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Abstract. This paper describes Olive, the first dis-
tributed block storage system to provide consistent point-
in-time branching. Point-in-time branching allows users
to recursively and quickly snapshot or clone the storage
state. It has a wide range of applications including test-
ing new deployments or upgrades without disrupting a
running system, quickly provisioning large homogeneous
systems, and preserving old versions of data. Olive pro-
vides block-level access and strong consistency for broad
applicability, allowing it to branch file systems, database
systems, and every other storage application that ulti-
mately stores data on block storage. Olive is distributed
and replicated to provide fault tolerance and availability.
Providing strong consistency for branching in a replicated
distributed system is a technical challenge that we address
in this work. We evaluate Olive and show that branching
typically takes a few tens of milliseconds, and so it has
little impact on I/O’s.

1 Introduction
Distributed replicated storage systems provide many

benefits over single-server solutions, like better scalability
and cheaper reliability. Scalability comes from dividing
work among many servers, and cheaper reliability comes
from replicating over unreliable commodity hardware in-
stead of using specialized fault-tolerant hardware. Dis-
tribution, however, poses challenges: variable asymmet-
ric network delays, and the inability to distinguish a node
that has crashed from one that is slow to respond, make
it impossible for nodes to always be consistent with each
other. These inconsistencies must be dealt with, ideally in
a way transparent to users.

This paper proposes a new scheme to provide point-
in-time branching of storage, or the ability to recursively
fork off storage branches that can evolve independently,
in a replicated distributed system. Branching storage in-
cludes two basic functions: snapshots and clones. A snap-
shot is a read-only virtual copy that preserves the state of
storage at a given point in time, while a clone is a virtual
copy that can change independently of its source.1 These
storage branches are recursive, meaning that branches can
be created off other branches.

1Clones are sometimes called “writable snapshots”, but we avoid this
term since it is an oxymoron.

Branching storage has many uses that become more
important as the size of storage increases without a cor-
responding increase in data transfer rates—a trend that
has made it increasingly difficult to manipulate ever larger
data volumes. As an example application, suppose that a
user wishes to install and test a software upgrade without
disturbing the current working version. Without branch-
ing storage, this could involve copying large amounts of
application data and environment state, which can take
hours or days. With branching storage, the user can sim-
ply create a storage clone very quickly, and install the up-
grade on the clone, without disturbing the original ver-
sion. As another application, suppose that an adminis-
trator wishes to provision storage to many homogeneous
computers from a “golden” copy, as is often needed in
a computer lab, store, or data center. Without branch-
ing storage, this involves copying entire storage volumes
many times. With branching distributed storage, the ad-
ministrator can simply clone the golden copy once for
each computer. Besides being fast to create, clones are
space efficient because they share common unmodified
blocks.

This paper describes Olive, a novel point-in-time
branching storage system that is efficient, distributed,
broadly applicable, and fault tolerant. Providing point-in-
time branching for distributed replicated systems raises
new consistency issues because of the need to simulta-
neously coordinate replicas and capture distributed state
when there are many outstanding operations. We believe
our techniques to handle these issues are applicable not
just to Olive, but also to other distributed replicated stor-
age systems.

While designing Olive, our goal was to maximize its
applicability to real systems. To do so, we made two
broad design choices: (1) Provide branching at the low-
est level: block storage. Branching functionality can be
designed at various levels, including database systems,
file systems, object stores, or block storage. By choosing
block storage, Olive can be used to branch file systems,
database systems, or any application that ultimately stores
data on block storage. (2) Preclude changes to storage
clients. Changes to storage clients are a huge inhibitor for
adoption of new storage solutions, due to the large exist-
ing base of clients and applications. Thus, Olive does not

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 367



require storage clients to be modified in any way: they do
not need to run special protocols, install special drivers,
or use special storage paradigms. In fact, we took this
goal to an extreme, by showing that Olive can support
an industry-standard storage protocol, iSCSI [22]. Olive
presents clones and snapshots as regular block volumes
on a network.

Olive provides replicated storage distributed over a net-
work for fault tolerance. We use quorum-based data repli-
cation for high-availability, which provides three benefits.
First, the system requires only a quorum (e.g., a majority)
of replicas to be accessible to a client at any time. Second,
the accessible quorum can vary with different clients, due
to their placement in the network for example, and over
time, due to transient network behavior or brick failures.
Third, if a client cannot access a quorum, part of the stor-
age becomes temporarily unavailable to that client, but
neither storage integrity nor other clients are affected.

To broaden applicability, Olive also provides a very
strong form of consistency, linearizability [9], which al-
lows Olive to be used by applications that are very de-
manding on storage consistency, in addition to less de-
manding applications. Roughly speaking, linearizability
requires that operations appear to occur at a single point
in time between the start and end of the operation. For
branching storage, this means that if a clone or snapshot
is requested at time t1 and completes at time t2 > t1 then
it will capture the global state of storage at a single point
in time between t1 and t2. Note that linearizability im-
plies other forms of consistency used in storage systems,
like sequential consistency, causal consistency, and crash
consistency. Crash consistency means that a branch ini-
tially captures some state that could have resulted from a
crash, which is important because applications typically
know how to recover from such states.

We implemented Olive within the Federated Array of
Bricks (FAB), a low-cost distributed storage system that
provides block-level storage and uses distributed data
replication for fault tolerance [3, 20]. We show that
branching a volume typically takes a few tens of millisec-
onds so it has little impact on I/O’s. Experiments also
validate the consistency of our scheme.

In summary, Olive is the first distributed block stor-
age system to provide point-in-time branching. This is
achieved without any client changes, which is an impor-
tant consideration for applicability to real systems. A
key contribution of Olive is its scheme to provide strong
consistency for distributed replicated storage, by ensuring
that replication and branching are coordinated carefully.
As far as we know, Olive is the first system to tackle this
issue.

This paper is organized as follows. In Section 2 we ex-
plain the assumed environment and the requirements for
Olive. Section 3 explains the version tree, a simple struc-

Figure 1: Distributed storage setting.

ture that is used both internally and by users of Olive. We
explain the exact consistency that Olive provides in Sec-
tion 4. Olive’s efficiency comes from sharing data be-
tween branches; we explain how this is done in Section 5.
Section 6 covers the main algorithms in Olive, which are
responsible for providing consistency. Section 7 has a dis-
cussion on data layout on physical storage. We describe
the evaluation of Olive in Section 8 and related work in
Section 9.

2 Environment and requirements
Environment. We consider a distributed system where

nodes communicate with each other by sending point-to-
point messages over network links. Every pair of nodes
can send messages to each other. Nodes may fail by crash-
ing; a crashed node stops executing and becomes unre-
sponsive. We do not consider malicious failures. Net-
work links may fail by dropping messages, but we assume
that if a message is repeatedly sent and the destination
does not crash then the destination eventually receives the
message (no permanent partitions). We do not assume
that the network is synchronous or that network delays
are bounded.

Some nodes in the network are storage nodes or bricks;
together, they implement the storage system. Other nodes
have clients running storage applications, like file systems
or database systems (Figure 1). In an ideal world, storage
clients can execute custom protocols to read and write
data, and these protocols can implement replication for
fault tolerance. But in practice, deploying custom proto-
cols at clients is very difficult; clients instead use standard
storage protocols to send a read or write request to a sin-
gle brick. This brick can use custom protocols to execute
the client request, and then returns the result to the client,
if any, using the standard storage protocol.

Requirements. Our goal in producing Olive is to ob-
tain a distributed block-based storage system that pro-
vides point-in-time branching. Distributed means that
Olive is implemented by multiple storage nodes, and it is
usable by multiple application nodes. Block-based stor-
age means that storage is accessed through fixed-length
units called blocks, typically with 512 bytes each. Olive is
expected to have the usual attributes of a general-purpose
storage service: good reliability, availability, and perfor-
mance. Providing point-in-time branching means to im-
plement two functions: snapshots and clones of a stor-
age volume. A snapshot of a volume is a data collection
that retains the past contents of a volume despite updates.
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Snapshots are useful for archiving data or in other situa-
tions where old versions of data are needed. For broad us-
ability, we require that a snapshot be accessible as a stor-
age volume, so that applications that run on regular stor-
age can also run on snapshots. The volume from which a
snapshot originates is called its source.

A clone of a volume is another volume that starts out
as a virtual copy but may later diverge, allowing data to
evolve in multiple concurrent ways. For flexibility, we
require all volumes to be clonable, including clones and
snapshot volumes themselves. Cloning a volume results
in a new writable volume whose initial contents are iden-
tical to the source volume. While the data in the clone
can change, the snapshot retains its original data. It is
possible to clone a snapshot multiple times, for example
to experiment with different evolutions of data from the
same snapshot.

We also make the following further requirements of
Olive:
• Do not require client changes. For broadest applica-

bility, clients should use a standard network storage
protocol for reading and writing. There are currently
no standard interfaces for requesting snapshots and
clones, so we allow some flexibility here, but the
interface should be minimal and intuitive, so that
it can be replaced with a standard interface once it
emerges.

• Provide a strong form of consistency. A storage vol-
ume may be cloned or snapshotted while there are
outstanding I/O operations, because storage clients,
such as file systems, can have concurrent activi-
ties, and most cannot be expected to pause their
activities when a snapshot is made (and requiring
this would violate the previous requirement). For
broadest applicability, in these cases snapshots and
clones should provide a strong form of consistency
so that the service can be used with all applications.
Roughly speaking, a consistent snapshot ensures that
the data that it preserves reflects the state of storage
at some point in the past. And a consistent clone en-
sures that its initial state is a consistent snapshot. We
later describe the exact consistency guarantees pro-
vided by Olive.

• Avoid performance disruptions. When creating
new branches or when using data volumes that are
branches, the performance of the storage should not
suffer significant impact.

• Be space efficient. Storage branches may share lots
of common data, and in those cases, the system
should avoid having multiple physical copies in stor-
age.

3 The version tree
The version tree is a simple data structure that Olive

uses to describe the relationship between various storage

Figure 2: Examples of version trees.

Figure 3: How branching operations affect the version
tree: (a) Taking a snapshot S of a writable volume V .
(b) Making a clone V of a snapshot S. (c) Making a clone
W of a writable volume V .

branches, where each branch is a volume. In the con-
text of Olive, a volume is a set of blocks, but in general
it could be any set of data objects that are branched to-
gether. Nodes in the version tree correspond to volumes,
where a leaf node corresponds to a writable volume, and
the ancestors of the leaf node correspond to all its snap-
shots, with the most recent snapshots closer to the leaf.
Inner nodes in the tree are always (read-only) snapshot
volumes. Figure 2 (a) is an example of such a tree. There
are two leaves, V1 and V2, which are writable volumes,
and two snapshots of V1, S1 and S2. S1 is also a snapshot
of V2. This case might occur if V2 is created as a clone
of S1. Figure 2 (b) shows how the tree changes if a user
takes a snapshot S3 of V2: S3 is the parent of V2 because
S3 is V2’s most recent snapshot. And Figure 2 (c) shows
what happens if the user subsequently creates a clone of
S3.

In general, taking a snapshot of a writable volume V
results in replacing V with a new node S and adding V
as a child of S. This is depicted in Figure 3 (a), where
the triangles represent the version trees before and after
taking a snapshot. Cloning a snapshot S results in creat-
ing a new child V of S (Figure 3 (b)). Cloning a writable
volume V corresponds to creating a snapshot of V and
then cloning the snapshot. The result is that V is replaced
with a snapshot S and two children, V and a new node
W (Figure 3 (c)). Note that snapshot S is a by-product of
cloning V ; the reason for this will become clear later, but
roughly speaking it is because we want both V and W to
initially share allocation of their data, allowing for space
efficiency.

The version tree allows a user to visualize all previous
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states of a given writable volume V , as well as to under-
stand where in the past two volumes have diverged. As
we will see later, the version tree is also needed by Olive
to maintain data consistency.

4 Consistency provided
Intuitively, a replicated storage system that supports

branching needs to maintain two forms of consistency:
• Replica consistency: ensuring that replicas have

compatible states; and
• Branching consistency: ensuring that snapshots and

clones have meaningful contents.

Replica consistency is a form of consistency that is in-
ternal to the storage system, while branching consistency
is visible to storage clients.

The branching consistency provided by Olive is lin-
earizability [9], a strong and well-understood condition
used often in concurrent systems. Roughly speaking, lin-
earizability considers operations that have non-zero dura-
tions, and requires each operation to appear to take place
at a single point in time, and this point must be between
the start and the end of the operation. For branching stor-
age, by definition the operations are read, write, clone,
and take snapshot; the start of an operation is when a
client requests the operation, and the end is when the
client receives a response or acknowledgement. For ex-
ample, Figure 4 (a) shows a timeline where time flows to
the right. There are four operations: three writes to vol-
ume V for blocks B1, B2, and B3 with data x, y, and z,
respectively, and one clone operation on V . These oper-
ations have start and end times represented by the end-
points of the lines below each operation. Linearizabil-
ity requires operations to appear to take effect at a single
point on these lines. Figures 4 (b), (c), and (d) show some
points in time where each operation could appear to occur
in accordance with linearizability. In (b), the clone oper-
ation “happens” at a point after the write to B1 but before
the other writes; as a result, the clone incorporates the first
write but not the others. In (c) and (d), the clone operation
happens at a different place and so the clone incorporates
different sets of writes. All these behaviors are allowed by
linearizability. One behavior not allowed by linearizabil-
ity is for the clone to incorporate the writes to B1 and B3,
but not the one to B2, because there is no way to assign
points to each operation to produce this behavior.

Linearizability captures the intuition that if two oper-
ations are concurrent then they may be ordered arbitrar-
ily, while if they are sequential then they must follow real
time ordering.

Olive achieves branching consistency and replica con-
sistency by building upon an existing protocol for repli-
cated storage [3, 20]. This protocol solves the prob-
lem of how new writes are propagated to the replicas,
and how reads reconcile data from possibly divergent

Figure 4: Depiction of linearizability. (a) shows an ex-
ecution history with three writes and a clone operation.
(b)-(d) show three allowable ways to linearize this execu-
tion.

replicas, without any branching. The problems that we
solve are how to propagate information about new stor-
age branches, how this information interacts with reads,
writes and the replicated storage protocol to achieve lin-
earizable branching, and how and when different branches
can share data for efficiency. This is explained later in
Section 6.

Relation to other forms of consistency. Linearizabil-
ity is similar to sequential consistency [13], but different
because sequential consistency allows an operation to ap-
pear to take place after the operation has completed or
before the operation has begun. For example, with se-
quential consistency, the clone could exclude all writes
in Figure 4 (a), i.e., the clone appears to occur at a point
before all writes. This could occur with an implementa-
tion that did not see frequent writes because they are still
in some buffer; this implementation, however, would not
satisfy linearizability.

Linearizability implies crash consistency. Roughly
speaking, crash consistency is a consistency condition for
snapshots (or clones) that requires that the state captured
by a snapshot be one that could have resulted from halting
the system unexpectedly (crash). For this definition to be
precise, one needs to define what are the allowable states
produced by a crash, but typically it means that completed
writes are incorporated while outstanding writes may be
incorporated partly. It is not difficult to show that lineariz-
ability implies this property, in the sense that a branch-
ing storage system satisfying linearizability ensures crash
consistency of its snapshots or clones.

Crash consistency means that a branch initially cap-
tures some state that could have resulted from a crash,
which is important because applications typically know
how to recover from such states. The recovery procedure
typically involves writing data to the volume, and might
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require user choices, such as whether to delete unattached
inodes, and so it is performed at a clone derived from a
snapshot.

5 Data sharing
Storage volumes that are related by branching may

have lots of common data, which can share the storage
medium. This provides not just space efficiency, but also
time efficiency since sharing allows branches to be cre-
ated quickly by simply manipulating data structures. We
next explain these data structures. Throughout this pa-
per, we use the standard terminology that logical offsets
or blocks are relative to the high-level storage volume,
whereas physical offsets or blocks are relative to the stor-
age medium (disks).

Each storage node or brick needs logical-to-physical
maps that indicate where each logical address of a volume
is mapped. This is a map from 〈volume, logical-offset〉 to
〈disk, physical-offset〉. Because it takes too much space
to maintain this map on a byte-per-byte basis, the map is
kept at a coarser granularity in terms of disk allocation
units, which are chunks of L consecutive bytes where L
is some multiple of 512 bytes. L is called the disk alloca-
tion size, and it provides a trade-off between flexibility of
allocation and the size of the map. It is also useful to think
in terms of the reverse physical-to-logical map, which in-
dicates the volume and logical offset that correspond to
each disk and physical offset. This map is one-to-many,
because storage volumes may share physical blocks. The
sharing list of a physical block B is the result of apply-
ing this map to block B: it indicates the set of all stor-
age volumes that share B (strictly speaking, the map also
indicates the logical offset where the sharing occurs, but
this offset is the same for all volumes sharing B). When
a write occurs to a block that is being shared, the shar-
ing is broken and the sharing list shrinks. Sharing can be
broken in two ways: either the volume being written gets
allocated a new block B′ (move-on-write), or the volume
being written retains B while the old contents of B are
copied to B′ (copy-on-write). In the common case, there
will be exactly one volume V in the sharing list of B or
B′ (the volume where the write occurs) and the other list
will be equal to the original list minus V (the volumes that
should preserve the contents before the write). However,
there are situations in which the split will result in more
than one volume in both B and B′. Those situations are
due to recovery reads, which we will cover in the next
section.

6 Algorithm
A key contribution of Olive is its algorithm for reading

and writing data while providing strong consistency and
supporting branching. To explain the algorithm, we first
provide some background on quorum-based data replica-
tion in Section 6.1; this is not a novelty of Olive. The

(a)

(b)

(c)

Figure 5: (a) Using timestamps to resolve replica di-
vergence. (b) Non-determinism that arises from partial
writes. (c) Largest seen timestamp, shown after semi-
colons.

novelty is how to provide branching storage on top of
the replication scheme, as we explain in Sections 6.2–6.8.
Due to lack of space, this paper does not have proofs of
correctness; they will be provided in the full version.

6.1 Quorum-based data replication
To tolerate failures, Olive uses quorum-based replica-

tion [5, 2, 15, 16, 6] modified to work with real distributed
storage systems [3, 20], which we now explain. Stor-
age is replicated at many storage nodes or bricks, such
that data is accessible if a quorum of bricks are opera-
tional and accessible through the network. In this paper,
a quorum means a majority, but other types of quorums
are possible [4]. Majorities can vary with time because
of variance in network delays and brick load, causing one
or another brick to be temporarily slow to respond, or be-
cause of brick crashes. To write new data, a coordina-
tor propagates the data with a timestamp to a majority of
bricks; the timestamp comes from the coordinator’s local
clock, which is nearly synchronized with other coordina-
tors’ clock most of the time. To read data, a coordinator
queries the data at a majority of bricks and decides which
data is the most recent using the timestamp. Because any
two majorities intersect, at least one brick returns to the
coordinator the most recently written data. Figure 5(a)
shows an example. Three bricks store data for block B;
other blocks are not shown. Initially, data x with times-
tamp 1 is stored at bricks 1 and 2, a majority; later, data y
with timestamp 5 is stored at bricks 2 and 3, another ma-
jority; later, a read gets data from bricks 1 and 2, and y is
chosen since it has a higher timestamp.

Partial writes. A partial write occurs when the coordi-
nator crashes while writing to some block B, causing the
new data to be propagated to only a minority of replicas.
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The system is left in a non-deterministic state, because a
subsequent read may return either new or old value, de-
pending on whether the majority that reads intersect the
minority that wrote. For example, Figure 5(b) shows y at
a minority of bricks. A subsequent read will return differ-
ent values depending on which majority responds first, as
determined by network and other delays: if the majority
is bricks 1 and 2, the read returns x, but if the major-
ity is bricks 2 and 3, the read returns y due to its higher
timestamp. This could lead to the problem of oscillating
reads: as majorities change over time, consecutive reads
return different values even though there are no writes.
To prevent this, the coordinator executes a repair phase,
in which it writes back or propagates the value read to
a majority of replicas with a new timestamp. In the ex-
ample, the repair phase writes back x or y with a higher
timestamp, say 8, to a majority of bricks.2

If some coordinator writes while another coordinator
reads, the repair phase of the read may obliterate an on-
going write. In Figure 5(b), y may be at a minority of
bricks not because the coordinator crashed, but because
it has not yet finished propagating y; as both write and
read coordinators continue to execute, the write back of x
may obliterate the write of y. This problem is addressed
through an initial announce phase, in which a coordina-
tor announces to a majority of bricks the timestamp that it
wants to use; each brick remembers the largest announced
timestamp. Thus, writes execute two phases: announce
and propagate (Figure 6). For reads, the announce phase
can be combined with querying the data at bricks, so reads
also execute two phases: announce+query and propagate.
Each phase may involve a different majority of bricks. In
the second phase, if a coordinator propagates a value with
a smaller timestamp than the largest announced times-
tamp at a brick, the brick rejects the value and returns an
error, which causes the coordinator to return an error to
the client. Typical clients (e.g., an operating system) then
retry the operation, for a few times. Figure 5(c) shows the
largest announced timestamp for block B at each brick
after the semicolons; this timestamp is different from the
timestamp of the data, shown in parenthesis. Bricks 1 and
2 have been announced timestamp 8 of an ongoing read
that will later write back x with this timestamp. Mean-
while, an ongoing write with timestamp 5 has propagated
y to brick 3; when it tries to propagate y to bricks 1 or 2,
an error will occur because these bricks saw timestamp 8.
This will cause a client to retry writing y. More generally,
the announce phase helps to deal with a stale timestamp:
if some value at a brick has timestamp T then T has been
announced at a majority of bricks, and so a coordinator

2Some quorum-based replication schemes write back x or y with
its original timestamp, which prevents oscillation from y to x, but still
allows one oscillation from x to y, thus allowing a failed write to take
effect at an unpredictable arbitrary time in the future. This violates the
limited effect property [1], and so Olive does not employ such schemes.

Figure 6: Two-phase write and read operation.

that tries to execute with a smaller timestamp gets an er-
ror. The announce phase also allows an important simple
optimization for reading: in the first phase, if all bricks re-
turn the same data with same timestamp, and indicate that
no higher timestamp has been announced, then the repair
phase is not needed since the data already has the highest
timestamp among all bricks including those that did not
respond.

In the above description, the coordinator reads or writes
a single block, but the scheme allows operation on a range
of blocks, by packaging together information for multiple
blocks in the messages of the protocol.

We now explain how branching works with quorum-
based storage replication, by using the version tree (Sec-
tion 3) to determine what content should continue to be
shared after a write or a read.

6.2 Using the version tree to determine sharing
Recall that the sharing list of a physical block B is the

set of all storage volumes that share B. The sharing list
changes over time as new data gets written to volumes.
For example, consider the version tree in Figure 2 (c), and
suppose that logical block b of volumes S1, S3, V2 and V3

are sharing the same physical block B. Then, the sharing
list for B is {S1, S3, V2, V3}. If a user writes new data
to block b of volume V3 then a new physical block B′ is
allocated for volume V3 (assuming move-on-write instead
of copy-on-write), and the sharing list for B is reduced to
{S1, S3, V2}; the sharing list created for B′ is {V3}.

Read-only snapshots may get their blocks updated too,
because of the repair phase of reads. For example, if the
sharing list for B is {S1, S3, V2, V3} and there is a read on
snapshot S3 that requires writing back to S3 then a new
physical block B′ is allocated for the data being written
back (assuming move-on-write) and the sharing list for
B′ is set to {S3, V2, V3}, while the sharing list for B gets
reduced to {S1}.

The general rule for splitting a sharing list L is that the
volume V being written (or written back) and all its chil-
dren in L should share the newly written contents, while
the other volumes in L should share the old contents This
is consistent with the fact that descendants of node V
represent later versions of that node, and so if there is a
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change on V to fix nondeterminism then descendants of
V that are sharing data with V also need to fix the nonde-
terminism in the same way.

6.3 Achieving consistency
Recall that Olive must provide two forms of consis-

tency: replica consistency and branching consistency. We
now explain the details of the new mechanisms used to
achieve them; keep in mind that each form of consistency
cannot be provided in isolation, but rather require a sin-
gle scheme that provides both. Thus, the separation of
techniques below is merely for didactic purposes.

Replica consistency. To create a new storage branch, a
user sends a request to one of the bricks, say c. Brick c
decides how the version tree needs to be updated, based
on the type of the new branch as explained earlier, and
then propagates this update to other bricks. This propaga-
tion is done with uniform reliable broadcast [7, 8], which
ensures that if one brick receives the update then all live
bricks also receive it, despite failures, thus ensuring even-
tual consistency. Olive uses a simple algorithm to imple-
ment uniform reliable broadcast, described in Section 6.8.

While the propagation is happening, however, bricks
will have divergent version trees. For example, if we take
a new snapshot of V2 from the situation in Figure 2 (a),
bricks will eventually arrive at the tree in Figure 2 (b),
where S3 is the new snapshot. If a new write occurs, and
all bricks have the tree in (b), then the write results in a
copy-on-write on all replicas to preserve the contents for
snapshot S3. But what happens if the new snapshot is still
propagating, and some bricks have (a), while others have
(b)?

In our scheme, the coordinator for the write decides
what to do, and the replicas just follow that decision.
We implement this by having a version number associ-
ated with writable volumes; this number is incremented
every time the volume gets a new snapshot. The num-
ber is the depth of the volume’s node in the tree if snap-
shots are not deleted, but could be higher if snapshots are
deleted. For example, Figure 7 shows a version tree with
two writable volumes V1 and V2 (leaves), assuming no
snapshots have been deleted. The current version of V1

and V2 is 3; version 2 of V1 is snapshot S2, while version
1 is snapshot S1. When executing a write on a volume,
the coordinator reads the volume’s version according to
its local view; bricks receiving a write from the coordina-
tor use that number to decide where the write gets stored.
For example, if the coordinator decides to write version
2 of volume V2 (because the coordinator’s version tree
is slightly out of date and does not have snapshot S3 yet),
then a brick that has snapshot S3 will store the new data by
overwriting data for S3 rather than doing a copy-on-write.
This ensures that replicas treat all writes consistently.

Branching consistency. To achieve branching consis-
tency, the coordinator of a write checks that the version

Figure 7: Version numbers associated with writable vol-
umes V1 and V2 for a given version tree.

number that it wants to pick is the same at a majority of
bricks. If not, the coordinator picks the highest version
number seen and retries, until successful—this is called
the version-retry technique, which is key to obtaining con-
sistency. This process is piggybacked on the first phase of
the two-phase write protocol (from Section 6.1), and so it
has little additional cost if the coordinator does not have
to retry, which is the common case. In the second phase of
the two-phase write, which is when the data actually gets
written to each brick, the coordinator tells bricks which
version k it picked along with the data and timestamp
to be written. When a brick receives this information, it
stores the data in the appropriate physical block accord-
ing to the logical-to-physical map. If that block is being
shared with many volumes, the sharing may have to be
broken according to the general rule in Section 6.2.

The above technique, whereby the coordinator retries
the first phase until a majority of replica bricks have iden-
tical version numbers, effectively delays writes while a
snapshot is taken. This is different from the well-known
but simplistic technique of pausing I/O’s during a snap-
shot, in which the coordinator acts in three phases: it first
tells bricks to pause their I/O’s, then it tells bricks that
branching has occurred, and finally it tells bricks to re-
sume I/O’s. This simplistic technique is slow because
there are three sequential phases, where each phase re-
quires all bricks (not just a majority) to acknowledge be-
fore moving to the next phase. Requiring all bricks to
respond eliminates the benefits of quorums. In contrast,
with our scheme only a quorum of bricks needs to re-
spond, and we embed the necessary delays within the
write protocol without the need for explicit pause and re-
sume actions. The result is less time to take snapshots
(and hence smaller write delays during snapshots), and
less complex handling of failures: with the simplistic
scheme, there has to be a way to resume paused bricks
if the coordinator fails, whereas with our scheme uniform
reliable broadcast ensures that the snapshot information
eventually propagates to the live replicas, regardless of
failures, and so a write does not get stuck.

For branch consistency, reads also need to be handled
carefully. First, recall that reads use a repair phase to fix
nondeterministic state that arise from partial writes. For
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example, consider Figure 5(b), where there is a partial
write of y to block B in volume V , and assume that a sub-
sequent read coordinator obtains responses from bricks 1
and 2, and so the coordinator picks x as the value to be
read; the coordinator will then write back x to a majority
of bricks with a new higher timestamp. How do we per-
form this write back with branching storage? Each of the
three bricks have a sharing list for block B, and for con-
sistency, it is important that the writing back of x occurs
not just at volume V , but also at all ancestor volumes of V
in the version tree, that appear in the sharing list for block
B at the brick that returned x to the read coordinator.

For example, suppose that there are three bricks, brick
1, brick 2 and brick 3, with version tree as in Figure 2 (a),
and some logical block B has value x, which is shared
between volumes S1 and V2 at all bricks. Now suppose
there is a write for B in volume V2 with data y, but the
write is partial and only reaches brick 3, due to a failure
of the write coordinator. Thus, at brick 3, the sharing of
B has been broken, but this is not so at the other bricks.
Now suppose that a new snapshot of V2 is taken resulting
in the version tree as in Figure 2 (b) at all bricks.

The resulting situation for logical block B is that brick
3 has data x for S1 and data y for {S3, V2}, while brick
1 and brick 2 have data x for {S1, S3, V2}. Now suppose
there is a read for B in volume V2. While executing the
read, suppose brick 1 and brick 2 respond to the coordi-
nator, but brick 3 is slow. Then x is picked as the value
being read, and there is a write back of x for volumes
S1, S3, and V2 with a new timestamp. This causes brick
3 to restore back the sharing between S1, S3 and V2. It
also causes all bricks to adopt the new timestamp for B
in volumes S1, S3 and V2, not just for V2. The reason is
to ensure that y cannot be read for any of these volumes;
in fact, when the system resolves the nondeterminism for
V2 by deciding that the failed write of y never occurred
then it must make a consistent decision for the previous
snapshots S1 and S3.

6.4 Creating new snapshots and clones
We now explain how Olive creates snapshots of

writable volumes, clones of snapshots, and clones of
writable volumes.

Creating a snapshot of a volume V is a very simple op-
eration: it simply requires updating the version tree and
incrementing the version number of V at a majority of
bricks. This is done using uniform reliable broadcast, to
ensure that the updates are propagated regardless of fail-
ures. The brick creating a snapshot waits until a majority
of bricks have acknowledged the updates before telling
the user that the operation is completed. This is necessary
because reads to the snapshot should be prohibited until
a majority of bricks have received the update: otherwise,
two reads to the same snapshot could return different data
(this could happen if a write occurs to the volume being

Figure 8: Replica groups storing different blocks.

snapshotted).
To create a clone of a snapshot S, a brick updates the

version tree, propagates the update using uniform reliable
broadcast, and waits for a majority of acknowledgements.

To create a clone of a writable volume V , a brick simply
creates a snapshot S of V and then creates a clone of S,
using the above procedures.

Note that if two clients take snapshots simultaneously
of the same volume, there is a chance that both get the
same snapshot. This is not problematic since snapshots
are read-only. As for clones, it is desirable to actually cre-
ate multiple clones, and so the coordinator adds a unique
identifier to clones, namely, an id for the coordinator plus
an increasing number.

6.5 Multiple replica groups
So far, we have been assuming that all storage blocks

are replicated across all bricks. Instead, if there are many
bricks, it may be desirable to replicate blocks at some of
the bricks in a way that spreads load, as shown in Figure 8.
The set of bricks that replicate a block is called a replica
group. A real system with many bricks will have many
replica groups, and in general they need not intersect.

To snapshot a volume, bricks at all replica groups must
coordinate to ensure that branching takes effect atomi-
cally. Our algorithm is designed so that, while the rela-
tively infrequent snapshot operation must contact a ma-
jority of bricks in every replica group, the more common
read and write operations only has to contact the replica
group of the block involved. To do this, we introduce the
notion of a stable version: version v of a volume is stable
iff the current version is at least v at a majority of bricks
in all replica groups. The algorithm ensures that if a brick
reads or writes using version v then v is stable. Note that
if v is stable then no operations in any replica group will
use a version smaller than v, because of the version-retry
technique (Section 6.3). This provides consistency across
replica groups.

A variable stableVersion keeps the largest version that
a brick knows to be stable, and it is updated as follows.
When a coordinator takes a snapshot of a volume, it
uses a uniform confirmed broadcast to ensure that a vol-
ume’s stableVersion is only incremented after a majority
of bricks in every replica group of the volume has incre-
mented their currentVersion. Roughly speaking, uniform
confirmed broadcast ensures that (1) either all correct
bricks (in all replica groups) deliver a message, or none
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do, and (2) if the broadcaster does not fail then all correct
bricks get the message. It also provides a confirmation
of the broadcast through the primitive confirm-deliver.
Roughly speaking, confirm-deliver(m) informs a brick
that message m has been delivered at a quorum of bricks,
where quorum in our system means a majority of bricks
in each replica group. Uniform confirmed broadcast en-
sures that (1) either all bricks get confirm-deliver(m), or
none do, and (2) if some brick delivers m, then all correct
bricks get confirm-deliver(m). We show how to imple-
ment uniform confirmed broadcast in Section 6.8, using a
simple 4-phase protocol.

When a brick delivers a message with a new version,
it updates its currentVersion variable. When a brick gets
a confirmation for this message, it updates its stableVer-
sion variable. This ensures that a version currentVersion
is stable when stableVersion ≥ currentVersion.

When a coordinator starts a read or write on a volume, it
initially waits until its version currentVersion for the vol-
ume is stable. It does not need to contact other bricks to
determine this, because it keeps track of versions already
known to be stable using the stableVersion, as described
above. In the common case, the coordinator should not
even have to wait, since currentVersion is likely to be sta-
ble already. Once currentVersion is stable, the read or
write operation is executed on this version of the volume.

It is worth noting that, while a 4-phase protocol for
uniform confirmed broadcast may slow down the snap-
shot operation, the reads and writes are only delayed dur-
ing one of those 4 phases: after a message with a new
version is received but before its confirmation (this is the
time when currentVersion is not stable). Given that tak-
ing snapshots are not as frequent as performing I/O, the
4-phase protocol does not severely impact the system as a
whole. This is confirmed by our experiments.

6.6 Multi-volume branching
Sometimes it is useful to clone or snapshot many vol-

umes simultaneously and atomically—an operation that
we call multi-volume branching. For example, a database
system may store the log and tables in separate volumes,
which is a typical scenario. In that case, if the table and
log volumes are cloned separately then the cloned log may
be out of sync with the cloned tables. With multi-volume
branching, the cloning of two or more volumes can oc-
cur atomically, thus ensuring consistency between them.
In terms of linearizability, this means that the cloning of
all volumes appear to take place at a single point in time,
rather than having a different point for each volume.

Olive provides multi-volume branching using exactly
the same mechanisms as replica groups: stable versions
and uniform confirmed broadcast. A snapshot or clone
operation uses uniform confirmed broadcast to contact all
bricks that serve the volumes being branched. The broad-
cast carries new version numbers for each volume being

branched. When the message is delivered, it causes a
brick to increment the currentVersions of the volumes,
causing a brief delay on new writes to those volumes.
Soon after, the confirmation of delivery makes those ver-
sions stable, allowing new writes to continue.

6.7 Deleting storage branches
A user deletes a volume by sending a request to one

of the bricks, who acts as the coordinator, as for other
storage operations. The coordinator reliably broadcasts
the request to all bricks.

Upon receipt of the request, a brick p does the follow-
ing. It first removes the volume from the sharing list of all
physical blocks. If the sharing list has become empty for
a physical block, the block is marked as free. Brick p then
updates the version tree by marking the volume’s node as
deleted, but the node is not yet removed from the tree, for
two reasons: First, the node may have children that are not
deleted, and so it should remain in the tree while the chil-
dren are there. Second, even if the node has no children,
another coordinator may be trying to branch the volume
while it is being deleted. The actual removal of nodes
from the tree happens through a periodic pruning where
entire branches are removed: a node is only removed if
all its children are marked deleted. This periodic pruning
is done with a two-phase protocol that quits after the first
phase if any node to be pruned is being branched.

6.8 Implementing uniform confirmed broadcast
Figure 9 gives an algorithm for uniform confirmed

broadcast, by using point-to-point messages. (It is also
easy to modify the algorithm to implement uniform reli-
able broadcast instead, by replacing the number 4 with 2
in lines 1 and 12 and removing lines 8 and 9.) It works
as follows. To broadcast a message, a brick proceeds in
4 phases. In each phase, the brick sends the message and
phase number to all bricks, and waits to receive acknowl-
edgements from a quorum of bricks (where in our sys-
tem, a quorum means a majority of bricks in each replica
group). When a brick receives a message from a phase,
it sends back an acknowledgement to the sender. In addi-
tion, if the phase is 2, the brick delivers the message, and
if the phase is 3, the brick confirms the message.

If a brick receives a message for phases 1, 2, or 3, but
does not receive a message for the following phase after
a while, then the brick suspects that the sender has failed,
and takes over the job of the sender (lines 10–14). In prac-
tice, one should add some random delay to the checking
for this condition; Otherwise, if all bricks check at the
same time, then lots of bricks will take over the job of the
sender. This will not affect correctness, but may result in
lots of messages and extra delay.

7 Data layout on physical storage
When mapping logical addresses to physical storage, it

is desirable to preserve locality by placing adjacent logical
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To broadcast(m):
1 for i← 1 to 4 do
2 send 〈NEW, i, m〉 to all
3 wait to receive 〈NEW-REP , i, m〉 from a majority from each replica group
4 return

upon receive 〈NEW, i, m〉 from q
5 send 〈NEW-REP , i, m〉 to q
6 if i = 2 and has not yet delivered m
7 then deliver m
8 if i = 3 and has not yet confirmed m
9 then confirm m

Task check:
10 repeat periodically forever
11 if for some m and j ≤ 3, received 〈NEW, j, m〉 long ago, but

never received 〈NEW, j + 1, m〉 then
12 for i← j to 4 do
13 send 〈NEW, i, m〉 to all
14 wait to receive 〈NEW-REP , i, m〉 from a majority

Figure 9: Implementation of uniform confirmed broad-
cast, used for handling multiple replica groups or for
multi-volume branching.

addresses in adjacent physical addresses. It can be impos-
sible to simultaneously preserve locality, share data be-
tween volumes, and ensure that writes execute efficiently.
Indeed, efficient writing to branching storage involves us-
ing move-on-write or copy-on-write, but both schemes
destroy locality of either the branched volume or source
volume.

This issue, however, has little to do with the distributed
or replicated nature of storage: it also applies to central-
ized systems, like disk arrays. In Olive, we did not come
up with new solutions to this problem, but just ensured
enough flexibility to support existing solutions. Indeed,
Olive allows general maps of logical-to-physical storage
(Section 5), and so it can support the following:

• Prioritize writable volumes over snapshot volumes,
by using copy-on-write instead of move-on write.
This preserves locality of the former to the detriment
of the latter.

• Use volume priorities to choose between copy-on-
write or move-on-write to preserve locality of the
higher priority volume.

• Allocate branched blocks near the original, to pre-
serve locality of all volumes; for example, leave an
empty disk track between tracks of data, if space al-
lows, and then use the empty track for move-on-write
or copy-on-write.

• Defragment volumes based on volume priorities.

Another placement issue arises when a brick has many
disks with different performance, such as fast, small, ex-
pensive disks and slow, large, cheap disks. Then, more
commonly-used volumes could employ the faster disks,
while seldom-used volumes employ the slower disks.
Olive can support that, because the logical-to-physical
mappings allow different physical disks to be used for dif-

ferent parts of a logical volume. For example, a volume
may be placed a fast disk, while its snapshots are placed
partly on the fast disk (for blocks shared with the source
volume) and partly on the slow disk (for blocks that have
diverged from the source volume). These techniques are
not specific to distributed storage; existing solutions for
centralized storage can be applied at each brick of Olive.
Currently, Olive does not support splitting the sharing of
storage across bricks—in other words, copy-on-write or
move-on-write to a remote brick.

8 Evaluation
We implemented Olive within the Federated Array of

Bricks (FAB), a distributed storage system [3, 20] that
provides block-level storage with reliability and availabil-
ity comparable to high-end disk arrays but without their
high price tags. Bricks are built from commodity off-
the-shelf hardware, and they provide an iSCSI interface
to storage. For fault tolerance, FAB uses quorum-based
data replication, as explained in Section 6.1. We modified
FAB to keep track of a version tree (Section 3) and imple-
ment the scheme described in Sections 6.2–6.8. In FAB,
the set of contiguous blocks stored at a replica group is
called a segment, typically of size 1 GB. The segment map
indicates for each segment which replica group stores it.

Olive inherits good availability and I/O performance
from FAB, described in [3, 20], and so our evaluation of
Olive focuses on branching and how it affects the system.
The metrics we consider are the following:

• Branch latency: the time taken to create a clone or
snapshot. This metric is important to users of the
system, who (presumably) want these to be created
“as soon as possible”.

• I/O delay while branching: the length of time I/O’s
are delayed while a snapshot or clone is being cre-
ated. This metric affects overall throughput and
helps define acceptable frequencies with which stor-
age branches can be made. This and the branch la-
tency are key metrics for evaluating the general per-
formance of branching storage.

• Metadata size: the size of the sharing lists, logical-
to-physical maps, and segment maps required for
each storage branch. This information is needed for
each storage branch, and should not be too large.

• I/O latency for a branched volume: the latency for
I/O after a branch has been created. One expects
somewhat higher latency in this case for the first
write to each block, which requires splitting the shar-
ing by doing copy-on-write or move-on-write. This
and the metadata size results are more specific to
FAB than Olive, although they help illustrate some
key overheads in the overall performance of the sys-
tem.
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Acceptable values for the above metrics vary per ap-
plication, and since storage is intended to be a general-
purpose service, the better the numbers, the more useful
the service is.

8.1 System configuration
We use rack-mounted servers as bricks, each with two

1GHz Pentium 3 CPUs,3 2GB of memory, three Seagate
Cheetah 32GB SCSI disks (15K rpm, 3.6ms average seek
time), and two Intel Gigabit Ethernet interfaces. They run
Debian 3.0 with the Linux 2.6.9 kernel. The first 6GB
of one disk hosts Linux and FAB/Olive software, while
the remaining 90GB is used for FAB/Olive storage. Up
to 20 machines are bricks, and other machines generate
workload as needed.

In all experiments, we use 3-way replication and ensure
that segments and data are distributed evenly to provide
similar load to bricks.

For some experiments, we used an alternative branch-
ing algorithm from the original version of FAB. This al-
gorithm uses Paxos to distribute a “create clone” message
to all bricks, which then update their global volume meta-
data. This algorithm does not delay I/O’s or synchronize
them with the clone operation, which may cause bricks to
process I/O and the clone creation in different orders. We
refer to this algorithm as the straw man algorithm.

8.2 Metadata size
Metadata for branching storage includes the logical-

to-physical maps and the sharing lists, kept in memory.
There are 8 bytes for each entry in the segment map and
12 bytes for each entry in the sharing list. Figure 10 shows
metadata size per brick per branch, for small, medium,
and large volumes stored on 8 or 16 bricks, using either
512 KB or 1 MB disk allocation sizes (see Section 5), and
a segment size of 1 GB. Metadata size doubles when the
number of bricks is halved because each brick stores a
larger part of the storage volume.

From these numbers, with a 1 MB disk allocation size,
16 bricks and 200 MB of memory in each brick for meta-
data, a large volume can have over 50 branches, while a
medium volume can have over 400 branches. While we
keep metadata in main memory, it is possible to page this
information, allowing for a virtually unlimited number of
branches.

8.3 Branch latency
There are two major components to the user-visible

time for creating branches (clones or snapshots). The
first component is the time for uniform confirmed broad-
cast, which we expect to depend mostly on the num-
ber of bricks. The second is the time for each brick to
copy/create/modify volume metadata; this time is bro-

3Only one CPU per brick is actively used during the evaluation, be-
cause FAB is single-threaded.

Volume size # bricks Metadata size Metadata size
(das=512 KB) (das=1024 KB)

24 GB 8 216 KB 108 KB
24 GB 16 108 KB 54 KB

192 GB 8 1730 KB 866 KB
192 GB 16 866 KB 434 KB
1536 GB 8 13836 KB 6924 KB
1536 GB 16 6924 KB 3468 KB

Figure 10: Amount of metadata per brick per branch for a
small, medium, and large volume in a system with 1 GB
segment size, 8 or 16 bricks, using 512 KB or 1024 KB
disk allocation sizes (das).

Figure 11: Clone creation latency as a function of num-
ber of bricks and segments. The segment size was fixed,
and volume size chosen to result in the desired number of
segments. Error bars show 95% confidence intervals.

ken up as two subcomponents: handling volume meta-
data (segment maps) and handling disk metadata (sharing
lists). The first subcomponent should vary only with the
number of segments in the volume, while the second sub-
component should depend mostly on whether the storage
location has ever been written (if not, physical disk space
will not have been allocated, and there will be no data to
copy), and the amount of physical storage allocated on
each brick. Neither subcomponent should depend on the
number of existing branches of a volume.

Figure 11 shows the latency for clone creation versus
the numbers of bricks and segments in a volume. The vol-
ume had no back-end physical storage allocated, which
eliminates disk metadata copying. The number of seg-
ments varies from 1 to 1024, which with 1 GB segments
represents a 1 TB volume. From the figure, we see that
latency varies negligibly with number of segments, which
indicates that snapshot latency depends primarily on the
time for broadcast, not on segment handling. Indeed, sep-
arate measurements show that segment handling time is
less than 30 µs in all experiments. The latency increases
linearly with the number of bricks, indicating that the bot-
tleneck is the overhead of sending and receiving uniform
confirmed broadcast messages (the number of messages
for this operation is also linear in the number of bricks).
We conclude that optimizing the broadcast mechanism
could significantly improve clone latency, if necessary.

We repeated these experiments using the straw man al-
gorithm and got far worse results (approximately 50 ms
higher latency in all cases), which indicates our custom
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Disk allocation size Disk allocation units Metadata size
per brick per brick

128 KB 73 728 864 KB
512 KB 18 432 216 KB

1024 KB 9 216 108 KB
4096 KB 2 304 27 KB

Figure 12: Size of metadata for a small 24 GB volume
with 3-way replication as we vary the disk allocation size,
for a system with 8 bricks and segment size of 1 GB.
These numbers are identical for a 48 GB volume and 16
bricks.

Figure 13: Clone creation latency while varying the size
of disk allocation, and type of I/O workload (either none,
or 100% read or write) on the system. Error bars show
95% confidence intervals

protocol provides not only better consistency but also bet-
ter performance.

We also conducted experiments to measure how disk
metadata size affects branching latencies. Since the disk
metadata size is dominated by the number of disk alloca-
tion units, we varied the disk allocation size from 128 KB
to 4096 KB while holding the volume and segment size
constant, to produce varying amounts of metadata.

For small volumes with 24 GB or 48 GB, the parame-
ters used are shown in Figure 12, and results are shown
in Figure 13 (the curves labeled “no load”). It can be
seen that disk metadata handling contributes significantly
to latency. The copying of metadata starts during phase 2
of the broadcast, and theoretically proceeds in a separate
thread independently of future broadcast phases. In prac-
tice, since FAB uses only one CPU and non-preemptive
threads, the metadata copying thread typically must finish
before processing of later broadcast phases, which adds to
clone latency. Moreover, when copying the metadata, all
of the volume’s metadata is locked, preventing I/O’s from
completing. We conclude that one could reduce clone
time and I/O latencies during clone by using multiple pro-
cessors and allowing for incremental metadata copying.

For a medium volume of size 192 GB (8 bricks) or
384 GB (16 bricks), the latencies are ≈8 times larger
than for the small volume size. This suggests using corre-
spondingly larger disk allocation sizes to obtain the same
performance.

Figure 13 also shows clone latency when the system
is under load; we used a random workload with 1 KB

reads or writes. For the read workload, the clone latency
rises slightly because processing of clone requests com-
pete with ongoing I/O. For the write workload, the clone
latency rises much more with increasing disk allocation
size, because of copy-on-write: each 1KB write results
in 3 times the disk allocation size of data movement. This
I/O and memory activity delays the handling of the broad-
cast messages of clone operations, increasing the clone
times, although they are still well within acceptable mar-
gins. This information can be used to fine-tune the desir-
able range for disk allocation unit size. 512KB to 1MB
yields efficient clone operations, while providing a good
trade-off between efficiency, locality and metadata size.

8.4 I/O delay while branching
This metric is the length of time that I/O’s are delayed

while branching executes. In Olive, branching may cause
a coordinator to retry the first phase of the I/O protocol
while a volume version is not stable (Section 6.5).

Thus, the I/O delay while branching is T0 + T1, where
T0 is the time it takes between phases 2 and 3 of uniform
confirmed broadcast (which is when a version number is
not stable), and T1 is the time it takes to retry the first
phase of the protocol. T0 is about 1/4 of the total time to
create a new branch (see Section 8.3) and should not be
more than a few tens of milliseconds. T1 is a fraction of
a millisecond, and it is dominated by T0. We conclude
that the total delay is about 1/4 of the time to create a new
branch. Figure 14 shows the read latencies for a random
workload while a snapshot is taken. The system had 16
bricks, and disk allocation size was 512KB. Data was in
cache to avoid large variations from disk I/O and further
accentuate the snapshot overheads. From Figure 13, the
total snapshot time is ≈18ms. The actual I/O delay is
≈4.8ms, as seen in the enlarged part of Figure 14. This
confirms that I/O delays are equal to about 1/4 of the time
to create a branch. Some I/O operations are delayed by
up to 4ms, visible in the brief period immediately after
the snapshot delay.

8.5 I/O latency and throughput for a branched
volume

We now compare the latency of I/O between a non-
branched volume and a branched volume. A branched
volume requires breaking data sharing the first time that
a block is written, by using copy-on-write or move-on-
write.

For read operations, we expect the I/O latency and
throughput to be unchanged, and this is shown in Fig-
ure 14. Figure 15 shows the result for write, where there
is a visible latency penalty, resulting from copy-on-write,
rather than snapshot overheads. Over time, as the un-
derlying storage is increasingly separated, the throughput
and latency return to normal, as seen by the time-average
points in the figure.
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Figure 14: Read latencies while a branch is created. Each
point shows the latency of one I/O. The period surround-
ing the snapshot is magnified, showing a gap while the
branch is created at around time 3.26s.

Figure 15: Write latencies while a branch is created. Grey
points show the latency of one I/O; black points show the
average latency in the previous 20ms.

8.6 Correctness
We did some regression tests to test branch consistency.

The first test issues many pairs of synchronous writes
while snapshots are taken, and then tests consistency by
verifying that the snapshots do not incorporate the second
write of a pair without the first. While Olive did not show
any consistency errors, approximately 25% of the snap-
shots taken using the straw man solution did.

In the second test, we introduce partial writes to a vol-
ume to simulate coordinator failures, and then we take a
snapshot and read the source and snapshot volumes while
bricks fail and recover. These reads should generate a
write back for either the old data (data before the partial
write) or new data, depending on how it executes. In-
consistency occurs if a snapshot has the new data while
its source has the old data, since the snapshot would rep-
resent a state that never happened in its source volume.
While Olive carefully considers which versions are up-
dated on a write back, the straw man solution simply
writes back to the volume read. Our implementation did
not show any inconsistencies, whereas the straw man did.

8.7 Evaluation summary
We have shown that the time to create a branch in

Olive is primarily affected by the time taken for the broad-
cast, disk metadata manipulation and copy-on-writes. The
most important parameter for our system was the disk
allocation size, with larger sizes resulting in less meta-
data (and consequently faster branch operations) but more
copy-on-write overhead (and slower branches). A size of
512KB seems ideal, resulting in snapshot times of a few
tens of milliseconds in the worst case. In that case, the I/O
delay while branching is also a few milliseconds. These
latencies are on the same order as the I/O latencies them-
selves, and smaller than for those I/O’s that must go to
disk.

Better performance is possible by improving the time
to do a copy-on-write or move-on-write locally on a brick,
and increasing the concurrency within each brick, so that
branch operations do not get queued behind I/O opera-
tions. However, this has nothing to do with the distributed
nature of Olive, and involve existing techniques that are
already in use in commercial products like disk arrays.

9 Related work
As we mentioned, Olive is built on top of FAB [3,

20], which provides distributed block storage, but with-
out branching capabilities. For fault tolerance, FAB
uses quorum-based data replication, as described in Sec-
tion 6.1. There are many centralized or single-server
systems that can capture consistent versions of data for
backups or future perusal, including file systems (e.g.,
[19, 10, 21]), and database systems (e.g., [24, 18]). In
all these systems, data is in a single place, so there are no
issues of distribution and replication of data for consis-
tency. State-of-the-art disk arrays support point-in-time
branching (both snapshots and clones), and other forms
of point-in-time copy. These systems are also centralized.

Petal [14] is a distributed replicated block storage sys-
tem that supports (read-only) snapshots without consis-
tency; intention to provide consistency has been an-
nounced [14], but no schemes have been proposed in the
literature. Frangipani [25] is a distributed file system
built on top of Petal; it provides (read-only) snapshots
of file systems, by using the underlying snapshot facil-
ity of Petal. Consistency is obtained by pausing I/O at all
nodes before taking a Petal snapshot, causing a potentially
disruptive system hiccup. Moreover, if there are failures
during the snapshot, nodes will be left in a paused state
for even longer. Snapshots in Frangipani need not worry
about distributed replicated data, since that is provided by
Petal. Neither Petal nor Frangipani support clones.

Gifford was the first to propose replication of data at a
majority of nodes; the work assumes some transactional
support in the form of a stable file system [5]. Algorithms
for quorum-based data replication over message-passing
were proposed in the context of emulating shared mem-
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ory using message-passing where some nodes may fail but
the memory should retain its contents [2, 15, 16, 6]. Em-
ulating shared memory means implementing primitives to
read and write data, and so these algorithms lead to data
replication schemes. Algorithms for quorum-based data
replication in the context of real storage systems have
been proposed for FAB [3, 20]. None of these algorithms
support branching. A snapshot scheme has been proposed
for FAB [11], but it does not provide consistency.

The work that is closest to ours is the Timeline [17]
system, which provides consistent (read-only) snapshots
for Thor, a system where a set of servers provide per-
sistent storage for objects, and clients access these ob-
jects using a transactional interface. In essence, Time-
line gets snapshot consistency by using logical clocks [12]
implemented in a way different than the usual, but simi-
lar to what is suggested by Welch [26]. There are four
main differences between our work and Timeline. First,
Timeline does not support quorum-based replication of
data. Second, Timeline requires modifications to storage
clients: they piggyback and propagate timestamps inter-
nal to Thor. Moreover, Timeline clients must use the Thor
abstraction for object-based storage, which precludes the
use of existing storage applications. Third, Timeline
does not support clones. And lastly, Timeline provides a
weaker consistency guarantee than linearizability, which
leads to inconsistency if the application nodes communi-
cate outside of Thor (e.g., by sending messages over the
network). Another scheme for taking (read-only) snap-
shots in Thor is Snap [23], but there are no details of how
to ensure consistency with multiple servers.

10 Conclusion
In this paper, we described Olive, a distributed storage

system that provides point-in-time branching. With Olive,
storage branches can be created efficiently while provid-
ing a strong form of consistency. Olive provides a block-
level interface to storage and requires no changes to stor-
age clients. Today, we expect branching to be triggered
by operators for tasks like “what-if” testing or quick stor-
age provisioning. In the future, branching could be trig-
gered by management applications to control the behavior
of other applications by forking or rolling back their state.
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