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Abstract— We formulate a peer-to-peer filesharing system as
an exchange economy: a price is associated with each file,
and users exchange files only when they can afford it. This
formulation solves the free-riding problem, since uploading files
is a necessary condition for being able to download. However,
we do not explicitly introduce a currency; users must upload
files in order to earn a budget for downloading. We discuss
existence, uniqueness, and dynamic stability of the competitive
equilibrium, which is always guaranteed to be Pareto efficient.
In addition, a novel aspect of our approach is an allocation
mechanism for clearing the marketout of equilibrium. We analyze
this mechanism when users can anticipate how their actions affect
the allocation mechanism (price anticipating behavior). For this
regime we characterize the Nash equilibria that will occur, and
show that as the number of users increases, the Nash equilibrium
rates become approximately Pareto efficient.

I. I NTRODUCTION

In peer-to-peer systems, users share files or resources with
each other. By sharing, a user incurs a cost(because uploading
a file consumes network resources), but no direct benefit.
Thus, if there is no mechanism that stimulates sharing, a user
has a strong incentive to free ride, i.e., use the resources of
other peers without contributing his own. Such behavior is
observed in existing peer-to-peer systems; for instance, early
data showed that nearly 70 percent of users of Gnutella were
sharing no files, and nearly 50 percent of all responses were
returned by the top 1 percent of sharing hosts [1]. A more
recent study shows that 85 percent of Gnutella users share no
files [2]. Even worse, according to [1], there were users in
Gnutella who were free riding on the systemdespitesharing
files: the files that they were sharing were unpopular, and
hence not widely uploaded.

Incentive mechanisms that penalize free riders or reward
users that share have been proposed. In [3] users enjoy
different levels of service according to how much they share
their resources, while in [4] free riders are excluded from
the system with some probability. In [5], a distributed rating
scheme for tackling the free-rider problem is suggested. More
general reputation mechanisms, such as those proposed in [6],
can be used to obtain a system-wide reputation for each user.
Using this information, each user will give priority to users
with high reputation.

An alternate approach is to design a system where resource
sharing isrequired to be able to use the resources of other
users. This is the case in BitTorrent [7], where users download
pieces of the file and at the same time upload the pieces they
already have. Analogously, in [8] users directly trade resources
between themselves.

Another option is to use monetary incentives to solve
the problem of free riding. In this case, users must pay to
download files from other peers. The payments may either be
in monetary terms (e.g., [9]), or in an internal non-monetary
currency. In the latter case, the budget of a user decreases every
time he downloads a file, and increases every time he uploads
a file. Such models are considered in [10], [11] and [12].
Recent work of Friedman et al. studies system performance as
a function of the total amount of internal currency available
[13] .

In our model, we consider an internal currency and associate
a price with each file. Users decide which files they are willing
to upload, and the total upload rate they are willing to serve.
In return, the system uses the current prices to provide a menu
to the users of files available for download. The upload rate
of a user generates a “budget” that can be spent to download
available files. By maintaining different prices for different
files, we avoid situations where users free-ride the system
because the files they are sharing are unpopular. In particular,
unpopular files will be assigned low prices.

We consider the utility of a user as a function of the rates
at which he is downloading and uploading. It is reasonable to
assume that the utility is increasing in the download rates. In
particular, when the download rates are higher, the user gets
the file sooner and is able to download more files in a fixed
interval of time. Moreover, if there is some probability that
the download will not complete successfully, this probability
decreases as the download rate increases.

An important element of our model is that currency is
not explicitly tracked; this makes our system lightweight
and easily implemented. With this formulation we can also
avoid cheap pseudonyms [14], which are a drawback in most
approaches for solving free-riding. Users cannot benefit by
leaving the system and joining with a new identity, since user
performance is determined only by the files uploaded. This
naturally introduces a “transaction cost” into the system that
prevents users from taking advantage of multiple identities.
Of course, one shortcoming here is that users who join the
system with little content of interest to others may be unable
to download anything.One solution is to require such users
to upload a file that is not desired by anyone. The price of
this file can be set to be less than the price of any other file.
In this way, new users do not get anything for free, and thus
existing users do not have any incentive to rejoin the system
with a different name.

In Section II we describe the model in more detail. In



Section III, we show the existence of a competitive equi-
librium: a vector of prices at which demand of each file is
equal to the corresponding supply. It is well known that such
a vector is Pareto efficient. We derive conditions that guarantee
uniqueness of the competitive equilibrium (up to scaling).
In Section IV, we study the tâtonnement price adjustment
process [15], and show thatunder some assumptionsthe rate
of convergence around the equilibrium is linear in the number
of users. This means that in a large system, the prices will
rapidly converge.

A key aspect of our paper consists of a proposal to clear
the market even out of equilibrium. In Section V, we propose
an allocation mechanism to allocate rates when demand is
not equal to supply. We study the Nash equilibria when users
anticipate how their actions affect the resulting allocation, and
show thatin large peer-to-peer systems, fully strategic behav-
ior by the users will not ultimately cause large deviations from
competitive equilibrium behavior.We conclude in Section VI.

II. M ODEL

In this section we introduce our basic mathematical model,
and connect it with the standard model of anexchange econ-
omy in microeconomics. We consider a peer-to-peer system
with a set of usersU who share a set of filesF . User i has
a subset of the filesSi ⊂ F , and is interested in downloading
files in Ti ⊂ F\Si. Let xij be the rate at which useri
downloads filej ∈ Ti, and let xi = (xij : j ∈ Ti) be
the vector of download rates of useri. Let yij be the rate
at which useri is uploading filej ∈ Si. The total upload
rate of useri is yi =

∑
j∈Si

yij . We assume that useri is
indifferent between any two upload vectors(yij : j ∈ Si) and
(y′ij : j ∈ Si) with

∑
j∈Si

yij =
∑

j∈Si
y′ij ; in other words,

his utility only depends on the vector of download ratesxi and
the total upload rateyi. We make the following assumption.

Assumption 1 The preference relation of a user on the set
of feasible rate vectors is represented by a continuous utility
function vi : <|Ti|+1

+ → <, which is strictly increasing in
each download ratexij , j ∈ Ti; and strictly decreasing in the
upload rateyi.

(Throughout the paper,<+ denotes the interval[0,∞).)
We introduce strictly positive prices in the system and

consider a particular useri. Each user is assumed to have
a constraint on the available upload rate; letBi denote this
upper bound for useri. A rate vector is feasible for a user as
long as the upload rate is at most equal to the user’s upload
capacity. We assume that users do not face any constraint
on their download rate; this is consistent with most end user
connections today, where upload capacity is far exceeded by
download capacity.1 Given a vector of pricesp � 0 (i.e.
pj > 0 for j ∈ F ), useri can find the upload rateyi and vector

1While in practice a constraint on download rate exists, we remove it for the
purposes of analysis since in practice the binding constraint on user behavior
is likely to be the upload rate constraint.

of download ratesxi that maximize his utility by solving the
following optimization problem:

User Optimization:

maximize vi(xi, yi) (1)

subject to
∑
j∈Ti

xij · pj ≤ (max
j∈Si

pj) · yi; (2)

yi ≤ Bi; (3)

yi ≥ 0; xij ≥ 0, for all j ∈ Ti.(4)

By assumption, the utility function of a user only depends
on his upload rate and not on which files he is uploading. Thus
user i will only choose to upload files that have the highest
price among all files inSi. The constraint (2) guarantees
that the expenses of a user are at most equal to his revenue
from uploading. The constraint (3) guarantees that a user
does not upload at a higher rate than his upload capacity
Bi. Finally, all rates must be non-negative (constraint (4)).
For any price vectorp � 0, the feasible region of the User
Optimization problem is compact and by Assumption 1 the
objective function is continuous; thus an optimal solution
exists for any price vectorp � 0. The following lemma
captures an important feature of this optimal solution.

Lemma 1 If Assumption 1 is satisfied, the budget constraint
will bind in the User Optimization Problem for any price
vectorp � 0.

Proof: Suppose that the budget constraint does not bind.
Then there is an optimal solution(xi, yi) with

∑
j∈Ti

xijpj <
(maxj∈Si

pj) · yi. And sincexij ≥ 0 for all j, we will have
yi > 0. However, we can choose a smallε such that the solu-
tion (x′i, y

′
i) = (xi, yi−ε) is feasible andvi(xi, yi) < vi(x′i, y

′
i)

because of Assumption 1. This contradicts the assumption that
(xi, yi) is optimal.

To simplify our analysis, we also make the following
assumption.

Assumption 2 For every useri ∈ U , the corresponding User
Optimization problem has a unique solution(xi, yi) for any
price vectorp � 0.

For instance, Assumption 2 is satisfied if each utility
function is strictly concave, since the feasible region of the
optimization problem of each user is convex. Letxij(p) and
yi(p) be the optimal values ofxij and yi respectively when
the price vector isp � 0.

We now define exchange economy [16] and relate it to our
model. In anexchange economythere is a finite number of
agents and a finite number of commodities. Each agent is
endowed with a bundle of commodities, and has a preference
relation on the set of commodity vectors. Given a price vector,
each agent finds a vector of commodities to exchange that
maximizes his utility. In particular, ifp is the vector of prices
and agenti has endowmentwi, he sells it at the market and
obtains wealthp · wi. Then the agent buys goods for his
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consumption at the same price (he may buy back some of
the goods he sold).

A straightforward reformulation reveals that our model
shares much in common with a standard exchange economy.
Consider the constraints of the user optimization problem (1)-
(4). The constraintyi ≥ 0 is implied by the other constraints as
long as all prices are non-negative. The remaining constraints
can equivalently be written as:

∑
j∈Ti

xij · pj + (max
j∈Si

pj) · (Bi − yi) ≤ (max
j∈Si

pj) ·Bi;

Bi − yi ≥ 0;
xij ≥ 0, for all j ∈ Ti.

This appears much like the optimization that an agent
performs in an exchange economy: it isas if agent i has
Bi units of his own “good”, priced atmaxj∈Si pj . He can
trade this for other goods on the open market at pricesp.
With this interpretation,Bi − yi is the amount of his own
good that he chooses to keep. However, notice that this is
not a standard exchange economy, as the upload rate is not
a true commodity; rather, the commodities are the rates of
specific files that are uploaded. SinceBi imposes ajoint
constraint on the upload rates of these files, our model is
a generalization of the standard exchange economy. In the
following two sections, we adapt some results about exchange
economies to our model.

III. C OMPETITIVE EQUILIBRIUM

In this section we define competitive equilibrium. In Section
III-A, we then proceed to show that there always exists at least
one for the model described in Section II. In Section III-B, we
give conditions that guarantee uniqueness.

We start by defining theaggregate excess demand vector.

Definition 1 Given a vector of pricesp � 0, a vector(zj , j ∈
F ) is an aggregate excess demand vectorif there existyij ,
i ∈ U , j ∈ F , such that:

1) zj =
∑

i∈U :j∈Ti
xij(p)−

∑
i∈U yij , for j ∈ F .

2)
∑

j∈F yij = yi(p), for i ∈ U .
3) yij ≥ 0, for i ∈ U and j ∈ F .
4) yij = 0, if j 6∈ arg maxk∈Si

pk.

We denote the set of all excess demand vectors givenp by
z(p).

If |Si| = 1 for all i ∈ U (i.e., each user has exactly one
file available for upload), then for alli ∈ U , j ∈ F , the
required valueyij is uniquely defined for any price vectorp:
in particular, the only way to satisfy Conditions 2, 3 and 4
is to setyij = yi(p) if Si = {j} and yij(p) = 0 otherwise.
Thus, when|Si| = 1 for all i ∈ U the excess demand is a
functionof p. On the other hand, if there are users uploading
multiple files, the excess demand is acorrespondence. In
particular, suppose there is some useri with |Si| ≥ 2 and
choosej, k ∈ Si with j 6= k. Then, for a price vectorp with
pk = pj = maxl∈Si

pl, there are multiple ways to choose

(yil, l ∈ Si) that satisfy Conditions 2, 3 and 4, and thus
there are multiple excess demand vectors. Our definition of
aggregate excess demand vector ensures that we capture all
possible means of dividing the upload rate of useri among
available files.

Definition 2 The rate allocation(x∗
i , i ∈ U) and (y∗i , i ∈

U) and the price vectorp∗ � 0 constitute a competitive
equilibrium if the following conditions are satisfied:

1) Utility maximization: For each useri, (x∗
i , y

∗
i ) solves

the corresponding User Optimization problem forp =
p∗, i.e. x∗ij = xij(p∗) and y∗i = yi(p∗).

2) Market Clearing: 0 ∈ z(p∗); i.e., the total upload rate
yi can be split among the highest price files inSi, so
that for each file the aggregate excess demand is zero.

Note that because of Assumption 1, at competitive equi-
librium all prices are strictly positive; otherwise users would
want to download all free files at unboundedly large rates. For
this reason, we can restrict competitive equilibria to strictly
positive price vectors without loss of generality.

Our goal is to show that a competitive equilibrium exists.We
emphasize that competitive equilibria are desirable because
they are Pareto efficient; this is the content of the first
fundamental theorem of welfare economics [16]. However, we
do not expect equilibria to exist without any restrictions on
the setsSi and Ti of files being uploaded and downloaded,
respectively, by useri. For example, suppose there is a file that
some users want to download, but no user has available for
upload. Then in general, such a file will have positive demand,
while supply will always be zero. Thus the excess demand for
such a file will be positiveunless its price is sufficiently high.
Setting a sufficiently high price is equivalent to considering a
system without that file.

To avoid such pathological situations, we introduce a natural
diversity assumption. We define theuser-file graphas the
directed graphG = (V,E) with V = U

⋃
F , and E =

{(i, j) : i ∈ U, j ∈ Ti}
⋃
{(j, i) : i ∈ U, j ∈ Si}. In other

words,G is a bipartite graph where nodes correspond tousers
andfiles. There is a directed edge from a user to each of the
files he wants, and there is a directed edge from a file to every
user that has it.

Assumption 3 The user-file graph is strongly connected.

If Assumption 3 is not satisfied, then either the system can
be decomposed to subsystems that satisfy the Assumption 3,
or an equilibrium may not exist. We will therefore assume that
Assumption 3 holds.

A. Existence of Competitive Equilibrium

We will adapt standard arguments from microeconomics
to establish existence of a competitive equilibrium. We begin
with the following basic definitions.

Let f be a correspondence defined on a subsetA ⊂ <N .
The correspondencef is homogeneous of degree zeroif for
every t > 0, we havef(tx1, ...., txN ) = f(x1, ...., xN ). The
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correspondencef is convex valuedif f(x) is convex for every
x ∈ A. Given the closed setY ⊂ <K , a correspondence
f : A → Y has aclosed graphif for any two sequences
xm → x ∈ A andym → y, with xm ∈ A andym ∈ f(xm) for
everym, we havey ∈ f(x). Given the closed setY ⊂ <K , the
correspondencef : A → Y is upper hemicontinuousif it has
a closed graph and the images of compact sets are bounded.

The following proposition shows properties of the aggregate
excess demand correspondence that are used to prove existence
of a competitive equilibrium. The proof is an extension of
an argument typically used to prove existence of competitive
equilibrium in exchange economies. The key difficulty is in
addressing the fact that users may simultaneously upload
multiple files; as discussed in Section II, this feature means
our basic model is not a standard exchange economy.

Proposition 1 If Assumptions 1, 2 and 3 hold, then the aggre-
gate excess demand correspondencez(·) defined on(0,∞)F

satisfies the following properties:

1) For everyp � 0 and z ∈ z(p), p · z = 0.
2) z(·) is convex-valued.
3) z(·) is homogeneous of degree 0.
4) z(·) is upper hemicontinuous.
5) There is ans > 0 such thatzj > −s for any z ∈ z(p),

for every filej ∈ F and every price vectorp � 0.
6) If pm → p 6= 0, zm ∈ z(pm) and pj = 0 for somej,

thenmax{zm
j : j ∈ F} → ∞.

Proof: By Lemma 1, for any user the budget constraint
will bind at the optimal solution. In particular, given any
choice of (yij , i ∈ U, j ∈ F ) that satisfies the conditions of
Definition 1, we have for eachi:∑

j∈Ti

pjxij(p)−
∑
j∈Si

pjyij(p) = 0.

By summing over all users, we obtain Property 1.
Fix a price vectorp � 0. The set of vectors(yij , i ∈ U, j ∈

Si) that satisfy Conditions 2, 3 and 4 of Definition 1 is convex.
Thus the aggregate excess demandz(·) is a convex valued
correspondence (Property 2).

Consider a price vectorp � 0, and fix a constantt > 0. It
is clear that the feasible region (2)-(4) remains unchanged if
we replace the price vectorp by tp; we conclude thatxi(p) =
xi(tp), andyi(p) = yi(tp); i.e., xi andyi are homogeneous
of degree zero. Thus by Definition 1, the aggregate excess
demand is also homogeneous of degree zero (Property 3).

We now show that the aggregate excess demand correspon-
dence has a closed graph. We start by showing thatxi(·) and
yi(·) are continuous functions. By Assumption 1v(·) is a
continuous function. From the Theorem of the Maximum [17]
it follows that xij(p) andyi(p) are continuous functions.

Consider the sequencespm → p � 0 andwm → w such
thatwm ∈ z(pm). Sincewm ∈ z(pm), there existym

ij , i ∈ U ,
j ∈ F , that satisfy Conditions 1, 2, 3 and 4 of Definition 1 for
the price vectorpm and the aggregate excess demand vector

wm. We will show thatw satisfies these conditions when the
price vector isp, and thusw ∈ z(p).

Fix ε > 0. Sinceyi(·) is continuous, there existsM such
that yi(pm) < yi(p) + ε, for all m ≥ M , or equivalently∑

j∈Ti
ym

ij < yi(p) + ε, for all m ≥ M . Moreover,ym
ij ≥ 0,

so form ≥ M , ym
ij lies in the compact set[0, yi(p)+ε]. Thus

for all i ∈ U and j ∈ F , the sequenceym
ij has at least one

limit point ȳij .
We will show thatȳij satisfies Conditions 1-4 of Definition

1 with price vectorp and excess demand vectorw. Since
wm → w andxij(·) are continuous, we have Condition 1 of
Definition 1:

wj =
∑

i∈U :j∈Ti

xij(p)−
∑
i∈U

ȳij .

We know that
∑

j∈F ym
ij = yi(pm), so by continuity ofyi

we have
∑

j∈F ȳij = yi(p) (Condition 2). Sinceym
ij ≥ 0

for all m, we haveȳij ≥ 0 (Condition 3). Finally, suppose
that j /∈ arg maxk∈Si pk. Then there existsM ′ such that
j /∈ arg maxk∈Si

pm
k for all m ≥ M ′. Thus ym

ij = 0 for all
m ≥ M ′, which implies that̄yij = 0 (Condition 4). Thus we
concludeȳij satisfies all the conditions of Definition 1 with
price vectorp and excess demand vectorw, so w ∈ z(p).
This establishes Property 3 of the proposition.

For any price vectorp � 0, the feasible region of every
User Optimization problem is compact, so we can find an
upper bound for the excess demand of any good. Thus for any
compact setB ⊂ (0,∞)F , z(B) is bounded. This completes
the proof thatz(·) is upper hemicontinuous (Property 4).

The upload rate of any useri is upper bounded by his upload
rate constraintBi, so the total supply is upper bounded and
the excess demand is bounded from below (Property 5).

If pm → p 6= 0 and pj = 0, then pk > 0 for some
k. Because of Assumption 3, there is a sequence of users
u1, u2, ..., ul ∈ U and a sequence of filesf1, ..., fl+1 such
that f1 = j, fl+1 = k and userui has file fi and wants
to download filefi+1, so that his utility is strictly increasing
in the rate at which he downloads filefi+1 (Assumption 1).
Thus, there is a useri who has a filej ∈ Si to upload whose
price approaches a strictly positive limit, and who wants a
file f ∈ Ti whose price approaches zero. The budget of useri
approaches a strictly positive limit aspm → p and the amount
of f he can afford goes to infinity. On the other hand, the total
possible supply is bounded above by the sum of the upload
rate constraintsBn of the usersn that havef ∈ Sn. Thus
max{zm

j : j ∈ F} → ∞, establishing Property 6.
Now the existence of a competitive equilibrium follows

from standard results in microeconomics; see, e.g., [16],
Exercise 17.C.2.

Theorem 1 If Assumptions 1, 2 and 3 hold, then there exists
a competitive equilibrium.

Corollary 1 If the utility function of each user is strictly
concave, and Assumptions 1 and 3 are satisfied, then there
exists a competitive equilibrium.
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In Section V, we assume that each user has a separable
utility function, and experiences a cost of uploading that is
linear in the upload rate. In this case, the utility function is
not strictly concave. The following corollary of Theorem 1
shows existence of a competitive equilibrium for that case.

Corollary 2 If the utility function of useri is vi(xi, yi) =
ui(xi)− yi, whereui(xi) is continuous, strictly concave, and
strictly increasing in eachxij , and Assumption 3 is satisfied,
then there exists a competitive equilibrium.

Proof: Because of the assumptions onui(xi), Assump-
tion 1 is satisfied. By Lemma 1, the budget constraint will
bind; thus givenp � 0, yi is a linear function of the download
rates of useri. By substituting in the objective function (1), we
obtain a function ofxi that is strictly concave. We conclude
the optimization problem of each user has a strictly concave
objective and a convex feasible region, and thus a unique
solution—i.e., Assumption 2 is satisfied. All the assumption of
Theorem 1 are satisfied, so a competitive equilibrium exists.

B. Uniqueness of Competitive Equilibrium

We now study uniqueness of the competitive equilibrium.
Note that, as is standard, we discuss uniquenessup to scaling
of the price vector: sincez is homogeneous of degree zero, if
p∗ is a competitive equilibrium price vector, then so istp∗.
We first define the gross substitutes property.

Definition 3 The functionz(·) has the gross substitutes prop-
erty if wheneverp′ � 0 and p � 0 are such that for somel,
p′l > pl and pk = p′k for k 6= l, we havezk(p′) > zk(p) for
k 6= l.

If the aggregate excess demand is a function that satisfies the
gross substitutes property, then there is at most one competitive
equilibrium up to scaling of the price vector [16]. In our
model, the aggregate excess demand is a function if and only
if each user is uploading exactly one file, i.e.|Si| = 1 for all
i ∈ U . When some usersi have|Si| > 1, the aggregate excess
demand is a correspondence, so the preceding result does not
apply. In order to adapt that result, we use the following
definition.

Definition 4 The Optimization Problem of useri satisfies the
gross substitutes property if wheneverp′ � 0 and p � 0 are
such that for somel, p′l > pl and p′k = pk for k 6= l, the
following conditions hold:

1) For l ∈ Ti, xij(p′) > xij(p) for j 6= l, j ∈ Ti and
yi(p′) ≤ yi(p).

2) If l ∈ Si and p′l > maxk∈Si pk, thenxij(p′) > xij(p)
for j ∈ Ti.

We interpret this definition as follows. When the price of a
file that is relevant to useri increases, useri demands more of
all other files he is downloading, and supplies less of the file
he is uploading. As one example, it is straightforward to verify

that useri’s optimization problem satisfies gross substitutes if
Ti = {j} andvi(xij , y) = xα

ij/α− y, where0 < α < 1.
Under a slightly stronger diversity assumption, we can

establish the following proposition. The key step in the proof
is to show that despite the fact that users may upload multiple
files, the monotonicity of excess demand implied by the usual
gross substitutes condition continues to hold.

Proposition 2 If the optimization problem of each user satis-
fies the gross substitutes property, and∀j, k ∈ F there exists
i ∈ U such thatj, k ∈ Ti, then there is at most one competitive
equilibrium up to scaling of the price vector.

Proof: It suffices to show that wheneverp � 0 and
p′ � 0 are two price vectors that are not collinear, any
corresponding aggregate excess demand vectors can not be
equal, i.e.z(p)∩z(p′) = ∅. Sincez is homogeneous of degree
zero, we can assume thatp′k ≥ pk for all k, and andpl = p′l
for somel. Let S = {j : pj = pl}.

Consider altering the price vectorp to obtain the price
vector p′, by increasing (or keeping unaltered) the price of
every file k /∈ S, one file at a time. As we increasepk for
somek /∈ S, for every filej ∈ S (including l), there is a user
i who wants bothj and k; i.e., j, k ∈ Ti. The optimization
problem of that user satisfies the gross substitutes property, so
the total demand (i.e.,

∑
i:k∈Ti

xik) for each filek ∈ S does
not decrease in any step, and if there is a filek /∈ S with
pk < p′k, the total demand for filek will strictly increase in at
least one step. Thus, the total demand

∑
k∈S

∑
i:k∈Ti

xik for
files in S increases (or remains the same, ifpk = p′k for all
k /∈ S), while by a similar argument the total supply for files
in S decreases (or remains the same).

We now considerj ∈ S such thatp′j > pj ; if no such file
exists, then there must be some filek /∈ S with pk < p′k, so for
everyw ∈ z(p) and everyw′ ∈ z(p′),

∑
j∈S wj <

∑
j∈S w′

j .
Thus suppose thatp′j > pj for somej ∈ S; we increase the
price of every such filej from pj to p′j , one at a time. By
gross substitutes, the total demand for each file inS − {j}
will strictly increase. On the other hand, each user that was
previously uploading eitherj or some other file inS, will now
only uploadj, while each user that was only uploading files
in S − {j} will upload those files at most as much as he was
uploading before (again by gross substitutes). Thus the total
excess demand for files inS−{j}, i.e.,

∑
k∈S−{j} zk(·), will

strictly increase. We repeat this procedure for every filej ∈ S
with p′j > pj . Let S′ = {j ∈ S : p′j = pj}; S′ is nonempty
sincel ∈ S′. Then, for everyw ∈ z(p) and everyw′ ∈ z(p′),∑

j∈S′ wj <
∑

j∈S′ w′
j , so z(p) ∩ z(p′) = ∅.

IV. T ÂTONNEMENT PROCESS

In this section we restrict our attention to the case where
every user is uploading a single file (i.e.,|Si| = 1 for all i), and
consider convergence of prices to a competitive equilibrium
price vector. We describe a price adjustment mechanism, and
show that under some assumptions the rate of convergence
of this process will be linear in the number of users. This
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means that in a large system, the prices will rapidly converge
to equilibrium.

When every user is uploading a single file, the aggregate
excess demand is a function. A reasonable way to adjust
the prices in order to reach a competitive equilibrium is
to increase the prices of the files whose excess demand is
positive, and decrease the prices of the files whose excess
demand is negative. This motivates thetâtonnement process
[16], where the price adjustment rate is equal (or in general
proportional) to excess demand:

dpj

dt
= zj(p). (5)

The following theorem is a restatement of Proposition
17.H.1 [16] for our model.

Theorem 2 If |Si| = 1 for all i ∈ U , the gross substitutes
property holds for the aggregate excess demand function,
and Assumptions 1, 2 and 3 are satisfied, then the relative
prices of any solution trajectory of (5) converge to the unique
equilibrium (up to scaling of the price vector).

We next show a result about the rate of convergence of
the t̂atonnement process. Suppose that a unique competitive
equilibrium exists, up to scaling of the price vector. Without
loss of generality, we fix a filef0 ∈ F , and fix pf0(t) = 1
for all timest. This determines the relative values of all other
prices at the unique competitive equilibrium; furthermore, the
standard t̂atonnement dynamics described above will converge
to the unique competitive equilibrium price vector where
pf0 = 1. The following theorem shows that under some
assumptions about the structure of the system, the rate of
convergence near this equilibrium is linear inN .

Theorem 3 Suppose that|Si| = 1 for all i ∈ U , the gross
substitutes property holds for the aggregate excess demand
function, and Assumptions 1, 2 and 3 are satisfied. Suppose
also thatU = U1∪ ...∪UK with Uk∩Ul = ∅ wheneverk 6= l,
and:

1) Si = Sk, Ti = Tk, vi(·) = vk(·) andBi = Bk, ∀i ∈ Uk.
2) |Uk| = rkN with rk ≥ 0, for k = 1, ...,K.

Consider the t̂atonnement dynamics withpf0(t) = 1 for all
t. If the t̂atonnement process converges to some price vector
p∗ and xij(p), yi(p), are differentiable atp∗, the rate of
convergence near the equilibrium price vector is linear inN .

Proof: We refer to{1, ...,K} as the set of types. LetDk

be the subset of types that download filek andUk be the subset
of types that upload filek. Then we can write the tâtonnement
process aṡp = Nf(p), wherefk(p) =

∑
i∈Dk

rixik(p) −∑
i∈Uk

riyi(p). By linearizing around the equilibriump∗, we
see that the errorw(t) = p(t)− p∗ satisfies,

ẇ(t) = NDf(p∗) ·w(t).

This is a system of first order differential equations which
has solutions of the formw = w0e

λ·t, where(NDf(p∗) −
λI)w0 = 0. The rate of convergence is given by the minimum

of |Reλ| over all eigenvaluesλ of NDf(p∗). The real part
of each eigenvalue ofDf(p∗) is negative (because we are
assuming convergence) and does not depend onN , so the
rate of convergence is linear inN .

The preceding result assumes that users can be partitioned
into identical sets; in this case, the tâtonnement dynamics
scale linearly with the number of users. We believe the
preceding result can be extended to more general assumptions
about the user population; the key requirement is that as the
system becomes large, the excess demand level should increase
proportionally for any given price levelp � 0. From a system
design point of view, this type of a result suggests that a large
peer-to-peer system operating as an exchange economy will
have fast convergence in a neighborhood of the equilibrium
point.

V. PROPORTIONALALLOCATION

Although the t̂atonnement process provides a price adjust-
ment mechanism that (under reasonable assumptions) ensures
that a competitive equilibrium is reached, it has a serious
shortcoming from a system design standpoint: the tâtonnement
process does not specify how agents should engage in trade
beforeequilibrium is reached. Thus, in addition to adjusting
the price vector according to the tâtonnement process (5), our
system design should specify a mechanism for allocating rates
out of equilibrium.

Mechanisms for exchange out of equilibrium have been
proposed for an exchange economy in the economics liter-
ature [18], but do not directly apply to our model. These
mechanisms work by performing part of the exchange, then
updating the endowment of each user. However, in a peer-
to-peer system, the endowment of a user at any given time
is determined by the file with the maximum price, and the
amount he owns is his upload capacity. Therefore, the amount
remains the same even after a user uploads the file once.

We consider an alternate system design, which is similar
to the approach given in [19]: we will ask users to report the
total upload ratethey are willing to allow, and theproportions
of their budget they wish to spend on downloading various
files. For analytical simplicity, we consider the case where
each user uploads a single file, i.e.|Si| = 1 for all i. Let
f(i) denote the file useri is uploading. Suppose that each
useri optimizes with respect to the current pricesp � 0, and
reports his optimal upload rate to the system,yi(p). If user i
is interested in downloading multiple files, i.e.|Ti| > 1, then
he also reports whatproportionπij(p) of his budget he wants
to spend on each file inj ∈ Ti. In terms ofxi(p) andyi(p),
if yi(p) > 0, we have:

πij(p) =
pjxij(p)
pf(i)yi(p)

. (6)

However, unless the current price corresponds to a competitive
equilibrium, it will not be possible to give to every user
the download rates he desires. Informally, we will use the
proportionsπij to allocate rates based on the proportion of the
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budget each agenti intended to spend on downloading the files
in Ti; this is called theproportional allocation mechanism.

In order to formally motivate the proportional allocation
mechanism, we first consider the outcome at a competitive
equilibrium. From Definition 2 we know that the rates(x∗ij , i ∈
U, j ∈ Ti), (y∗i , i ∈ U) and the price vectorp∗ constitute
a competitive equilibrium if the following conditions are
satisfied.

1) Each user optimizes, i.e.x∗ij = xij(p∗), y∗i = yi(p∗)
for all i ∈ U , for all j ∈ Ti.

2) The market clears, i.e.
∑

i:j∈Ti
x∗ij =

∑
i:f(i)=j y∗i for

all j ∈ F .

Since we know that it is not possible to satisfy both conditions
out of equilibrium, we will relax one of these conditions. If
Condition 2 is not satisfied for some filej, then either the total
upload rate of the file is strictly less than its total download
rate, which is infeasible, or the total upload rate is higher than
the total download rate, which means that resources are being
wasted. Thus, it is preferable to satisfy Condition 2, and relax
Condition 1.

In particular, given pricesp, suppose useri reports his
desired upload rateyi(p) and what proportion of his budget
he wants to spend on eachj ∈ Ti, πij ; we do not assume
anything aboutπ, other thanπij ≥ 0 and

∑
j∈Ti

πij = 1.
Becausep may not be a competitive equilibrium price vector,
in general it is not possible to choose download rates at the
current prices that ensure each useri spends exactly the desired
proportionπij on file j. Instead, we will useπ and y(p) to
compute adownloadrate allocation̂xi to each useri, together
with a new price vector̂p such that each useri earns a budget
of p̂f(i)yi(p), and spends exactly a proportionπij on file j;
i.e., (6) is satisfied for alli and j ∈ Ti with yi(p) > 0. This
is a relaxation of Condition 1 above: of course the resulting
allocation may not be optimal for each user given the prices
p̂; however, the followingbudget constraintwill hold:∑

j∈Ti

p̂j x̂ij = p̂f(i)yi(p). (7)

This ensures every agent has maximally spent their available
budget under the new priceŝp; this is a requirement of
optimality, cf. Lemma 1.

The existence of such priceŝp and download rateŝx is
summarized in the following proposition.

Proposition 3 Suppose|Si| = 1 for all i ∈ U . Suppose each
user i reports an upload rateyi, and a vectorπi describing
the proportionπij of his eventual budget to be spent on file
j. Then there exists a pair̂p and x̂ = (x̂i, i ∈ U) such that:

1) For each useri and j ∈ Ti, if πij p̂f(i)yi = 0, then
x̂ij = 0.

2) For each useri and j ∈ Ti, if πij p̂f(i)yi > 0, then
p̂j x̂ij = πij p̂f(i)yi for all j ∈ Ti.

3) The market clears where possible; i.e.,
∑

i:j∈Ti
x̂ij =∑

i:f(i)=j yi for all j ∈ F with p̂j > 0.

Further, the vectorŝxi are uniquely determined.

Proof: If we multiply through the third condition bŷpj ,
and substitute from thesecondcondition, we obtain:∑

i:j∈Ti

πij p̂f(i)yi = p̂j

∑
i:f(i)=j

yi. (8)

Consider a continuous time Markov chain on the state space
F , where the transition rate from state (file)j to state (file)k
is Qjk =

∑
i:f(i)=j πikyi. (Note thatπik = 0 if k 6∈ Ti.) Let

Qjj = −
∑

k 6=j Qjk. Then (8) can be rewritten as:∑
k∈F

Qkj p̂k = p̂j

∑
k∈F

Qjk.

Note that these are the balance equations for the continuous
time chain, and so at least one nonnegative solutionp̂ exists.
Further, if the communicating classes ofQ areC1∪· · ·∪CK =
F , then p̂ is unique up to scaling by a positive constant on
each communicating classCl.

If πij p̂f(i)yi = 0, then we definex̂ij = 0 (Condition
1). Note that if p̂f(i) = 0, then f(i) is transient; thusf(i)
will have zero mass in any stationary distribution, and thus
x̂ij is uniquely determined in this case. On the other hand,
supposeπij p̂f(i)yi > 0 for some i and j. Let k = f(i);
then Qkj > 0, and p̂k > 0. This, together with the balance
equations, implies that̂pj > 0. We conclude that there exists a
positive value of̂xij such that Condition 2 in the proposition is
satisfied. Further, sincêp is uniquely defined up to scaling on
each communicating class,̂xij is uniquely determined. This
completes the proof.

The first condition in the preceding proposition ensures that
when either a useri is not interested in downloading a filej
(πij = 0); his upload rate is zero (yi = 0); or the eventual
price of the file he is uploading is zero (p̂f(i) = 0), then the
download ratêxij is zero. In all other cases, the download rates
x̂ij are uniquely determined by this procedure. Further, this
allocation ensures that all users split their budget in accordance
with their desired proportions.

In practice, such a mechanism suggests a natural means to
adapting prices as well as allocations. In particular, the fol-
lowing corollary ensures that if the upload rates and requested
proportions arose from a competitive equilibrium, then the
allocation mechanism given in Proposition 3 will yield the
competitive equilibrium allocation.

Corollary 3 Supposep∗ � 0 is a competitive equilibrium,
and y∗ = y(p∗) and π∗ = π(p∗). Let p̂ and x̂ the
corresponding prices and download rates, respectively, of
Proposition 3. Then̂x = x(p∗).

Proof: It suffices to note thatp∗ andx(p∗) satisfy Con-
ditions 1-3 of Proposition 3. Sincêx is uniquely determined,
it must be the case thatx(p∗) = x̂.

Thus the proportional allocation mechanism is a general-
ization of the competitive equilibrium allocation, to ensure
the market clears even out of equilibrium. However, if users
anticipate that the market will be cleared using the proportional
allocation mechanism, they may not report their true optimal
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upload ratesyi(p) or desired proportionsπij(p); they may
have an incentive to try to “game” the system. In this case
they will anticipate that prices and rates are chosen using
the proportional allocation mechanism, and choose their dec-
larations strategically. In the remainder of this section, we
consider a special case of this game, and provea competitive
limit theorem: in the large system limit, it is as if each user
optimizes as a price taker.

A. Two Files, Two User Types

We consider a system consisting of two files, and two types
of users. Users of type 1 have file 1 and want file 2, while
users of type 2 have file 2 and want file 1. We assume that
there are at least two users of each type. We will use the
subscript ki to denote useri of type k. The upload rate
constraint for useri of type k is Bki. By xki and yki we
denote the upload and download rates, respectively, of useri
of type k. Throughout the remainder of the section, we make
the following assumption about the utility functions.

Assumption 4 The utility of useri of type k when he is
downloading at ratexki ≥ 0 and uploading at rateyki ≥ 0 is
uki(xki)− yki, whereuki(xki) is continuously differentiable,
strictly concave, and strictly increasing.2

In the next section, we characterize competitive equilibria
for this system. In Section V-A.2, we study Nash equilibria of
a game where users have utilities that satisfy Assumption 4,
and anticipate that prices and allocations are chosen according
to the proportional allocation mechanism. We establish a
competitive limit theorem:in the large system limit, it is as
if each user optimizes as a price taker.In Section V-B, we
specialize further to a case where all users of the same type
share the same utility function. This allows us to establish
uniqueness of the Nash equilibrium as well, and gives a more
precise characterization of the Nash equilibrium rates. Finally,
in Section V-C, we study the efficiency of the rate allocation
obtained at a Nash equilibrium.

1) Competitive Equilibrium:We denote byp1 the price of
file 1, i.e., the file that type 1 users have, and byp2 the price
of file 2, i.e., the file that type 1 users want. Since only relative
prices matter, without loss of generality we normalizep2 = 1.
User i of type 1 solves the following problem:

maximize u1i(x1i)− y1i

subject to x1i ≤ p1y1i;
x1i ≥ 0; y1i ≤ B1i.

Since the budget constraint will be binding, this problem is
equivalent to:

max
0≤y1i≤B1i

u1i(p1y1i)− y1i.

2This model can be extended so that different users have different linear
costs for uploading: when the utility of useri of typek is ûki(xki)−cki ·yki

where ûki(xki) is continuously differentiable, strictly concave, and strictly
increasing, the results of this Section hold foruki(xki) = ûki(xki)/cki.

The optimization problem for a type 2 user is symmetrically
defined withp1 replaced by1/p1. Given pricep1, the opti-
mality conditions for a useri of type 1 are:

p1u
′
1i(0) ≤ 1, if y1i = 0; (9)

p1u
′
1i(p1y1i) = 1, if 0 < y1i < B1i; (10)

p1u
′
1i(p1B1i) ≥ 1, if y1i = B1i. (11)

The optimality conditions for a user of type 2 are symmet-
rically defined, with p1 replaced by1/p1. The conditions
above give the optimal upload ratesy1i(p1) and y2i(p1).
The optimal download rates arex1i(p1) = p1y1i(p1) and
x2i(p1) = (1/p1)y2i(p1). At a competitive equilibrium, the
market must clear: the total upload rate of type 1 users must
equal to the total download rate of type 2 users (and vice
versa). So, the price vector(p1, 1) is a competitive equilibrium
if: ∑

i

x1i(p1) =
∑

i

y2i(p1), and∑
i

y1i(p1) =
∑

i

x2i(p1).

Note that given the relationship betweenxki andyki, each of
these conditions implies the other.

We know from Corollary 2 that a competitive equilibrium
always exists. The following proposition characterizes the
competitive equilibria.

Proposition 4 If supi u′1i(0) · supi u′2i(0) ≤ 1, then at any
competitive equilibriumy1i = y2i = 0 for all i. On the other
hand, if supi u′1i(0) · supi u′2i(0) > 1, then at any competitive
equilibrium there existi, j such thaty1i > 0 and y2j > 0.

Proof: We first show that ifsupi u′1i(0)·supi u′2i(0) ≤ 1,
there does not exist a competitive equilibrium where some
upload rate is strictly positive. If such an equilibrium exists,
then at least one user from each type must be uploading at a
strictly positive rate. Suppose such an equilibrium exists and
let (p1, 1) be the corresponding price vector. Then, there exist
usersi and j such that:

u′1i(0) >
1
p1

, andu′2j(0) > p1.

By multiplying the two inequalities, we see that the assumption
supi u′1i(0) · supi u′2i(0) ≤ 1 is contradicted.

Now we assume thatsupi u′1i(0) · supi u′2i(0) > 1. Suppose
that there exists a competitive equilibrium whereyki = 0 for
all k andi. Let (p1, 1) be the corresponding price vector. Then,
for all i,

u′1i(0) ≤ 1
p1

, andu′2i(0) ≤ p1.

If we take the supremum in both inequalities and multiply the
result, we see that the assumptionsupi u′1i(0)·supi u′2i(0) > 1
is contradicted.
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2) Nash Equilibrium: We use the proportional allocation
mechanism to clear the market out of equilibrium. The results
in Proposition 3 are simplified in this case, because there
are only two files (|F | = 2) and each user is downloading
a single file. Thus users only report upload rates; it is clear
that they will spend their entire budget on the single file they
wish to download. Letyki be the upload rate that useri of
type k reports andYk =

∑
i yki. If Y1 > 0 and Y2 > 0,

it is straightforward to check that the proportional allocation
mechanism will use the following price to clear the market:

p̂1 =
Y2

Y1
. (12)

If either Y1 = 0 or Y2 = 0, then all agents receive zero
download rate. When users anticipate that the price to clear
the market will be set in this way, they play a game, where
the strategy is the declared upload rate. The strategy space of
useri of type 1 is[0, B1i]. The payoff of useri of type 1 is:

Π1i(y1i) =
{

u1i(y1iY2/Y1)− y1i, if Y1 > 0;
u1i(0), if Y1 = 0.

(13)

If Y1−y1i =
∑

j 6=i y1j > 0, the preceding payoff is continuous
and differentiable on[0, B1i]. A symmetric expression holds
for users of type 2.

We first observe thaty1i = y2i = 0 for all i is a Nash
equilibrium. In particular, ifY2 = 0, the optimal upload rate
for any type 1 user is zero, and symmetrically, ifY1 = 0,
the optimal upload rate of any type 2 user is zero. However,
such a Nash equilibrium is degenerate; it exploits the fact that
the system exhibits a strong complementarity between users.
Such a situation will be trivially avoided if a small amount of
upload rate of each type of file is always available.

Now suppose thatY2 > 0 andY1 − y1i = 0. Then for any
y1i > 0, the utility of useri is u1i(Y2)− y1i, while if y1i = 0
his utility is u1i(0); in this case his utility is discontinuous,
and no best response exists for useri. Thus there does not exist
an equilibrium whereY1 − y1i = 0 andY2 > 0. A symmetric
argument shows that there does not exist an equilibrium where,
for some useri of type 2, Y2 − y2i = 0 and Y1 > 0. Thus
in searching for nonzero Nash equilibria, we can assume that
Y1 − y1i > 0 andY2 − y2i > 0 for all usersi of types 1 and
2, respectively.

WhenY1 − y1i > 0 andY2 > 0, the optimality conditions
for useri of type 1 become:

u′1i(0) ≤ Y1

Y2
, if y1i = 0; (14)

u′1i

(
y1i

Y2

Y1

) (
1− y1i

Y1

)
=

Y1

Y2
, if 0 < y1i < B1i; (15)

u′1i

(
B1i

Y2

Y1

) (
1− B1i

Y1

)
≥ Y1

Y2
, if y1i = B1i. (16)

Symmetric optimality conditions hold for a useri of type 2,
whenY2 − y2i > 0 andY1 > 0.

Let N1 and N2 be the number of type 1 and type 2
users respectively. The following theorem shows that under
reasonable conditions, a non-zero Nash equilibrium exists.

This result is not straightforward, as the payoff function is
typically discontinuous aty = 0, so a direct fixed-point
argument does not suffice. We instead use a perturbation
approach: we introduce two “virtual” users who upload at a
rateε for each file. In this regime a Nash equilibrium always
exists; and by considering the limit asε approaches zero we
are able to establish existence of a Nash equilibrium for the
original game.

Theorem 4 If Assumption 4 is satisfied,u′1i(0) > N1/(N1 −
1) for all i, and u′2i(0) > N2/(N2 − 1) for all i, then there
exists a Nash equilibrium(y1,y2) at which not all rates are
equal to zero.

Proof: We use a perturbation approach. Assume there is
a “virtual” type 1 user that always uploadsε of file 1, and
a “virtual” type 2 user that always uploadsε of file 2. Given
strategiesyk andy2 of typek users, note thatYk = ε+

∑
i yki.

Thus, for anyε > 0, the utility function of each useri of type
k is continuous in the strategies of all users, and concave in
yki. Moreover, the strategy space of each user is compact and
convex. Thus, according to Theorem 1 of [20] there exists a
Nash equilibrium.

We first show that whenε > 0, at any Nash equilibrium
not all upload rates can be zero. Suppose that at some Nash
equilibriumy1i = 0 for all i. Then,Y1/Y2 = ε/(ε+

∑
i y2i) ≤

1 and (14) gives a contradiction. The symmetric argument for
type 2 users shows thaty2l > 0 for somel. Thus, at any Nash
equilibrium there existi, l such thaty1i > 0 andy2l > 0.

Let {εn} be a strictly positive sequence such thatεn → 0.
For eachn, let yn

1i, yn
2i be Nash equilibrium rates givenεn,

and letY n
1 = εn +

∑
i yn

1i andY n
2 = εn +

∑
i yn

2i. Then for all
i andk, yn

ki/Y n
k lies in the compact interval[0, 1] and thus has

a limit point. Letnm be a subsequence such that asm →∞,
for all i we haveynm

1i /Y nm
1 → αi, andynm

2i /Y nm
2 → βi. Note

that there exist a useri of type 1 and userj of type 2 such
that αi ≤ 1/N1, andβj ≤ 1/N2.

Taking subsequences again if necessary, we also assume that
for each useri of type k, ynm

ki converges asm →∞ (as this
sequence take values in the compact strategy space of useri).
Suppose thatY nm

1 → 0 andY nm
2 → 0. Then:

u′1i

(
ynm
1i

Y nm
1

Y nm
2

)
·
(

1− ynm
1i

Y nm
1

)
→ u′1i(0) · (1− αi) > 1;

u′2j

(
ynm
2j

Y nm
2

Y nm
1

)
·
(

1−
ynm
2j

Y nm
2

)
→ u′2j(0) · (1− βi) > 1.

These conditions together with the optimality conditions (14)-
(16) imply that there existsk such thatY k

1 /Y k
2 > 1 and

Y k
2 /Y k

1 > 1, which is a contradiction.
Now suppose that asm →∞, Y nm

1 → 0 butY nm
2 → c > 0.

Then from the optimality conditions (14)-(16), there existsM
such thatynm

1i > 0 for all i and all m ≥ M . Furthermore,
there must exist a useri such thatynm

1i /Y nm
1 → αi ≤ 1/N1.

Thus we have:

Y nm
1

Y nm
2

= u′1i

(
ynm
1i

Y nm
1

Y nm
2

)
·
(

1− ynm
1i

Y nm
1

)
≥ u′1i

(
1

N1
Y nm

2

) (
N1 − 1

N1

)
.
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The right hand side is strictly positive asm →∞, while the
left hand side approaches zero. We conclude that we must
haveY nm

1 → c1 > 0 andY nm
2 → c2 > 0.

Suppose that asm → ∞, ynm

ki → yki for each useri of
typek. We will show that the resulting rates constitute a Nash
equilibrium of the original game. If not, then there exists some
user with a profitable deviation. Without loss of generality, let
this be useri of type 1. Becauseu1i is continuous, andYk =∑

j ykj > 0 for k = 1, 2, it is straightforward to check that
for sufficiently largem useri will have a profitable deviation
as well. This contradicts the assumption thatym

1 andym
2 are

a Nash equilibrium givenεnm ; as a result, no such profitable
deviation can exist. We conclude thaty1 andy2 constitute a
nonzero Nash equilibrium, as required.

We now develop acompetitive limit, where the number of
users of each type becomes large. Suppose thatN1, N2 →∞,
and consider a sequence of Nash equilibriayN indexed by
N = N1 + N2; by taking subsequences if necessary, we can
assume the Nash equilibria converge, say toy. Let Y N

k =∑
i yN

ki. Suppose thatyN
ki/Y N

k → 0 for all usersi of typek, but
that Y N

2 /Y N
1 → p1 ∈ (0,∞); we normalizep2 = 1. Under

these assumptions, since the optimality conditions (14)-(16)
are continuous, they become identical to the optimality condi-
tions (9)-(11) for a competitive equilibrium. Thus informally,
we expect that the Nash equilibrium rates should approach
competitive equilibrium rates.

Formally, recall that we definexki(p1) and yki(p1) as the
optimal solutions for a price taking user (i.e., a user solving
(1)-(4)), given a pricep1. We then have the following theorem.

Theorem 5 Let N = N1 + N2 be the total number of users.
Suppose that asN → ∞, both N1 → ∞ and N2 → ∞.
Suppose that Assumption 4 holds for the utility function of each
user,supi Bki < ∞, supi u′ki(0) < ∞, and inf u′ki(0) > 1 for
k = 1, 2. Let yN denote a nonzero Nash equilibrium when
N = N1+N2 users are in the system, and letpN

1 = Y N
2 /Y N

1 ,
whereY N

k =
∑

i yN
ki. Then:

1) 0 < infN pN
1 and supN pN

1 < ∞.
2) For all i andk, yN

ik/Y N
k → 0 asN →∞, whileY N

k →
∞ as N →∞.

3) Any limit point (p1,y) of the sequence(pN
1 ,yN ) sat-

isfies the competitive equilibrium optimality conditions
(9)-(11).

Proof: It suffices to show thatY N
k → ∞ as N → ∞,

for k = 1, 2. In this case, the second property of the theorem
holds simply because eachyik is bounded above by the upload
rate constraint. Further, the optimality conditions (14)-(16)
will imply both the first and third properties of the theorem:
the first property follows becausepN

1 cannot go to zero nor
become unbounded if some users have positive rate; and the
third property follows because the Nash optimality conditions
are continuous as long asY1 > 0 andY2 > 0.

Suppose thatY N
1 remains bounded asN → ∞; in this

case, taking subsequences if necessary, we can assume that

Y N
1 → c1 < ∞ as N → ∞. Suppose also thatsupN Y N

2 =
∞; then for at least one type 2 useri the analogous optimality
conditions (15) or (16) hold. Taking subsequences if necessary,
we have asN → ∞, Y N

2 /Y N
1 → ∞ and Y N

1 /Y N
2 → 0,

which contradicts either (15) or (16) for type 2 useri and
the assumptionsupi u′1i(0) < ∞. ThusY N

2 remains bounded
as N → ∞, so taking subsequences again if necessary, we
assume thatY N

2 → c2 < ∞ asN →∞.
Without loss of generality, we can assume thatc1/c2 ≤

1; otherwise we apply the subsequent argument to type 2
users. Again taking subsequences if necessary, we assumeyN

ki

converges toyki for all i and k; this is straightforward, as
the strategy space of each user is compact. Now sinceY N

1

remains bounded for largeN , there exists at least one useri
of type 1 who hasy1i = 0. For such a user, taking limits in
(14)-(15), we conclude we must have:

u′1i(0) ≤ c1

c2
≤ 1.

This contradicts our assumption thatinfi u′1i(0) > 1. Thus we
conclude that in factY N

k → ∞ asN → ∞, for k = 1, 2, as
required; this establishes the theorem.

The preceding theorem shows that in the large system limit,
it is as if each user optimizes as a price taker. Observe that
from the proof, in the limit we have infinite upload rates for
both types of files; thus we cannot directly interpret the limit
point as a competitive equilibrium. However, we can make
the following precise statement: asymptotically, users choose
upload rates that are nearly equal to their optimal upload rate
if they were acting as price takers. One way to interpret such
a theorem is that in large peer-to-peer systems, fully strategic
behavior by the users will not ultimately cause large deviations
from competitive equilibrium behavior.

B. Homogeneous Utilities

In this section we consider a system where all users have
the same utility functions (i.e.,u1i(·) = u2i(·) = u(·)) and the
same rates (i.e.,B1i = B2i = B). Moreover, we assume that
there is the same number of type 1 and type 2 users, denoted
N . This is a special case of the model analyzed in the previous
subsection.

Throughout this section, to avoid boundary conditions, we
will make the following additional simplifying assumption
about the utility functions; the analysis can be extended to
study the case where the assumption does not hold, but without
a significant change in insight.

Assumption 5 The functionu(·) satisfiesu′(x) →∞ asx →
0, and u′(x) → 0 as x →∞.

Note that under this assumption, ifu is strictly concave,
thenu′−1(x) is well defined forx ∈ (0,∞). In the next two
sections, we study competitive equilibria and Nash equilibria
of this model, respectively; our key result is that under
the homogeneity assumption, the system has a unique Nash
equilibrium.
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1) Competitive Equilibrium:We show that under Assump-
tions 4 and 5, the pricep1 = 1 is always a competitive
equilibrium of this economy. First suppose thatu′(B) < 1.
Since u′(·) is continuous, there is ay ∈ (0, B) such that
u′(y) = 1. Then, whenp1 = 1, a user of type 1 will choose
to upload and downloadu′−1(1), and the same for all users of
type 2. Since the total upload and download rates of a file are
equal, this is a competitive equilibrium. On the other hand, if
u′(B) ≥ 1, then whenp1 = 1, all users will choose to upload
B. In this case the upload rate constraint binds, and we again
have a competitive equilibrium.

In the special case we are studying here, uniqueness of
the competitive equilibrium can be guaranteed via a simple
condition on the utility functionu.

Lemma 2 Suppose Assumptions 4 and 5 are satisfied, and
u(·) is twice differentiable.Then, the following are equivalent:

1) For all B > 0, the Optimization Problem of each user
satisfies the gross substitutes property.

2) pu′−1(p) is nonincreasing on(0,∞).
3) xu′(x) is nondecreasing.

In this case the competitive equilibrium is unique.

Proof: Let D(p) = u′−1(p). As above, we normalize
p2 = 1. We first show the equivalence of Properties 1 and
2. Consider a type 1 useri; the argument for type 2 users is
symmetric. For a given pricep1 > 0, his budget constraint is
x1i ≤ p1 ·y1i and will bind at any optimal solution (Lemma 1).
Thus his objective function isu(x1i)− x1i/p1. The nonnega-
tivity constraint in (4) cannot bind, given Assumption 5. The
optimal solution is given byx1i(p1) = min{D(1/p1), p1B},
so thaty1i(p1) = min{(1/p1)D(1/p1), B}.

Sinceu is strictly concave,D(·) is strictly decreasing. Thus
Condition 2 in Definition 4 is satisfied; that is,x1i(p1) strictly
increases ifp1 strictly increases. Furthermore, if Property
2 in the statement of the lemma holds, theny1i(p1) is
nondecreasing inp1, so Condition 1 of Definition 4 is also
satisfied. Conversely, fixp′ > p > 0, and chooseB > pD(p).
Then if gross substitutes holds, we havey1i(1/p) ≥ y1i(1/p′),
so pD(p) ≥ p′D(p′). Thus Property 1 and Property 2 are
equivalent above.

Equivalence of the last two Properties follows by standard
relationships between the derivatives ofu′ andu′−1.

2) Nash Equilibrium: The analysis of Nash equilibria is
simplified when the system is homogeneous, due to the
following lemma.

Lemma 3 If u(·) is a strictly concave function, then users of
the same type will have the same upload rate at any Nash
equilibrium.

Proof: Suppose there is a Nash equilibrium at which
y1i < y1k for somei 6= k. This means that0 ≤ y1i < B and

0 < y1k ≤ B. Then, if Y1 − y1k > 0,

u′
(

y1i

Y1
Y2

)
≤ 1

Y1 − y1i

Y 2
1

Y2

<
1

Y1 − y1k

Y 2
1

Y2

≤ u′
(

y1k

Y1
Y2

)
,

where the first inequality follows from (14) and (15), and the
last inequality follows from (15) and (16). Sincey1kY1/Y2 >
y1iY1/Y2, this contradicts the assumption thatu(·) is strictly
concave.

Now suppose thatY1−y1k = 0. Then,y1j = 0 for all j 6= k,
while y1k is strictly positive. IfY2 = 0 the best response for
any type 1 user is to upload zero, so ify1k > 0 we must have
Y2 > 0. But no such equilibrium exists: userk will always
want to decrease his upload rate. This shows that there cannot
be an equilibrium at which0 = y1i < y1k. A symmetric
argument holds for users of type 2.

For the remainder of this section, we suppose that Assump-
tions 4 and 5 hold. Ifu′(x) → ∞ as x → 0, the optimality
condition (14) will never apply. Lety1, y2 be the rates at
which users of type 1 and type 2 upload, respectively, at a
Nash equilibrium; and recall thatN denotes the number of
users of each type. Ify1 > 0 and y2 > 0, the optimality
conditions (15) and (16) can be equivalently written:

u′(y2) =
N

N − 1
y1

y2
, if 0 < y1 < B; (17)

u′(y2) ≥
N

N − 1
B

y2
, if y1 = B; (18)

Similarly, for users of type 2 the following conditions hold.

u′(y1) =
N

N − 1
y2

y1
, if 0 < y2 < B; (19)

u′(y1) ≥
N

N − 1
B

y1
, if y2 = B; (20)

If u′(0) ≤ N/(N−1), theny1 = y2 = 0 is the unique Nash
equilibrium. To show this, we first observe that ify1 = 0,
then y2 = 0 (and vice versa), i.e., there can not be a Nash
equilibrium at which only users of one type are uploading
at strictly positive rates. Now suppose there exists a Nash
equilibrium at whichy1 > 0 and y2 > 0. Then, assuming
that u(·) is strictly concave,

(
N

N − 1
)2 ≥ (u′(0))2 > u′(y1)u′(y2) ≥ (

N

N − 1
)2,

a contradiction.
If u′(0) > N/(N −1), then there exists a Nash equilibrium

with y1 > 0 and y2 > 0: for example, y1 = y2 =
min(u′−1(N/(N−1)), B). When the upload rates are positive
we define the Nash price aspNE = y2/y1. ThuspNE = 1 is a
possible Nash price and we know thatp∗ = 1 is a competitive
equilibrium price. In particular, ifu′(0) > N/(N − 1), there
exists a Nash equilibrium with the same price as the unique
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competitive equilibrium. Theorem 5 does not apply here,
because of Assumption 5. However, by Lemma 3,yki/Yk =
1/N → 0 as N → ∞, and thus any limit point(p1,y) of
the sequence(pN

1 ,yN ) satisfies the competitive equilibrium
optimality conditions. Moreover, it can be shown that the rates
of any sequence of Nash equilibria converge to the rates of a
competitive equilibrium.

The following proposition is our key result for the model
with homogeneous users: we show that if gross substitutes
holds, there exists a unique Nash equilibrium where the upload
rates are strictly positive. The proof uses the characterization
of gross substitutes shown in Lemma 2.

Proposition 5 Suppose that Assumptions 4 and 5 hold and
u(·) is twice differentiable. Then, if the Optimization Problem
of each user satisfies the gross substitutes property, there is
a unique Nash equilibrium with strictly positive rates. At the
equilibrium y1 = y2 = u′−1(N/(N − 1)).

Proof: By Theorem 4, we know a Nash equilibrium
exists. We show there exists at most one Nash equilibrium. Let
(y1, y2) be Nash equilibrium upload rates, and first suppose
that the upload rate constraint does not bind. Lety2/y1 = a.
By substituting in (17) and (19), we obtain:

u′(ay1) =
N

(N − 1)a
; u′(y1) =

N

N − 1
a.

We only consider values of a ∈ (N/(N −
1)(1/u′(0)), Nu′(0)/(N − 1)), since only such values
may yield strictly positive rates. The second equation gives
y1 = u′−1(Na/(N − 1)) and by substituting in the first
equation, we conclude:

u′
(

au′−1

(
Na

N − 1

))
=

N

(N − 1)a
.

Clearly, a = 1 is a solution, which corresponds toy1 = y2 =
u′−1(N/(N − 1)). SinceN/((N − 1)a) is strictly decreasing
in a, if u′(au′−1(Na/(N − 1))) is nondecreasing ina, then
a = 1 will be the unique solution. By Assumption 4,u′(·) is
a strictly decreasing function, and from Lemma 2,xu′−1(x)
is nonincreasing on(0,∞). Thus, there exists at most one
Nash equilibrium with strictly positive rates at which the rate
constraints do not bind.

From Lemma 2, we know that if the Optimization Problem
of a user satisfies the gross substitutes property, thenxu′(x) is
nondecreasing. We now show that ifxu′(x) is non-decreasing
and the rate constraint binds for one type of user, then the rate
constraint will also bind for the other type of user. Suppose
thaty1 = B andy2 < B. Then, using (18) and (19), we have:

N

N − 1
B ≤ y2u

′(y2) ≤ Bu′(B) =
N

N − 1
y2 <

N

N − 1
B,

which is a contradiction.
It remains to show that ify1 = y2 = B is a Nash

equilibrium, thenu′−1(N/(N − 1)) ≥ B. Indeed, if y1 =
y2 = B is a Nash equilibrium, then from (18) and (20),

u′(B) ≥ N/(N − 1). But then, from Assumption 4,B ≤
u′−1(N/(N − 1)).

The Nash equilibrium is not always unique, as the following
example shows. Letu(x) = −1/x, so thatpu′−1(p) =

√
p is

strictly increasing. The optimality conditions givey1 · y2 =
(N − 1)/N , i.e. there are infinitely many Nash equilibria.
In particular, the set of Nash equilibria is{(y1, y2) : 0 ≤
y1 ≤ B, 0 ≤ y2 ≤ B, y1y2 = (N − 1)/N}. For this utility
function there are also infinitely many competitive equilibria:
since (1/p)u′−1(1/p) = u′−1(p) for every p, any price is a
competitive equilibrium.

C. Efficiency

We consider a Nash equilibrium of the game that results
from the proportional allocation mechanism at which not all
rates are zero; i.e.,Y1 > 0 and Y2 > 0. Notice that when
type 1 users choose their optimal upload rate, they takeY2 as
given. Thus, we can interpret the ratesy1i reported by type
1 users as a Nash equilibrium to the following auction game.
Suppose that the available upload rate of file 2 is fixed and
equal toY2. Type 1 users submit bids to acquire a share of
the available file transfer rate for file 2; each user has to pay
his bid, and is allocated a download rate proportional to his
bid. In [21], it is shown for this game that if Assumption 4 is
satisfied, and for alli u1i(0) ≥ 0, then:∑

i∈U

u1i

(
y1i

Y2

Y1

)
≥ 3

4
maxP

i∈U x̄1i=Y2

∑
i∈U

u1i(x1i).

A symmetric result holds for type 2 users. This result shows
that given the available upload rate of file 2, it is nearly
efficiently shared among type 1 users; and similarly for type
2 users.

On the other hand, Nash equilibria need not be Pareto
efficient. Suppose that Assumption 4 holds, users are homoge-
neous, and1 < u′(0) ≤ N/(N − 1), whereN is the number
of users in each type. Then at any competitive equilibrium,
all upload and download rates will be strictly positive, while
at any Nash equilibrium all rates will be zero. Since each
user has the option of uploading and downloading zero in the
competitive equilibrium, this shows that each user is strictly
worse off at the Nash equilibrium.

VI. CONCLUSION

This paper presents a model of peer-to-peer filesharing as an
exchange economy. Our formulation is novel, and the approach
not only controls free-riding, but also ensures that users that
provide the most benefit to the system are appropriately
rewarded. In this section we briefly comment on two issues
that require additional attention: first, the use of a centralized
server; and second, the lack of “bankable” currency.

In our model, we use a central server to update prices.
However, the information stored at this server scales only with
the number offiles in circulation—not with the number of
users. In this sense the system is highly scalable. Nevertheless,
our model has ignored issues of distributed query processing
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and the impact of network structure on price dynamics; such
issues remain fruitful avenues for future research.

A potential implementation problem is thatusers are not
allowed to store currency. This can be problematic, as users
cannot leverage valuable uploads today to finance downloads
tomorrow. This problem might be resolved by extending our
model to allow users to store currency; from a game theoretic
standpoint, however, this would require analyzing users’ net
present value in finding equilibria. For this reason such a
model is a substantial departure from the framework in the
current paper, and also remains an open direction.
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