneous of degree zero (Property 3). Now the existence of a competitive equilibrium follows
We now show that the aggregate excess demand corresgoom standard results in microeconomics; see, e.g., [16],
dence has a closed graph. We start by showingdh@) and Exercise 17.C.2
yi(-) are continuous functions. By Assumption«l.) is a
continuous function. From the Theorem of the Maximum [17Theorem 1 If Assumptions 1, 2 and 3 hold, then there exists
it follows that z;;(p) andy;(p) are continuous functions.  a competitive equilibrium.
Consider the sequencgs” — p > 0 andw™ — w such
thatw™ € z(p™). Sincew™ € z(p™), there exisy;;, i € U, Corollary 1 If the utility function of each user is strictly
j € F, that satisfy Conditions 1, 2, 3 and 4 of Definition 1 foconcave, and Assumptions 1 and 3 are satisfied, then there
the price vectop™ and the aggregate excess demand vectexists a competitive equilibrium.

JET; JjeS;
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In Section V, we assume that each user has a separahk useri’s optimization problem satisfies gross substitutes if
utility function, and experiences a cost of uploading that i&; = {j} andv;(v;,y) = 2f;/a — y, where0 < a < 1.
linear in the upload rate. In this case, the utility function is Under a slightly stronger diversity assumption, we can
not strictly concave. The following corollary of Theorem Zlestablish the following proposition. The key step in the proof
shows existence of a competitive equilibrium for that case.is to show that despite the fact that users may upload multiple

files, the monotonicity of excess demand implied by the usual

Corollary 2 If the utility function of useri is v;(x;,y;) = gross substitutes condition continues to hold.
u;(x;) — yi, whereu,(x;) is continuous, strictly concave, and
strictly increasing in eachr;;, and Assumption 3 is satisfied,Proposition 2 If the optimization problem of each user satis-
then there exists a competitive equilibrium. fies the gross substitutes property, anflk € F there exists
1 € U such thatj, k € T;, then there is at most one competitive

Proof: Because of the assumptions of(x;), Assump- ﬁquilibrium up to scaling of the price vector.

tion 1 is satisfied. By Lemma 1, the budget constraint wi

bind; thus giverp >> 0, y; is a linear function of the download Proof: It suffices to show that whenever > 0 and

rates of usef. By substituting in the objective function (1), weyy . 0 are two price vectors that are not collinear, any

obtain a function ofr; that is strictly concave. We concludecorresponding aggregate excess demand vectors can not be

the optimization problem of each user has a strictly concaygual, i.ez(p)Nnz(p’) = 0. Sincez is homogeneous of degree

objective and a convex feasible region, and thus a unigygro, we can assume thalt > py, for all k, and andp; = p),

solution—i.e., Assumption 2 is satisfied. All the assumption @ somel. Let S = {:p=m)

Theorem 1 are satisfied, so a competitive equilibrium exists.consider altering the price vectgs to obtain the price

B vector p/, by increasing (or keeping unaltered) the price of
every filek ¢ S, one file at a time. As we increageg, for

B. Uniqueness of Competitive Equilibrium nl : ) 3
. . ... somek ¢ S, for every filej € S (including!), there is a user
We now study uniqueness of the competitive equilibrium.

N h i dard di ; ing who wants bothj and k; i.e., j,k € T;. The optimization
ote that, as Is standard, we discuss uniquenpse scaling ., gpjem of that user satisfies the gross substitutes property, so

OZ the price Vec't('JrSince,.z'is'homogeneous of degree Zero, i he total demand (i.e}_, .., =ix) for each filek € S does

p Isa competltlve equnlbrlum_ price vector, then sofjs". not decrease in any stép, and if there is a filet S with
We first define the gross substitutes property. Pk < p}., the total demand for fil& will strictly increase in at
least one step. Thus, the total demangl . >, .cr, ir fOr
files in S increases (or remains the samepjf = p;. for all

k ¢ S), while by a similar argument the total supply for files
in S decreases (or remains the same).

k# L. We now considerj € S such thatp; > pj;; if no such file

If the aggregate excess demand is a function that satisfies @sts. then there must be some fil¢ S with p;. < pj,, so for
gross substitutes property, then there is at most one competify8Yw € z(p) and everyw’ € z(p'), 3 ;c g wj < X e Wj-
equilibrium up to scaling of the price vector [16]. In ourThus suppose that; > p; for some; € S; we increase the
model, the aggregate excess demand is a function if and oRjee of every such filej from p; to pj, one at a time. By
if each user is uploading exactly one file, i|§;| = 1 for all 9r0ss substitutes, the total demand for each filein {;}

i € U. When some usefishave|S;| > 1, the aggregate excesawill ;tnctly increase. On the other hand, gaqh user that was
demand is a correspondence, so the preceding result doesP@yiously uploading eithef or some other file irf', will now

apply. In order to adapt that result, we use the fO“OWininy uploadj, while each user that was only uploading files
definition. iIn .S — {;} will upload those files at most as much as he was

uploading before (again by gross substitutes). Thus the total
Definition 4 The Optimization Problem of usérsatisfies the €xcess demand for files ifi— {j}, i.e.,> g5y 2 (), Wil

gross substitutes property if wheneygrs- 0 andp > 0 are  Strictly increase. We repeat this procedure for everyfie S
1 / / - e — . 73
such that for somé, p, > p, and p} = pj for k # [, the with pj; > p;. Let 8" = {j € S : p; = p;}; " is nonempty

Definition 3 The functionz(-) has the gross substitutes prop
erty if wheneverp’ > 0 and p >> 0 are such that for somg
p, > p and py, = p). for k # 1, we havez,(p’) > z,(p) for

following conditions hold: sincel € S’. Then, for everyw € z(p) and everyw’ € z(p’),
) / AN
1) For | € T, xij(p/) > CCij(p) for j # 1,j € T, and Zjesl wj < Zjes, w;, SOZ(p)ﬂZ(p)—[Z). [ |
vi(p') < vi(p). IV. TATONNEMENT PROCESS
2) If | € S; and p] > maxgeg, pr, thenz;;(p') > ;(p)

In this section we restrict our attention to the case where
every user is uploading a single file (i.5;| = 1 for all 7), and

We interpret this definition as follows. When the price of @onsider convergence of prices to a competitive equilibrium
file that is relevant to userincreases, userdemands more of price vector. We describe a price adjustment mechanism, and
all other files he is downloading, and supplies less of the fighow that under some assumptions the rate of convergence
he is uploading. As one example, it is straightforward to verifgf this process will be linear in the number of users. This

for j € T;.



means that in a large system, the prices will rapidly convergé |Re)| over all eigenvalues. of ND f(p*). The real part

to equilibrium. of each eigenvalue oD f(p*) is negative (because we are
When every user is uploading a single file, the aggregaassuming convergence) and does not dependVorso the
excess demand is a function. A reasonable way to adjuate of convergence is linear iN. ]

the prices in order to reach a competitive equilibrium is The preceding result assumes that users can be partitioned
to increase the prices of the files whose excess demandni® identical sets; in this case, thaténnement dynamics
positive, and decrease the prices of the files whose excesale linearly with the number of users. We believe the
demand is negative. This motivates ttiéonnement process preceding result can be extended to more general assumptions
[16], where the price adjustment rate is equal (or in generabout the user population; the key requirement is that as the

proportional) to excess demand: system becomes large, the excess demand level should increase
dp; proportionally for any given price level > 0. From a system
o = uD). (5)  design point of view, this type of a result suggests that a large

eer-to-peer system operating as an exchange economy will
ave fast convergence in a neighborhood of the equilibrium
point.

The following theorem is a restatement of Propositioﬁ
17.H.1 [16] for our model.

Theorem 2 If |S;] = 1 for all ¢ € U, the gross substitutes
property holds for the aggregate excess demand function,
and Assumptions 1, 2 and 3 are satisfied, then the relativeAlthough the &itonnement process provides a price adjust-
prices of any solution trajectory of (5) converge to the unigu@ent mechanism that (under reasonable assumptions) ensures
equilibrium (up to scaling of the price vector). that a competitive equilibrium is reached, it has a serious
st?ortcoming from a system design standpoint: &tertnement
\;ocess does not specify how agents should engage in trade
e‘?oreequilibrium is reached. Thus, in addition to adjusting

V. PROPORTIONALALLOCATION

We next show a result about the rate of convergence
the @itonnement process. Suppose that a unique competi

equilibrium exis_ts, up t(.) scalling of the price. vector. Withou[ e price vector according to thatbnnement process (5), our
loss of generality, we fix a filgfo € F, and fix py, (t) = 1 system design should specify a mechanism for allocating rates

for all timest. This determines the relative values of all Othecr)ut of equilibrium.

prices at the unique competitive equilibrium; furthermore, the . I
. : . Mechanisms for exchange out of equilibrium have been
standardatonnement dynamics described above will converge . o
. " o . roposed for an exchange economy in the economics liter-
to the unique competitive equilibrium price vector wher

ps, — 1. The following theorem shows that under SOm%\ture [18], but do not directly apply to our model. These

assumptions about the structure of the system, the rater%?chgmsms work by performing part of the excha_nge, then
. o updating the endowment of each user. However, in a peer-
convergence near this equilibrium is linear in

to-peer system, the endowment of a user at any given time
is determined by the file with the maximum price, and the

substitutes property holds for the aggregate excess dem Oaltjigtsr:ﬁeoi\/:;:as;JZnugf?:rqacizae?tg. lzgg;eiﬁ;ehrgeosgoum
function, and Assumptions 1, 2 and 3 are satisfied. Supp(SS%]V » it ‘ ‘ dp : hich is si .'I
also thatU = U, U...UUxk with U, NU; = ) wheneverk # [, € consider an afternate _Sys em design, which 1S simrar
and: to tr|1e alpp:joach rg]glven in [_1”5_9]. we V\II|I|| ask l(JjSirS to report the
. total upload ratethey are willing to allow, and thproportions
g %Tf’“ ?ﬂv.ﬂ“ Ui(;)o_fg’“r(é) EnldBi I_(B’“’ Vi€ Uk of their budget they wish to spend on downloading various
1Ykl =Tk Te = U IOER =5y B files. For analytical simplicity, we consider the case where
Consider the dtonnement dynamics withy, (¢) = 1 for all - gach yser uploads a single file, if;| = 1 for all 7. Let
t. If the titonnement process converges to some price vecﬂri) denote the file usef is uploading. Suppose that each
p* and z;;(p), yi(p), are differentiable atp™, the rate of | ser; optimizes with respect to the current prigess 0, and
convergence near the equilibrium price vector is linearNn reports his optimal upload rate to the systejip). If useri

Proof: We refer to{1, ..., K’} as the set of types. Ldd, is interested in downloadipg multiple file_s, ig;| > 1, then
be the subset of types that download filandU, be the subset N€ @!S0 reports whairoportion;;(p) of his budget he wants
of types that upload filé. Then we can write théitonnement {© Spend on each file in € 7;. In terms ofx;(p) andy; (p),
process ap = N f(p), where fi.(p) = > .cp, rizin(p) — if yi(p) > 0, we have:
> icv, Tivi(p). By linearizing around the equilibriump*, we
see that the errow(t) = p(t) — p* satisfies, mi(p) =

w(t) = NDf(p") - w(t). However, unless the current price corresponds to a competitive
This is a system of first order differential equations whickquilibrium, it will not be possible to give to every user
has solutions of the formw = wye**, where(ND f(p*) — the download rates he desires. Informally, we will use the
A )w, = 0. The rate of convergence is given by the minimurproportionsr;; to allocate rates based on the proportion of the

Theorem 3 Suppose thatS;| = 1 for all i € U, the gross

Pj%ij (p)

. 6
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budget each agenintended to spend on downloading the files  Proof: If we multiply through the third condition by,
in T;; this is called theproportional allocation mechanism and substitute from thesecondcondition, we obtain:

In order to formally motivate the proportional allocation . .
mechanism, we first consider the outcome at a competitive Z TijPf@)Yi = Pj Z Yi-
equilibrium. From Definition 2 we know that the rates;;, i €
U,j € T;), (yf,i € U) and the price vectop™ constitute Consider a continuous time Markov chain on the state space
a competitive equilibrium if the following conditions areF’, where the transition rate from state (file}o state (file)k
satisfied. is Qjr = Zi;f(i):j miyi. (Note thatm, =0 if k € T;.) Let

1) Each user optimizes, i.e:}; = i;(p*), yi = vi(p*) @ij = = 2kx; @jx- Then (8) can be rewritten as:

forall i € U, for all j € T;. . .
2) The market clears, .6, ;cq, @7 = Y., 5y, Ui for > Quibr =05 ) Q-
alljeF. R ' keF keF

Since we know that it is not possible to satisfy both conditioffdote that these are the balance equations for the continuous
out of equilibrium, we will relax one of these conditions. Ifime chain, and so at least one nonnegative solyti@xists.
Condition 2 is not satisfied for some fijethen either the total Further, if the communicating classes@fareC,U- - -UCk =
upload rate of the file is strictly less than its total download> thenp is unique up to scaling by a positive constant on
rate, which is infeasible, or the total upload rate is higher th&®Ch communicating clags;.
the total download rate, which means that resources are beindf miPriyi = 0, then we definez;; = 0 (Condition
wasted. Thus, it is preferable to satisfy Condition 2, and reld). Note that ifp;;) = 0, then f(i) is transient; thusf(:)
Condition 1. will have zero mass in any stationary distribution, and thus

In particu'ar, given priceqjl suppose usef reports his ii'” is Uniquely determined in this case. On the other hand,
desired upload ratg;(p) and what proportion of his budgetSUPPOSer;;ps(;)y; > 0 for somei and j. Let k = f(i);
he wants to spend on eaghe T;, 7;;; we do not assume then@; > 0, andp; > 0. This, together with the balance
anything aboutr, other thanr;; > 0 and Y,z mi; = 1. equations, implies that; > 0. We conclude that there exists a
Becausep may not be a competitive equilibriumlprice vectorpPositive value ofi;; such that Condition 2 in the proposition is
in general it is not possible to choose download rates at thatisfied. Further, sincg is uniquely defined up to scaling on
current prices that ensure each usspends exactly the desirede@ch communicating class,; is uniquely determined. This
proportion;; on file j. Instead, we will user andy(p) to completes the proof. ]
compute adownloadrate allocationz; to each uset, together The first condition in the preceding proposition ensures that
with anew price vectop such that each usérearns a budget When either a user is not interested in downloading a file
of p;vi(p), and spends exactly a proportien; on file j; (mi; = 0); his upload rate is zeroy( = 0); or the eventual
i.e., (6) is satisfied for alf andj € T; with y;(p) > 0. This Price of the file he is uploading is zerg ;) = 0), then the
is a relaxation of Condition 1 above: of course the resultif@Pwnload ratet;; is zero. In all other cases, the download rates
allocation may not be optimal for each user given the pricds; are uniquely determined by this procedure. Further, this

(8)

i j€T; i f(i)=3

»; however, the followingoudget constraintill hold: allocation ensures that all users split their budget in accordance
with their desired proportions.
Z PiTij = Dr(i)Yi(P)- (7) In practice, such a mechanism suggests a natural means to
JET; adapting prices as well as allocations. In particular, the fol-

This ensures every agent has maximally spent their availafgwing corollary ensures that if the upload rates and requested

budget under the new priceg; this is a requirement of Proportions arose from a competitive equilibrium, then the

optimality, cf. Lemma 1. allocation mechanism given in Proposition 3 will yield the
The existence of such pricas and download rates: is CcOmpetitive equilibrium allocation.

summarized in the following proposition. _ - o
Corollary 3 Supposep* > 0 is a competitive equilibrium,

Proposition 3 Supposas;| = 1 for all i € U. Suppose each @'d ¥* = y(p*) and =* = =(p*). Let p and & the
useri reports an upload ratey;, and a vectorr; describing corresponding prices and download rates, respectively, of

the proportionr;; of his eventual budget to be spent on fi@roposition 3. Thert = x(p").
j- Then there eX|sts.a paps.and r= (:':“f € U) such that: Proof: It suffices to note thap* andx(p*) satisfy Con-
1) For each useri and j € T;, if m;prsyy: = 0, then ditions 1-3 of Proposition 3. Since is uniquely determined,

Z;; = 0. it must be the case that(p*) = z. [
2) For each useri and j € T;, if m;psuyy: > 0, then  Thus the proportional allocation mechanism is a general-
PiTij = mijDreyy: for all j € T;. ization of the competitive equilibrium allocation, to ensure
3) The market clears where possible; i.8;, ;.. #i; = the market clears even out of equilibrium. However, if users
2 isp(iy=; vi forall j € F with p; > 0. anticipate that the market will be cleared using the proportional
Further, the vectorse; are uniquely determined. allocation mechanism, they may not report their true optimal



upload ratesy;(p) or desired proportionsr;;(p); they may The optimization problem for a type 2 user is symmetrically
have an incentive to try to “game” the system. In this cagiefined withp; replaced byl/p;. Given pricep;, the opti-
they will anticipate that prices and rates are chosen usinwlity conditions for a usei of type 1 are:

the proportional allocation mechanism, and choose their dec-

larations strategically. In the remainder of this section, we pruy;(0) < 1, if yy; = 0; 9)
qonsider a spe_cial case of this game, _an_d _pmm_mpetitive pruy;(piyii) =1, if 0 < yy; < Byg; (20)
limit theorem: in the large system limit, it is as if each user pidys(p1Bui) > 1, if y1 = By, (12)

optimizes as a price taker.

The optimality conditions for a user of type 2 are symmet-

rically defined, withp, replaced byl/p;. The conditions
We consider a system consisting of two files, and two type®ove give the optimal upload rates;(p;) and ys;(p1).

of users. Users of type 1 have file 1 and want file 2, whilghe optimal download rates are;;(p1) = piyii(p1) and

users of type 2 have file 2 and want file 1. We assume tha;(p,) = (1/p1)y2i(p1). At a competitive equilibrium, the

there are at least two users of each type. We will use thgarket must clear: the total upload rate of type 1 users must

subscriptki to denote useri of type k. The upload rate equal to the total download rate of type 2 users (and vice

constraint for user of type k is By;. By zx; and yr; We versa). So, the price vect(p,, 1) is a competitive equilibrium

denote the upload and download rates, respectively, of usef:

of type k. Throughout the remainder of the section, we make

the following assumption about the utility functions. Zl’u,(m) = Zyzi(m% and

A. Two Files, Two User Types

Assumption 4 The utility of useri of type k& when he is > yilp) =Y wai(pr).
downloading at rater;; > 0 and uploading at ratey;; > 0 is i i
ugi(Tri) — yri, Whereug;(zy;) is continuously differentiable

strictly concave, and strictly increasirig. Note that given the relationship betweep, andyy;, each of

these conditions implies the other.

In the next section, we characterize competitive equilibria We know from Corollary 2 that a competitive equilibrium
for this system. In Section V-A.2, we study Nash equilibria ctlways exists. The following proposition characterizes the
a game where users have utilities that satisfy Assumption@mpetitive equilibria.
and anticipate that prices and allocations are chosen according
to the proportional allocation mechanism. We establish @oposition 4 If sup, u),;(0) - sup, uh;(0) < 1, then at any
Competitive limit theoremin the |arge SyStem I|m|t, it is as Competitive equ”ibriunyli =Yg = 0 for all 7. On the other
if each user optimizes as a price takdn Section V-B, we hand, ifsup, u/;(0) - sup; u,(0) > 1, then at any competitive

specialize further to a case where all users of the same tyRfjilibrium there exist, j such thaty;; > 0 and ya; > 0.
share the same utility function. This allows us to establish

uniqueness of the Nash equilibrium as well, and gives a more  Proof: We first show that ifup; u/,(0)-sup; u;(0) < 1,
precise characterization of the Nash equilibrium rates. Finaltiere does not exist a competitive equilibrium where some
in Section V-C, we study the efficiency of the rate allocatiogpload rate is strictly positive. If such an equilibrium exists,
obtained at a Nash equilibrium. then at least one user from each type must be uploading at a
1) Competitive Equilibrium:We denote by, the price of strictly positive rate. Suppose such an equilibrium exists and
file 1, i.e., the file that type 1 users have, andpbythe price let (p;, 1) be the corresponding price vector. Then, there exist
of file 2, i.e., the file that type 1 users want. Since only relatiigsers; and j such that:
prices matter, without loss of generality we normalize= 1.

X ; . 1
User: of type 1 solves the following problem: uh,(0) > o0 anduy; (0) > py.
maximize uh-(xh-) — Y1i

- By multiplying the two inequalities, we see that the assumption
subject to  z1; < p1yis; y plying q p

sup, u},(0) - sup, ub,;(0) < 1 is contradicted.
13 2 05 y1i < Bui. Now we assume thatip, /;(0) - sup; uh;(0) > 1. Suppose
this problem i@at therg exists a competitive equmbr!um V\(h@r@ =0 for
all £ andi. Let (p1, 1) be the corresponding price vector. Then,
for all 4,

(i) — s 1
oA, wra(Pryii) =y s (0) < = andugi(0) < p.

Since the budget constraint will be binding,
equivalent to:

2This model can be extended so that different users have different Iinqprwe take the supremum in both inequalities and multiply the

costs for uploading: when the utility of useof typek is tig; (zx;) — Cri - Yri . , ] ,
where i (1;) is continuously differentiable, strictly concave, and strictlyresu“’ we see that the assumptioip; v}, (0)-sup; u5;(0) > 1

increasing, the results of this Section hold ff; (zx;) = G (ki )/Chi- is contradicted. [ |



2) Nash Equilibrium: We use the proportional allocationThis result is not straightforward, as the payoff function is
mechanism to clear the market out of equilibrium. The resultgpically discontinuous aty = 0, so a direct fixed-point
in Proposition 3 are simplified in this case, because themegument does not suffice. We instead use a perturbation
are only two files [F| = 2) and each user is downloadingapproach: we introduce two “virtual” users who upload at a
a single file. Thus users only report upload rates; it is cleeatec for each file. In this regime a Nash equilibrium always
that they will spend their entire budget on the single file thegxists; and by considering the limit asapproaches zero we
wish to download. Lety,; be the upload rate that usérof are able to establish existence of a Nash equilibrium for the
type k reports andY, = >, yr. If Y1 > 0 andY, > 0, original game.
it is straightforward to check that the proportional allocation
mechanism will use the following price to clear the market:Theorem 4 If Assumption 4 is satisfiedy;;(0) > Ny /(Ny —

Y, 1) for all 4, and u5;(0) > N2/(Ny — 1) for all 4, then there
P = — (12) exists a Nash equilibriunfy,, y,) at which not all rates are

_ N _ equal to zero.
If either Y; = 0 or Y5> = 0, then all agents receive zero

download rate. When users anticipate that the price to clear Proof: We use a perturbation approach. Assume there is
the market will be set in this way, they play a game, whef@ “virtual” type 1 user that always uploadsof file 1, and
the strategy is the declared upload rate. The strategy spac@ o¥irtual” type 2 user that always uploadsof file 2. Given
useri of type 1 is[0, By;]. The payoff of user of type 1 is: Strategiegy, andy, of typek users, note that, = e+>_, .
) Thus, for anye > 0, the utility function of each userof type

() = { wi(ra¥e/Y1) =y, V1> 00 a0 ks continuous in the strategies of all users, and concave in

u1i(0), if v1 = 0. yri- Moreover, the strategy space of each user is compact and

If Y1—y1; = Z»# y1; > 0, the preceding payoff is continuousCONvex. Thus, according to Theorem 1 of [20] there exists a

and differentiable orf0, By;]. A symmetric expression holds Nash equilibrium.
for users of type 2. We first show that wherm > 0, at any Nash equilibrium

We first observe that; = yo; = 0 for all i is a Nash not all upload rates can be zero. Suppose that at some Nash
equilibrium. In particular, ifY> = 0, the optimal upload rate equilibriumy;; = 0 for all 4. Then,Y1/Ys = ¢/(e+3_, yai) <
for any type 1 user is zero, and symmetrically,Yif = 0, 1 and (14) gives a contradiction. The symmetric argument for
the optimal upload rate of any type 2 user is zero. Howevdype 2 users shows thgs, > 0 for somel. Thus, at any Nash
such a Nash equilibrium is degenerate; it exploits the fact tHeguilibrium there exist,  such thaty;; > 0 andya; > 0.
the system exhibits a strong complementarity between users-€t {¢"} be a strictly positive sequence such that— 0.
Such a situation will be trivially avoided if a small amount ofor eachn, let y7;, y3; be Nash equilibrium rates givest,
upload rate of each type of file is always available. and letYy" = e+, y7; andYy' = "+, y3;. Then for all
Now suppose thats > 0 andY; — y1; = 0. Then for any ¢ andk, yz;/Y;" lies in the compact intervd0, 1] and thus has
y1; > 0, the utility of useri is uq;(Y2) — y1;, wWhile if y1, =0 @ limit point. Letn,, be a subsequence such thatnas— oo,
his utility is u1;(0); in this case his utility is discontinuous,for all i we haveyy;" /Y{"" — «;, andyy" /Y;"™ — ;. Note
and no best response exists for usdthus there does not existthat there exist a userof type 1 and usey of type 2 such
an equilibrium where’; — y;; = 0 andY, > 0. A symmetric thata; < 1/Ny, andg; < 1/N.
argument shows that there does not exist an equilibrium whereJaking subsequences again if necessary, we also assume that
for some user of type 2,Y, — yo; = 0 andY; > 0. Thus for each usei of type &, y,;;* converges asn — oo (as this
in searching for nonzero Nash equilibria, we can assume tisgguence take values in the compact strategy space of)user
Y1 — y1; > 0 andYs — yo; > 0 for all usersi of types 1 and Suppose tha¥;"" — 0 andY;"" — 0. Then:
2, respectively. T yom ,
WhenY; — y1; > 0 andY; > 0, the optimality conditions ~ “1; (Ynm Y, > : (1 - Ynm> —up(0) - (1 —ay) > 15
for useri of type 1 become: ! !

uj (0) < =, if g1y = 0; w (Yz"’“yl ) <1 Yz) vy (0 (L= i) = 1
y. i Y2 These conditions together with the optimality conditions (14)-
uy; (quz) (1 - h) = 71, if 0<y1; < Bi; (15) (16) imply that there existg such thatY}/Y} > 1 and
! 2 Y§/Y} > 1, which is a contradiction.
uy; <Bh§2> (1 - ff“) > ﬁ, if y; = Bui. (16) Now suppose th_ata@ — 00, Y1” — 0butY)'™ — ¢ > 0.
1 1 Then from the optimality conditions (14)-(16), there exigfs

Symmetric optimality conditions hold for a usenf type 2, such thatyy;» > 0 for all ¢ and allm > M. Furthermore,

whenY; —y; > 0 andY; > 0. there must exist a usérsuch thaty™ /Y"™ — «; < 1/Nj.

Let N; and N, be the number of type 1 and type 2Thus we have:
users respectively. The following theorem shows that und&™  , (4" yom 1 Y < Lyn Ny —1
reasonable conditions, a non-zero Nash equilibrium existg;' — 1 Y 2 o Y = Ui N, 2 N,

9
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The right hand side is strictly positive as — oo, while the YV — ¢; < oo as N — oo. Suppose also thatip Y5¥ =
left hand side approaches zero. We conclude that we must then for at least one type 2 usethe analogous optimality
haveY"™ — ¢; > 0 andY;"™ — co > 0. conditions (15) or (16) hold. Taking subsequences if necessary,
Suppose that as1 — oo, y;" — yi; for each useri of we have asN — oo, YJV/VV — oo and YV /YY — 0,
type k. We will show that the resulting rates constitute a Nashhich contradicts either (15) or (16) for type 2 useand
equilibrium of the original game. If not, then there exists sontbe assumptiosup, u};(0) < co. ThusY3¥ remains bounded
user with a profitable deviation. Without loss of generality, leis N — oo, so taking subsequences again if necessary, we
this be user of type 1. Because,; is continuous, and;, = assume tha¥yy — c; < oo asN — oc.
Zj yk; > 0 for k = 1,2, it is straightforward to check that Without loss of generality, we can assume thatc, <
for sufficiently largem useri will have a profitable deviation 1; otherwise we apply the subsequent argument to type 2
as well. This contradicts the assumption tipgt andy3* are users. Again taking subsequences if necessary, we asglime
a Nash equilibrium givem™~; as a result, no such profitableconverges tayy; for all i and k; this is straightforward, as
deviation can exist. We conclude that andy, constitute a the strategy space of each user is compact. Now site
nonzero Nash equilibrium, as required. remains bounded for larg®, there exists at least one user
m of type 1 who hasgj;; = 0. For such a user, taking limits in
We now develop a&ompetitive limit where the number of (14)-(15), we conclude we must have:
users of each type becomes large. SupposeNhalv, — oo,

C
and consider a sequence of Nash equilibyi¥ indexed by uy;(0) < 071 <1l
N = N; + N»; by taking subsequences if necessary, we can ) ) 2
assume the Nash equilibria converge, sayytoLet YN = This contradicts our assumption thaf; u1;(0) > 1. Thus we
. 4. Suppose thag / V¥ — 0 for all usersi of typek, but conclude that in fact;¥ — co asN — oo, for k = 1,2, as
that V¥ /YN — p; € (0,00); we normalizep, = 1. Under required; this establishes the theorem. [ |

these assumptions, since the optimality conditions (14)-(16)The preceding theorem shows that in the large system limit,
are continuous, they become identical to the optimality condi-is as if each user optimizes as a price taker. Observe that
tions (9)-(11) for a competitive equilibrium. Thus informa”y'from the proof, in the limit we have infinite upload rates for
we expect that the Nash equilibrium rates should approafth types of files; thus we cannot directly interpret the limit
competitive equilibrium rates. point as a competitive equilibrium. However, we can make
Formally, recall that we define;;(p;) andy(p1) as the the following precise statement: asymptotically, users choose
optimal solutions for a price taking user (i.e., a user solvirgpload rates that are nearly equal to their optimal upload rate
(1)-(4)), given a price,. We then have the following theorem.iIf they were acting as price takers. One way to interpret such
a theorem is that in large peer-to-peer systems, fully strategic
Theorem 5 Let N = N; + N, be the total number of users.Pehavior by the users will not ultimately cause large deviations
Suppose that a&v — oo, both N; — oo and N» — oc. from competitive equilibrium behavior.
Suppose that Assumption 4 holds for the utility function of ea&h
user,sup; By; < 0o, sup; u,;(0) < oo, andinf uj,(0) > 1for
k = 1,2. Lety" denote a nonzero Nash equilibrium when In this section we consider a system where all users have
N = N; + N, users are in the system, and }6f = Y,V /YN, the same utility functions (i.ey;(-) = u2i(-) = u(-)) and the

Homogeneous Utilities

whereV,V = 3> y/N. Then: same rates (i.e3;; = By; = B). Moreover, we assume that
1) 0 < infy p andsupy pY¥ < occ. there is the same number of type 1 and type 2 users, denoted
2) Forall i andk, y /Y — 0asN — oo, while YN — N. This is a special case of the model analyzed in the previous
00 as N — oo. subsection.
3) Any limit point (p;,y) of the sequencép!,y") sat- .Throughout this se_ction, to _avoid b_oun_dayy conditiong, we
isfies the competitive equilibrium optimality conditiondVill make the following additional simplifying assumption
(9)-(11). about the utility functions; the analysis can be extended to

study the case where the assumption does not hold, but without
Proof: It suffices to show that}¥ — co as N — oo, a significant change in insight.

for kK = 1,2. In this case, the second property of the theorem
holds simply because eagf). is bounded above by the uploadassumption 5 The functionu(-) satisfiesu/(z) — oo asz —
rate constraint. Further, the optimality conditions (14)-(1&), and/(z) — 0 asz — oo.
will imply both the first and third properties of the theorem:
the first property follows becaugg’ cannot go to zero nor Note that under this assumption, iif is strictly concave,
become unbounded if some users have positive rate; and tifien v/~ (x) is well defined forz € (0, ). In the next two
third property follows because the Nash optimality conditiorsections, we study competitive equilibria and Nash equilibria
are continuous as long 8§ > 0 andY; > 0. of this model, respectively; our key result is that under

Suppose that}¥ remains bounded a8 — oo; in this the homogeneity assumption, the system has a unique Nash
case, taking subsequences if necessary, we can assumeetailibrium.
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1) Competitive Equilibrium:We show that under Assump-0 < y1, < B. Then, ifY; —y1, > 0,
tions 4 and 5, the pricew; = 1 is always a competitive _ 1y
equilibrium of this economy. First suppose thdtB) < 1. ! <y“YQ> < L

Since v/(+) is continuous, there is g € (0, B) such that " - Y Y22
u/(y) = 1. Then, whenp; = 1, a user of type 1 will choose < Ly
to upload and download’~!(1), and the same for all users of Yi— v Y2

type 2. Since the total upload and download rates of a file are
equal, this is a competitive equilibrium. On the other hand, if
u'(B) > 1, then wherp; = 1, all users will choose to upload

IA
7 N
Nd
5‘;

o
N——

where the first inequality follows from (14) and (15), and the
e inequality follows from (15) and (16). Singg,Y,/Y> >

have a compeltmve equilibrium. ) . y1,Y1/ Y2, this contradicts the assumption that) is strictly
In the special case we are studying here, uniqueness 8f-ave

the competitive equilibrium can be guaranteed via a simplel\IOW suppose that; —

= 0. Then,y;; = 0forall j # &,
condition on the utility functionu. yik yly i 7

while yqy, is strictly positive. IfY> = 0 the best response for
any type 1 user is to upload zero, sqjif. > 0 we must have
Lemma 2 Suppose Assumptions 4 and 5 are satisfied, ai@d > 0. But no such equilibrium exists: usér will always
u(-) is twice differentiableThen, the following are equivalent: want to decrease his upload rate. This shows that there cannot
Ibe an equilibrium at whicld = y1; < y1x. A symmetric
argument holds for users of type 2. ]
For the remainder of this section, we suppose that Assump-
tions 4 and 5 hold. Ifu'(z) — oo asx — 0, the optimality
. y o i condition (14) will never apply. Let;, y» be the rates at
In this case the competitive equilibrium is unique. which users of type 1 and type 2 upload, respectively, at a
_Nash equilibrium; and recall tha¥ denotes the number of
Proof: Let D(p) = u'~'(p). As above, we normalize ysers of each type. If; > 0 andy, > 0, the optimality

p2 = 1. We first show the equivalence of Properties 1 angngitions (15) and (16) can be equivalently written:
2. Consider a type 1 usér the argument for type 2 users is N
n

1) For all B > 0, the Optimization Problem of each use
satisfies the gross substitutes property.

2) pu/~(p) is nonincreasing or{0, co).

3) zu/(x) is nondecreasing.

symmetric. For a given pricg; > 0, his budget constraint is W (y2) = ——>, if 0 <y, < B; a7)
x1; < p1-y1; and will bind at any optimal solution (Lemma 1). N =1y

Thus his objective function is(x1;) — z1;/p1. The nonnega- W (o) > B if 1 = B; (18)
tivity constraint in (4) cannot bind, given Assumption 5. The TN -1y ’

optimal solution is given byzy;(p1) = min{D(1/p1),p1B},  Similarly, for users of type 2 the following conditions hold.
so thatyy;(p1) = min{(1/p1)D(1/p1), B}.

Sinceu is strictly concaveD(+) is strictly decreasing. Thus N gy |
Condition 2 in Definition 4 is satisfied; that is;;(p;) strictly u'(y1) = N_To if 0 <y2 < B; (19)
increases ifp; strictly increases. Furthermore, if Property N %1
2 in the statement of the lemma holds, thepn(pi) is o (y1) > N 1o if yo = B; (20)
nondecreasing im;, so Condition 1 of Definition 4 is also T
satisfied. Conversely, fix' > p > 0, and choos&3 > pD(p). If v/ (0) < N/(N—-1), theny; = yo = 0 is the unique Nash

Then if gross substitutes holds, we hang(1/p) > y1;(1/p’), equilibrium. To show this, we first observe thatyf = 0,
so pD(p) > p'D(p’). Thus Property 1 and Property 2 ardheny, = 0 (and vice versa), i.e., there can not be a Nash

equivalent above. equilibrium at which only users of one type are uploading
Equivalence of the last two Properties follows by standagd strictly positive rates. Now suppose there exists a Nash
relationships between the derivativesidfand v/~ *. equilibrium at whichy; > 0 andy, > 0. Then, assuming

m thatu(.) is strictly concave,

2) Nash Equilibrium: The analysis of Nash equilibria is N Lo , , 9
simplified when the system is homogeneous, due to the N—l) > (u'(0))” > u'(yr)u'(y2) = (N—l) ’

following lemma. -
9 a contradiction.

If w/(0) > N/(N —1), then there exists a Nash equilibrium

Lemma 3 If u(-) is a strictly concave function, then users ofith y; > 0 and y, > 0: for example,y; = y2 =
the same type will have the same upload rate at any Nastin(u'~!(N/(N —1)), B). When the upload rates are positive
equilibrium. we define the Nash price @8'? = y, /y;. Thusp¥¥ = 1is a

possible Nash price and we know thét= 1 is a competitive
Proof: Suppose there is a Nash equilibrium at whiclkquilibrium price. In particular, itw’(0) > N/(N — 1), there
i < y1 for somes # k. This means thad < y;; < B and exists a Nash equilibrium with the same price as the unique
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competitive equilibrium. Theorem 5 does not apply here/(B) > N/(N — 1). But then, from Assumption 48 <

because of Assumption 5. However, by Lemmayg,/ Y, = '~ 1(N/(N —1)). [ |
1/N — 0 as N — oo, and thus any limit poin{p;,y) of The Nash equilibrium is not always unique, as the following
the sequencépi’,y”) satisfies the competitive equilibriumexample shows. Let(z) = —1/z, so thatpu'~!(p) = /p is

optimality conditions. Moreover, it can be shown that the ratasrictly increasing. The optimality conditions givg - i, =
of any sequence of Nash equilibria converge to the rates of & — 1)/N, i.e. there are infinitely many Nash equilibria.
competitive equilibrium. In particular, the set of Nash equilibria iy;,y2) : 0 <
The following proposition is our key result for the modely; < B,0 < yo < B,y1y2 = (N — 1)/N}. For this utility
with homogeneous users: we show that if gross substitufesiction there are also infinitely many competitive equilibria:
holds, there exists a unique Nash equilibrium where the uplositdce (1/p)u’'~1(1/p) = w'~!(p) for every p, any price is a
rates are strictly positive. The proof uses the characterizatioompetitive equilibrium.
of gross substitutes shown in Lemma 2.
C. Efficiency
Proposition 5 Suppose that Assumptions 4 and 5 hold and We consider a Nash equilibrium of the game that results
u(+) is twice differentiable. Then, if the Optimization Problenfrom the proportional allocation mechanism at which not all
of each user satisfies the gross substitutes property, theradges are zero; i.ey; > 0 andY> > 0. Notice that when
a unigue Nash equilibrium with strictly positive rates. At théype 1 users choose their optimal upload rate, they iakas
equilibriumy; = yo = v/~1(N/(N —1)). given Thus, we can interpret the ratgs; reported by type
~ 1 users as a Nash equilibrium to the following auction game.
Proof: By Theorem 4, we know a Nash equilibriumgypnose that the available upload rate of file 2 is fixed and
exists. We show there exists at most one Nash equilibrium. L&Iual toY,. Type 1 users submit bids to acquire a share of
(y1,y2) be Nash equilibrium upload rates, and first sSUppOsge available file transfer rate for file 2; each user has to pay
that the upload rate constraint does not bind. &8ty; = a. hjs pid, and is allocated a download rate proportional to his

By substituting in (17) and (19), we obtain: bid. In [21], it is shown for this game that if Assumption 4 is
, N , N satisfied, and for all u,;(0) > 0, then:
u(ayl)fm, u'(y1) = 1% Y, ;
. Zuu (ylz) >~ max Zuu(ﬂch)
We only consider values ofa € (N/(N - = Yi 4 v mi=v2 I

1)(1/4/(0)), Nu’(0)/(N — 1)), since only such values . )
may vield strictly positive rates. The second equation givebssym.metnc result .holds for type 2 users. This r'es'ult shows
y1 = w/~'(Na/(N — 1)) and by substituting in the first that given the available upload rate of file 2, it is nearly

equation, we conclude: efficiently shared among type 1 users; and similarly for type

2 users.
o (aul1< Na >) __N On the other hand, Nash equilibria need not be Pareto
N -1 (N —-1)a efficient. Suppose that Assumption 4 holds, users are homoge-

neous, and < «/(0) < N/(N — 1), whereN is the number

of users in each type. Then at any competitive equilibrium,
all upload and download rates will be strictly positive, while
at any Nash equilibrium all rates will be zero. Since each
user has the option of uploading and downloading zero in the
ecompetitive equilibrium, this shows that each user is strictly

Clearly,a = 1 is a solution, which corresponds {0 = y2 =
w'~Y(N/(N —1)). SinceN/((N — 1)a) is strictly decreasing
in a, if u/(au'"'(Na/(N — 1))) is nondecreasing ia, then
a = 1 will be the unique solution. By Assumption 4;(-) is
a strictly decreasing function, and from Lemmaa2,~*(z)
is nonincreasing or{0,0c0). Thus, there exists at most on 2
Nash equilibrium with strictly positive rates at which the ratd/orse off at the Nash equilibrium.
constraints do not bind.

From Lemma 2, we know that if the Optimization Problem VI ConcLusion
of a user satisfies the gross substitutes property, théfx) is ~ This paper presents a model of peer-to-peer filesharing as an
nondecreasing. We now show thatié’ (z) is non-decreasing €xchange economy. Our formulation is novel, and the approach
and the rate constraint binds for one type of user, then the rag only controls free-riding, but also ensures that users that
constraint will also bind for the other type of user. Suppog¥ovide the most benefit to the system are appropriately

thaty; = B andy, < B. Then, using (18) and (19), we havefewarded. In this section we briefly comment on two issues
N N that require additional attention: first, the use of a centralized

LB <yt (y2) < Bu/(B) = Yo < B, server; and second, the lack of “bankable” currency.

N-1 N-1 N-1 In our model, we use a central server to update prices.
which is a contradiction. However, the information stored at this server scales only with

It remains to show that ify; = y» = B is a Nash the number offiles in circulation—not with the number of
equilibrium, thenu'~'(N/(N — 1)) > B. Indeed, ify; = users. In this sense the system is highly scalable. Nevertheless,

yo = B is a Nash equilibrium, then from (18) and (20)pur model has ignored issues of distributed query processing
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and the impact of network structure on price dynamics; sugtr]
issues remain fruitful avenues for future research.

A potential implementation problem is thasers are not [1g
allowed to store currency. This can be problematic, as users
cannot leverage valuable uploads today to finance downlo&tf8
tomorrow. This problem might be resolved by extending our
model to allow users to store currency; from a game theoretio]
standpoint, however, this would require analyzing users’ n[%]
present value in finding equilibria. For this reason such a
model is a substantial departure from the framework in the
current paper, and also remains an open direction.
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