
Kea – A Dynamically Extensible and Configurable
Operating System Kernel

Alistair C. Veitch and Norman C. Hutchinson

Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada V6T 1Z4
{aveitch,norm}@cs.ubc.ca

Abstract

Kea is a new operating system kernel which has been
designed for maximum flexibility and performance in the
areas of kernel and application extensibility and dynamic
reconfiguration. Kea provides a means through which
kernel services can be reconfigured, either on an
application specific or system wide scale. We describe the
design and implementation of these features, and report on
some of our current research which relies on these abilities.

1 Introduction

Kea is a new operating system kernel being developed at
the University of British Columbia which has been designed
for maximum flexibility and performance in the areas of
extensibility and dynamic reconfiguration, from both the
kernel and application viewpoints. These capabilities are
needed due to the specialized demands made on many
modern systems and applications – requirements which
may not have been foreseen by the system’s designers. To
illustrate the uses of dynamic reconfiguration and
extensibility, consider the following diverse range of
features which a modern operating system could be
required to support: Mobile computing forces the operating
system to deal with a dynamically changing environment
and disconnected operation. If the system can dynamically
reconfigure itself to match the new environment, it may be
possible to realize substantial operational benefits.
Multimedia systems (which could be either a single client
application, or a dedicated server) require specialized
network services, or guarantees, that the default protocol
implementations may not provide. In these cases, giving the
application the ability to configure in a new network
protocol would be vital. Database systems, in order to
achieve peak efficiency, often implement, or reimplement,
services normally provided by the operating system, such as
threads, memory management, and filesystems. By giving
such systems the ability to reconfigure the kernel to include
these services, even better performance should be
achievable. Modern application technologies, such as Java
[1], require sophisticated security in the form of access
controls, that default operating system mechanisms may not

provide. In this case, the ability to transparently interpose a
new security service between the application and the
operating system would be beneficial. Finally, the page
replacement algorithms of many systems interact badly
with the memory access patterns of applications, such as
Lisp and some object-oriented systems that must do
garbage collection or sequential reading of a mapped file. In
these cases, the ability to install a per-application paging
algorithm could also increase performance.

The Kea operating system has been designed to allow the
development of sophisticated applications that require such
specialized services, by providing a means through which
applications can dynamically reconfigure, replace or extend
existing services in an incremental and safe manner. The
remainder of this paper gives a structural overview of the
design and implementation of the mechanisms through
which Kea achieves these goals and details some of the
research we are currently conducting into dynamic
reconfiguration, in which Kea is a vital component. In
particular, section 2 introduces the Kea architecture,
describing the features which make Kea reconfigurable.
Section 3 gives a brief summary of the implementation and
some performance figures. Section 4 then describes the
experiments being conducted using Kea, and section 5
compares Kea to several other systems with similar goals.
Finally, section 6 summarizes the paper.

2 Architecture

Kea is similar to many micro-kernel systems in that it
provides lightweight abstractions of a machine’s physical
resources (memory, CPU, interrupts etc.), which can then
be used to construct higher level services (such as network
protocols). These higher level services communicate with
applications and each other using some form of inter-
process communication (IPC), often with some form of
remote procedure call (RPC) layered on top. The inter-
process communication mechanism is where Kea is
primarily different from other systems, and is also where
any reconfiguration takes place. Kea’s form of RPC is
completely general and by allowing the destination of an
RPC to be changed independently of the caller, also enables



services to be dynamically and transparently reconfigured
or extended, providing both the operating system and
application designer a great degree of flexibility. Several
base Kea abstractions, domains, threads, inter-domain calls
and portals, combine to make this reconfiguration possible.

2.1 Domains

Domains are the simplest and most standard of Kea’s
abstractions. Domains are simply virtual address spaces,
offering mappings from virtual to physical memory.
Physical pages may be shared, copied, or mapped between
domains, and can have different protection attributes
associated with them. In this respect, Kea is no different
from most modern kernels. Domains also serve as the key
protection point in the system, in the sense that domains are
the entities to which system resources are allocated.

2.2 Threads

A thread is the context in which code execution takes
place, and from the applications point of view provides
similar services and properties to those in other operating
systems. Internally however, Kea separates the kernel
thread state, such as scheduler and security information,
from the current execution state (domain, machine registers
and stack). The execution state is called an activation, and
each thread can have multiple activations associated with it,
organized as a stack, of which only the activation at the top
of the stack is eligible to execute. This organization is very
similar to that of Spring [2] and the “migrating threads”
developed for Mach 4.0 [3] (from which, in the interests of
reducing confusion and the growth of new jargon, the
activation term is borrowed).

2.3 IDC

The reasoning behind the dual nature of threads is to
facilitate the service structuring mechanism, which is
achieved through the use of an RPC-like abstraction.
Instead of building a conventional IPC/RPC layer, with its
associated inefficiencies, Kea provides a mechanism which
has all the semantics of a procedure call, and which is valid
between domains, called an Inter-Domain Call, or IDC.
When an IDC is performed, a new activation (in the
destination domain) is created for the current thread, and
pushed onto the thread’s activation stack. In addition, any
parameters associated with the call are also available in the
destination domain, either on the stack or in registers,
depending on the calling convention of the machine. In this
fashion, the same thread continues execution, albeit in a
different domain.

While the effect of an IDC is very similar to a traditional
RPC (although IDC’s are limited to a single machine1) the

means through which it is achieved is quite different, and
IDC is intrinsically more efficient as it eliminates several
unnecessary steps often made in a general RPC system.
Firstly, IDC is not based on a lower IPC layer, and so
removes one level of processing from the call path.
Secondly, it is not necessary to use a canonical data
encoding, since all parameters have the same encoding on
both caller and callee. These benefits come from not having
to assume the callee might be on a different machine. While
other systems, notably LRPC [5], have also made similar
optimizations, IDC’s are further optimized by the thread
model, in that the scheduler does not have to be involved in
the IDC – control passes directly between domains, but the
same thread remains executing. Internally, the system can
also keep caches of activations and their associated stacks in
order to further decrease the time taken for an IDC.

2.4 Portals

Portals are the Kea abstraction used to represent an IDC
entry point. They provide a handle into both a domain and
an entry point within that domain, and once created
(typically, but not always, by the domain containing the
code to be executed for the IDC), they can be freely passed
around between domains. By using the system call
portal_invoke()2, the first argument to which is a
portal identifier, an IDC is performed.

Figure 1. Portal Invocation

Figure 1 illustrates the effect of a portal invocation. An
application calls portal_invoke(), using a previously
acquired portal identifier (small dark circle), and the system
performs the appropriate IDC to the service implementing
that IDC. The underlying implementation maps the local
(application level) portal identifier into a system portal
structure (labelled oval), which determines the number and
size of arguments actually copied to the destination service.
The service could reside in any domain – including the
kernel or the calling application.

1. To extend Kea for use in a distributed environment, it is envisioned that
a standard proxy mechanism [4] can probably be used.

2. It is interesting to note that portal_invoke() is the only system call
in Kea. All other base services create portals for their entry points at sys-
tem initialization.

ServiceApplication

Kea Kernel

S

Portal (user id)

Portal (system)

IDC path



Semantically, portal invocation is almost identical to a
procedure call, and is sufficient to layer services. To give
Kea more structure however, we have designed services as
sets of interfaces. An interface is a definition of the
allowable interactions between the implementor of a service
and the clients of that service. A service is defined as a set
of procedure definitions, from which it is possible to
generate simple client stubs that use portal invocations.
Clients are written to conform to the interface, and do not
need to know about portal invocation. By making interfaces
a high-level abstraction, we are able to “hide” the
underlying portal mechanism, and unify all the entry points
for a service into a single entity. By making each service
relatively fine-grained, and providing a means through
which each service’s interface can be specified, hierarchies
of services can be built. For example, low level disk drivers
present only a block read/write interface, specific filesystem
interfaces are built on this, and the global filesystem/name-
space on top of this.

2.5 Portal Remapping

The most important property of portals, and the one that
makes reconfiguration possible, is that they can be
dynamically remapped to a different domain/entry-point at
run-time. This remapping is transparent to the user of the
portal, i.e. the application uses the same portal identifier, but
any IDC through that portal will result in the activation of a
different service (that should perform the same function as
the original, albeit improved in some fashion). A simple
example is shown in Figure 2. Here, an application has been
using a particular file service (F), but the system
administrator has made a new file service (F’), with the
same semantics, but improved performance properties,
available. Either the application itself, or the system
administrator, can cause the application portals1 referring to
the original file server to be remapped to the new ones.
Internally, the bindings between the original portal
identifiers are modified to refer to the equivalent system
portals in the new file service. IDC’s through the original
portals now execute code in the new service. This type of
remapping could also be used to test new software, or for
simple upgrade reasons (i.e. to fix bugs). The important
features are that the applications portal identifiers do not
change, and that the remapping is transparent to the
application, and does not affect other applications using the
original service. It is this ability to perform dynamic
remapping that is the primary difference between Kea’s
IDC mechanism, and other similar RPC mechanisms, such
as doors in Spring [2].

Figure 2. Simple Portal Remapping

Imagine that the service depicted in Figure 1 is a file
service, but that the application wishes to have the data in its
files compressed. In a normal system the application itself
would have to explicitly call a compression routine on every
write request, and the corresponding decompression
function on every read. Using Kea however, a compression
service can be defined, with the same semantics as the file
service (i.e. supplying the same functions), but that
transparently compresses all data passing through it. The
application could then remap the file system portals to refer
to this compression service, while the compression service
itself continues to use the original file service. The
configuration of such a system is shown in Figure 3, where
the application portal originally referred to the portal
structure labelled F, but has been remapped to that offered
by the compression service (C). This style of remapping
operation (which is identical to that shown in Figure 2, with
the addition of an extra invocation by the replaced domain),
can be used to support any form of stackable service or
interposition agents [6].

Figure 3. Stacked Portal Remapping

The final, and most complex, remapping supported by
Kea is shown in Figure 4. Here, two applications are using
the virtual memory services, through some arbitrary chain
of portal invocations. This is shown implicitly in the
diagram by the stacking of the applications upon the virtual1. For clarity, the figures only show a single portal remapping.

Application

Kea Kernel
F F’

Portal (user id)

Portal (system)

IDC Call (before remap)

IDC Call (after remap)

File Service
F’

File Service
F

Application
Compression File

C F

Portal (user id)

Portal (system)

IDC Call (before remap)

IDC Call (after remap)

Service Service



memory service. The virtual memory service uses, in its
turn, a policy module which selects pages to be paged out
when necessary. If application B can determine its own
memory usage patterns, it is possible that significant
savings in CPU and disk traffic could be realized by letting
it install its own policy module. Kea allows this to happen,
by letting B define its own page selection service, and
remapping the portal used by the VM service to call the
page selection service, in such a way that portal invocations
using that portal, that are on behalf of domain B, use the
new page selection service, while all other IDC’s using that
portal, such as those made by A, continue to use the default
service. This is a form of indirect mapping, in that the portal
remapped has no association with the original application
domain. Other uses of this type of remapping could be used
for process scheduling, buffer cache management, or any
other part of the system where a policy decision must be
made, but the caller may be separated by several portal
invocations from the original domain. As this remapping
type is dependent upon the domain in which a thread
originated, we refer to it as a domain-rooted remapping.

Figure 4. Domain-rooted remapping

In addition to the per-domain remappings described
above, it is equally possible to remap portals on a system-
wide basis, i.e. to transparently remap portals for all users
of a service. Given these remapping possibilities, the true
configurability of a Kea-based system becomes obvious –
any service in the system can be transparently replaced at
any time with an equivalent service. In addition to the
examples given above, this also opens such possibilities as
continuous systems operation (software upgrades by
service replacement) and operating systems emulation (by
installing a new service). Several diverse application areas
could benefit from user-level reconfiguration, and many
examples of the uses to which such flexibility could be put
have been cited. These include security enhancements [7],
scheduling support in parallel systems [8] and application
level virtual memory management [9,10,11].

3 Implementation and Performance

Kea has been under development since June of 1994, and
currently exists as a bootable kernel for Intel 80x86
processors in IBM-compatible P.C.s. Development has also
been performed on sun3 and sun4 machines, although the
versions extant on these machine tend to lag behind those on
the Intel platform. All the base Kea abstractions are
implemented, and experimentation has begun on dynamic
reconfiguration of user-level services.

While the existing version is a research prototype only, it
must still be at least comparable in performance to similar
systems, in order that reasonable comparisons on the utility
of the reconfiguration techniques proposed can be made.
The most important performance-related component of Kea
is IDC times (although it can be argued that such
measurements are becoming increasingly irrelevant [12]),
so we have made various measurements of the time taken
for IDC’s of various data sizes, and compared these to
similar operations for the Mach and L3 microkernels [13].
The results from this are shown in Table 1. All the times
shown were measured on a 486-DX50 PC compatible
machine, and are in microseconds. Mach and L3 times
involved an RPC with a fixed size data block parameter
(transferred from caller to callee), while Kea times were for
the equivalent IDC with the same size parameter. As can be
seen, Kea is certainly faster than Mach, but not nearly as fast
as L3. There are several reasons for the latter. Firstly, L3 is
machine-specific – the kernel is written entirely in
assembler, reducing the overhead considerably, compared
to the portable code used in Mach and Kea. Additionally,
the L3 measurements are made with a minimal system, with
the system operating almost entirely out of L1 cached
memory, which may not be valid for a system running
several applications. Secondly, IDC is a far more general
mechanism than IPC, in which there are hidden overheads,
due to the fact that the receiver of a message has to
unmarshall that message into the appropriate data
structures. Also, with client/server IPC based systems,
servers often have a single receiver that does a switch on the
incoming message, and calls the appropriate function
dependent on the message type. Thirdly, we anticipate that
we will be able to substantially tune various Kea
subsystems, in particular the virtual memory system and
argument copying mechanisms, leading to a corresponding
performance increase for IDC – the context switch time is
currently the biggest component (about 70%) of the IDC
time. This is further attested to by IDC’s that only go into
the kernel (which are exactly analogous to system calls). A
“thread_id()” system call takes approximately 11µs,
comparing reasonably well to the getpid() time of 8µs for
Linux on the same machine. These results indicate that
while IDC times may not be as fast as possible, they should

Application A

IDC Call IDC Call

VM Service

Page
Selection
Service
(default)

(App A) (App B)

Application B

Page
Selection

B A



be adequate for evaluating Kea’s potential, and will not
substantially interfere with any further research into the use
of such systems for dynamic reconfiguration.

As mentioned previously, the application level portal
identifiers are mapped into a kernel level portal structure,
which describes the data that needs to be copied for that
particular portal. There are two stages to this mapping. The
first is to perform a hashed lookup on the threads original
domain, in order to determine if a domain-rooted
remapping has been made, and if so, to return the remapped
portal structure. If no such remapping has been made, the
mapping is accomplished using a simple array lookup.
These operations are relatively inexpensive (only 2µs of the
measured IDC time) and remapping a portal involves only
changing the stored system portal identifier within the
relevant data structure. As a consequence, there are no
performance implications from any portal remapping
operation.

4 Future Directions

While we have implemented the Kea system design as
described above, we have yet to perform any substantial
experiments on dynamic reconfiguration. We are currently
investigating several different areas, notably dynamic
relocation of services between user and kernel space,
dynamic network protocol configuration, and filesystem
layering. Each of these offers practical and relevant
demonstrations as to the utility of operating system
reconfiguration, and as such is deserving of further study.

4.1 Service Relocation

Kea, like many other microkernel based systems, suffers
from efficiency problems caused by the communications
mechanism. No matter how fast an IDC performs, it will
still be many orders of magnitude slower than the equivalent
procedure call occurring within a single address space. This
is because of the overheads associated with data copying
and switching of address spaces, which results in TLB and
cache flushes, and a concomitant decrease in performance
[14]. However, services running in separate address spaces
do have distinct advantages. Firstly, the service can be
debugged using a standard debugger, important during

system development. Secondly, running the service in its
own domain provides greater security to the system as a
whole – any faulty behaviour by the service is confined in
its effects to the local domain, and cannot crash the system
as a whole.

However, these advantages are primarily important to the
system developer only. Once services such as filesystems
have been debugged, there is little need for separation into
disjoint domains, and more need for optimal performance,
certainly when it is considered that performance is often the
sole criteria by which operating systems are judged. In
addition, services such as filesystems are usually of a highly
trusted nature anyway, and the extra security risks incurred
by placing such services in the kernel are minimal. Given
these circumstances, it would be useful if services could be
dynamically loaded into, and out of, the kernel. This would
allow dynamic replacement of services that required
upgrading (reducing computer downtime) as well as
facilitating the development and debugging of these
services – certainly being able to disregard the eventual run-
time location of services (kernel vs. user space) eases
development considerably. This decoupling of modularity,
protection and run-time environment is an important feature
in Kea’s design, although it is not entirely unique to Kea
[15].

At present, we are investigating the possibilities for
dynamic kernel service reconfiguration. We currently have
device drivers that use the same source code, regardless of
whether they run at kernel or user level. We currently need
to recompile before these drivers can be shifted into or out
of the kernel, since not all the low-level interfaces are
currently specified as such (i.e. they rely on kernel/user
library code, rather than portal-remappable versions), and
we have yet to target the compiler to produce relocatable
code (which is necessary, since remapped binaries may be
loaded and run at any memory address)1. Once these
problems have been addressed, it will be possible to
transparently migrate such code between the kernel and
user levels, in order to gain the advantages of both.

4.2 Network Reconfiguration

The x-kernel is a configurable kernel designed to support
experimentation in network protocols and distributed
programming [17]. The modular structure of the x-kernel
and its protocols make it the perfect vehicle for
experimenting with dynamic loading and reconfiguration of
network protocols. We have completed a port of the
x-kernel to Kea, and currently use it as the base networking
system. The x-kernel’s internal structure matches well with

 Table 1. IDC times (microseconds)

Data Size (kilobytes)

0K 1K 4K

Mach 230 320 560

Kea 87 156 320

L3 10 32 175

1. We are however investigating the possibility of using current research in
heterogeneous process migration [16] to remove this requirement.



the service primitives provided by Kea, in particular the
“thread per message” paradigm fits well with IDCs and the
x-kernel APIs map cleanly into Kea interfaces. We intend to
modify the x-kernel to enable the dynamic loading of new
networking protocols into a running system, and to perform
any necessary reconfiguration of protocol layering. We also
expect to be able to use it to provide further performance
comparisons for equivalent services running in kernel and
user domains.

4.3 Filesystem layering

The final area in which we wish to experiment is
filesystems. In most modern operating systems, filesystems
are layered on top of a generic layer (e.g. vnodes [18]),
which is in turn layered on device drivers. By making these
interfaces explicit within Kea, we hope to be able to
reconfigure any of these layers, but intend to concentrate on
the upper filesystem, and provide examples of interface
remapping for supporting such things as transparently
compressed, replicated and distributed filesystems.

In addition, Kea is currently being used in the
development of a multimedia file server [19]. Kea provides
unique advantages to such demanding applications,
allowing them efficient access to kernel resources, or even
allowing dedicated systems to be incorporated into the
kernel, where they can achieve maximum efficiency. In
particular, the multimedia server requires fast, low-level
access to disks, dedicated network bandwidth, and
customized scheduling, none of which are generally
available in a standard operating system such as UNIX.

5 Related Work

Extensibility and configurability have been goals of
operating systems for some time, but it is only recently that
researchers have turned to the production of systems with
these as primary goals, rather than secondary features. For
example, Multics [20] provided a means (gates) through
which applications could specify which procedure
segments it would use. However, the binding between
segments was statically performed at load-time, with no
means by which an application could modify a segment.
The operating system itself was also constructed at a high
level, and did not provide access to, let alone manipulation
of, the lower level features of the system.

The Synthesis operating system [21] provides enhanced
application performance through run-time generation and
optimization of code which interfaces to operating system
services. An example is the file system, where an open call
returns not a handle to a file, but a section of code optimized
for performing operations on that particular file, for that
particular client. While this method provides enhanced
performance for applications, it does not provide the

application with a means of modifying the default interfaces
themselves.

The GNU Hurd project [22] is an attempt to structure a
module-based system on top of the Mach 3.0 kernel. Like
Kea, modules will be dynamically replaceable by arbitrary
applications. Unlike Kea however, modules are
heavyweight structures (e.g. whole file systems), which
violates the principle of incrementality, and so reduces the
general applicability of the module replacement facility. It
is unlikely that any system built on top of Mach, or similar
microkernels, can provide true application specific features
without substantial modification, as the microkernel itself
provides no means for application-specific mappings of fine
grain modules, particularly those that may reside within
services composed of an aggregation of cooperating
modules.

SPIN, a new microkernel design with application
specificity as its primary goal, is currently under
development at the University of Washington [23]. SPIN
allows applications to install low-level system services into
the kernel, so that they can receive notification of, or take
action on, certain kernel events. These events may be as
disparate as a page fault, the reception of a network packet
destined for the application, or context switches affecting
the application. Extensions to the kernel are written in
Modula-3, and they rely on the safety features of the
language and compiler to verify, as far as possible, the code
for integrity. Higher level flexibility, that is application
specific functionality that does not have to be present in the
kernel, is accomplished through the use of application
specific libraries. These approaches provide reconfiguration
for applications requiring low-level services but the
interfaces to, and provisions for, higher level flexibility or
global system reconfiguration are more restrictive than
Kea’s. The work being done for SPIN’s features is however
valuable, and they may prove to be important components
of future reconfigurable systems.

Finally, some projects [24,25] are investigating the use of
software fault isolation [26] techniques for the safe linking
of code directly into the kernel. These projects also show
promise, and we may adopt some of their methods for co-
locating code, particularly in the cases where we wish to
provide some enhanced security.

6 Conclusions

This paper describes the design and implementation of
Kea: an extensible, reconfigurable operating system kernel.
Kea incorporates several new features, notably portals
(supporting IDC’s) and portal remapping, whereby the
system can be easily reconfigured. We have shown that
IDCs are comparable in efficiency to other IPC-based
systems, implying that Kea will also be comparable in



overall performance, and should certainly be sufficient for
investigation into dynamic system reconfiguration.

In addition, we intend to do further research into the
reconfigurable aspects of Kea’s design, extending our
understanding of what system components can (or should)
be reconfigured, and the most useful ways in which this can
be done. We will concentrate on three areas: user/kernel
service remapping, dynamic network protocol remapping,
and filesystem layering.

In summary, we feel that modern systems and
applications require system reconfigurability in order to
achieve maximum performance. We believe that the Kea
architecture, in particular inter-domain calls and portal
remapping, is ideal for the support of such reconfiguration
of systems at both the kernel and application layers.

7 References

[1] J. Gosling and H. McGilton, The Java Language
Environment. http://www.javasoft.com/whitePaper/
java-whitepaper-1.html

[2] G. Hamilton and P. Kougiouris, The Spring Nucleus: A
Microkernel for Objects. Proceedings of the 1993
Summer USENIX Conference, June 1993, pp. 147-159

[3] B. Ford and J. Lepreau, Evolving Mach 3.0 to a Migrating
Thread Model. Proceedings of the 1994 Winter USENIX
Conference, January 1994, pp. 97-114

[4] M. Shapiro, Structure and Encapsulation in Distributed
Systems: The Proxy Principle. Proceedings of the Sixth
International Conference on Distributed Computing
Systems, May 1986, pp. 198-204

[5] B.N. Bershad, T.E. Anderson, E.D. Lazowska and H.M.
Levy, Lightweight Remote Procedure Call. ACM
Transactions on Computer Systems, 8(1), February
1990, pp. 37-55

[6] M.B. Jones, Interposition Agents: Transparently
Interposing User Code at the System Interface.
Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles, December 1993, pp. 80-
93

[7] B.N. Bershad & C.B. Pinkerton, Watchdogs – Extending
the UNIX File System. Computing Systems, 1(2), Spring
1988, pp. 169-188

[8] T.E. Anderson, B.N. Bershad, E.D. Lazowska and H.M.
Levy, Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism. ACM
Transactions on Computer Systems, 10(1), February
1992, pp. 53-79

[9] K.Krueger, D. Loftesness, A. Vahdat and T. Anderson,
Tools for the Development of Application-Specific
Virtual Memory Management. Proceedings of the 1993
Conference on Object Oriented Programming Systems,
Languages and Architectures, 1993, pp. 48-64

[10] A.W. Appel & K. Li, Virtual Memory Primitives for User
Programs. Proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), April
1991, pp. 96-107

[11] S. Sechrest and Y. Park, User Level Physical Memory

Management for Mach. Proceedings of the USENIX
Mach Symposium, November 1991, pp. 189-199

[12] B.N. Bershad. The Increasing Irrelevance of IPC
Performance for Microkernel-Based Operating
Systems. Proceedings of the USENIX Workshop on
Micro-kernels and Other Kernel Architectures, April
1992, pp. 205-212

[13] J. Liedtke, Improving IPC by Kernel Design. Proceedings
of the 14th ACM Symposium on Operating Systems
Principles, December 1993, pp. 175-188

[14] J.C. Mogul and A. Borg, The Effect of Context Switches on
Cache Performance. Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-IV), April 1991, pp. 75-84

[15] P. Druschel, L.L. Peterson and N.C. Hutchinson,
Modularity and Protection Should be Decoupled.
Proceedings of the Third Workshop on Workstation
Operating Systems, April 1992, pp. 95-97

[16] P. Smith and N.C. Hutchinson, Heterogeneous Process
Migration: The Tui System. Submitted for publication.

[17] N.C. Hutchinson and L.L. Peterson, Design of the x-Kernel.
Proceedings of the 1988 SIGCOMM, August 1988, pp.
65-75

[18] S.R. Kleiman, Vnodes: An Architecture for Multiple File
System Types in Sun UNIX. Proceedings of the 1986
USENIX Conference, pp. 238-247

[19] G. Neufeld, D. Makaroff and N. Hutchinson, The Design of
a Variable Bit-Rate Continuous Media Server.
Proceedings of the 5th International Workshop on
Network and Operating System Support for Digital
Audio and Video, Durham, NH, April 1995, pp. 375-378

[20] E.I. Organick, The Multics System: An Examination of It’s
Structure. The MIT Press, Cambridge, MA, 1972

[21] H. Massalin and C. Pu, Threads and Input/Output in the
Synthesis Kernel. Proceedings of the 12th ACM
Symposium on Operating Systems Principles, December
1989, pp. 191-201

[22] M. Bushnell, Towards a New Strategy of OS Design. In The
January 1994 GNU’s Bulletin.

[23] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M.E.
Fiuczynski, D. Becker, C. Chambers and S. Eggers,
Extensibility, Safety and Performance in the SPIN
Operating System., Proceedings of the Fifteenth
Symposium on Operating Systems Principles, December
1995, pp. 267-284

[24] D. Engler, M.F. Kaashoek and K. O’Toole, The Operating
System Kernel as a Secure Programmable Machine.
Proceedings of the Fifteenth Symposium on Operating
Systems Principles, December 1995, pp. 251-266

[25] C. Small and M. Seltzer, VINO: An Integrated Platform for
Operating System and Database Research. Technical
Report TR-30-94, Harvard University, 1994.

[26] R. Wahbe, S. Lucco, T.E. Anderson and S.L. Graham,
Efficient Fault Isolation. Proceedings of the Fourteenth
Symposium on Operating Systems Principles, December
1995, pp. 203-216


